1
|
Schroer MA, Westermeier F, Lehmkühler F, Conrad H, Schavkan A, Zozulya AV, Fischer B, Roseker W, Sprung M, Gutt C, Grübel G. Colloidal crystallite suspensions studied by high pressure small angle x-ray scattering. J Chem Phys 2016; 144:084903. [PMID: 26931722 DOI: 10.1063/1.4941563] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We report on high pressure small angle x-ray scattering on suspensions of colloidal crystallites in water. The crystallites made out of charge-stabilized poly-acrylate particles exhibit a complex pressure dependence which is based on the specific pressure properties of the suspending medium water. The dominant effect is a compression of the crystallites caused by the compression of the water. In addition, we find indications that also the electrostatic properties of the system, i.e. the particle charge and the dissociation of ions, might play a role for the pressure dependence of the samples. The data further suggest that crystallites in a metastable state induced by shear-induced melting can relax to a similar structural state upon the application of pressure and dilution with water. X-ray cross correlation analysis of the two-dimensional scattering patterns indicates a pressure-dependent increase of the orientational order of the crystallites correlated with growth of these in the suspension. This study underlines the potential of pressure as a very relevant parameter to understand colloidal crystallite systems in aqueous suspension.
Collapse
Affiliation(s)
- M A Schroer
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - F Westermeier
- Max-Planck-Institut für Struktur und Dynamik der Materie, CFEL, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - F Lehmkühler
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - H Conrad
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - A Schavkan
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - A V Zozulya
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - B Fischer
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - W Roseker
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - M Sprung
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - C Gutt
- Department of Physics, University of Siegen, Walter-Flex-Str. 3, 57072 Siegen, Germany
| | - G Grübel
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| |
Collapse
|
2
|
Bharti B, Meissner J, Klapp SHL, Findenegg GH. Bridging interactions of proteins with silica nanoparticles: the influence of pH, ionic strength and protein concentration. SOFT MATTER 2014; 10:718-28. [PMID: 24835283 DOI: 10.1039/c3sm52401a] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Charge-driven bridging of nanoparticles by macromolecules represents a promising route for engineering functional structures, but the strong electrostatic interactions involved when using conventional polyelectrolytes impart irreversible complexation and ill-defined structures. Recently it was found that the electrostatic interaction of silica nanoparticles with small globular proteins leads to aggregate structures that can be controlled by pH. Here we study the combined influence of pH and electrolyte concentration on the bridging aggregation of silica nanoparticles with lysozyme in dilute aqueous dispersions. We find that protein binding to the silica particles is determined by pH irrespective of the ionic strength. The hetero-aggregate structures formed by the silica particles with the protein were studied by small-angle X-ray scattering (SAXS) and the structure factor data were analyzed on the basis of a short-range square-well attractive pair potential (close to the sticky-hard-sphere limit). It is found that the electrolyte concentration has a strong influence on the stickiness near pH 5, where the weakly charged silica particles are bridged by the strongly charged protein. An even stronger influence of the electrolyte is found in the vicinity of the isoelectric point of the protein (pI = 10.7) and is attributed to shielding of the repulsion between the highly charged silica particles and hydrophobic interactions between the bridging protein molecules.
Collapse
Affiliation(s)
- Bhuvnesh Bharti
- Institut für Chemie, Stranski Laboratorium, TC 7, Technische Universität Berlin, Strasse des 17. Juni 124, D-10623 Berlin, Germany.
| | | | | | | |
Collapse
|
3
|
Eberle APR, Wagner NJ, Akgun B, Satija SK. Temperature-dependent nanostructure of an end-tethered octadecane brush in tetradecane and nanoparticle phase behavior. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2010; 26:3003-3007. [PMID: 20108970 DOI: 10.1021/la904660n] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The phase behavior of a molecular brush-C(18) grafted to the surface of both a silicon wafer and SiO(2) nanoparticles was investigated as a function of temperature using neutron reflectometry (NR) and small-angle neutron scattering (SANS), respectively. The experiments demonstrate a phase change in the brush layer characterized by a straightening of the molecular configuration, increase in shell thickness, and increase in solvent concentration with decreasing temperature that corresponds to gelation in the nanoparticle dispersion.
Collapse
Affiliation(s)
- Aaron P R Eberle
- Department of Chemical Engineering, University of Delaware, Newark, Delaware 19716, USA
| | | | | | | |
Collapse
|
4
|
Vavrin R, Kohlbrecher J, Wilk A, Ratajczyk M, Lettinga MP, Buitenhuis J, Meier G. Structure and phase diagram of an adhesive colloidal dispersion under high pressure: a small angle neutron scattering, diffusing wave spectroscopy, and light scattering study. J Chem Phys 2009; 130:154903. [PMID: 19388768 DOI: 10.1063/1.3103245] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We have applied small angle neutron scattering (SANS), diffusing wave spectroscopy (DWS), and dynamic light scattering (DLS) to investigate the phase diagram of a sterically stabilized colloidal system consisting of octadecyl grafted silica particles dispersed in toluene. This system is known to exhibit gas-liquid phase separation and percolation, depending on temperature T, pressure P, and concentration phi. We have determined by DLS the pressure dependence of the coexistence temperature and the spinodal temperature to be dP/dT=77 bar/K. The gel line or percolation limit was measured by DWS under high pressure using the condition that the system became nonergodic when crossing it and we determined the coexistence line at higher volume fractions from the DWS limit of turbid samples. From SANS measurements we determined the stickiness parameter tau(B)(P,T,phi) of the Baxter model, characterizing a polydisperse adhesive hard sphere, using a global fit routine on all curves in the homogenous regime at various temperatures, pressures, and concentrations. The phase coexistence and percolation line as predicted from tau(B)(P,T,phi) correspond with the determinations by DWS and were used to construct an experimental phase diagram for a polydisperse sticky hard sphere model system. A comparison with theory shows good agreement especially concerning the predictions for the percolation threshold. From the analysis of the forward scattering we find a critical scaling law for the susceptibility corresponding to mean field behavior. This finding is also supported by the critical scaling properties of the collective diffusion.
Collapse
Affiliation(s)
- R Vavrin
- Laboratory for Neutron Scattering, ETH Zurich and Paul Scherrer Institut, 5232 Villigen PSI, Switzerland.
| | | | | | | | | | | | | |
Collapse
|
5
|
Kohlbrecher J, Buitenhuis J, Meier G, Lettinga MP. Colloidal dispersions of octadecyl grafted silica spheres in toluene: a global analysis of small angle neutron scattering contrast variation and concentration dependence measurements. J Chem Phys 2007; 125:44715. [PMID: 16942182 DOI: 10.1063/1.2220564] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In this paper we report measurements of the form factor and the structure factor of a sterically stabilized colloidal dispersion consisting of silica spheres coated with octadecane in toluene by small angle neutron scattering (SANS). The phase diagram of this system shows the liquid-liquid coexistence line and also a jamming transition at higher concentrations, where the jamming line intersects the coexistence line roughly at the critical point. We have performed SANS experiments at a temperature well above the transition temperature and at various volume fractions phi, spanning from the very dilute regime (phi=0.2%) to the critical concentration (phi=16%) and the highly viscous regime (phi=39.2%). Except for the very dilute regime, we observe a structure factor S(q) in all other cases. We fitted our data over the whole concentration regime using a global fitting routine with a core-shell model for the form factor P(q), taking into account the structure factor, which we describe with the Robertus model for an adhesive polydisperse core-shell particle. At a volume fraction of phi=5% a SANS contrast variation experiment has been performed. From that the product of the volume of the shell and the amount of solvent within the corona of our core-shell particle could be determined. At the most probable shell thickness of 2.3 nm a solvent content of about 50% within the corona was found. Moreover we could conclude that the core is not interpenetrated by solvent molecules. From the contrast variation experiment followed that the structure factor at zero average contrast exhibits a strong q dependence, which is an effect of an inhomogeneous particle in combination with a size distribution.
Collapse
|
6
|
Sztucki M, Narayanan T, Belina G, Moussaïd A, Pignon F, Hoekstra H. Kinetic arrest and glass-glass transition in short-ranged attractive colloids. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2006; 74:051504. [PMID: 17279914 DOI: 10.1103/physreve.74.051504] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2006] [Indexed: 05/13/2023]
Abstract
A thermally reversible repulsive hard-sphere to sticky-sphere transition was studied in a model colloidal system over a wide volume fraction range. The static microstructure was obtained from high resolution small angle x-ray scattering, the colloid dynamics was probed by dynamic x-ray and light scattering, and supplementary mechanical properties were derived from bulk rheology. At low concentration, the system shows features of gas-liquid type phase separation. The bulk phase separation is presumably interrupted by a gelation transition at the intermediate volume fraction range. At high volume fractions, fluid-attractive glass and repulsive glass-attractive glass transitions are observed. It is shown that the volume fraction of the particles can be reliably deduced from the absolute scattered intensity. The static structure factor is modeled in terms of an attractive square-well potential, using the leading order series expansion of Percus-Yevick approximation. The ensemble-averaged intermediate scattering function shows different levels of frozen components in the attractive and repulsive glassy states. The observed static and dynamic behavior are consistent with the predictions of a mode-coupling theory and numerical simulations for a square-well attractive system.
Collapse
Affiliation(s)
- M Sztucki
- European Synchrotron Radiation Facility, BP 220, 38043 Grenoble, France
| | | | | | | | | | | |
Collapse
|
7
|
Roke S, Berg O, Buitenhuis J, van Blaaderen A, Bonn M. Surface molecular view of colloidal gelation. Proc Natl Acad Sci U S A 2006; 103:13310-4. [PMID: 16938857 PMCID: PMC1557386 DOI: 10.1073/pnas.0606116103] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We investigate the phase behavior of surface-functionalized silica colloids at both the molecular and macroscopic levels. This investigation allows us to relate collective properties such as aggregation, gelation, and aging directly to molecular interfacial behavior. By using surface-specific vibrational spectroscopy, we reveal dramatic changes in the conformation of alkyl chains terminating submicrometer silica particles. In fluid suspension at high temperatures, the interfacial molecules are in a liquid-like state of conformational disorder. As the temperature is lowered, the onset of gelation is identified by macroscopic phenomena, including changes in turbidity, heat release, and diverging viscosity. At the molecular level, the onset of this transition coincides with straightening of the carbon-carbon backbones of the interfacial molecules. In later stages, their intermolecular crystalline packing improves. It is the increased density of this ordered boundary layer that increases the van der Waals attraction between particles, causing the colloidal gas to aggregate. The approach presented here can provide insights into phase transitions that occur through surface modifications in a variety of colloidal systems.
Collapse
Affiliation(s)
- Sylvie Roke
- Max Planck Institute for Metals Research, Heisenbergstrasse 3, 70569 Stuttgart, Germany.
| | | | | | | | | |
Collapse
|
8
|
Narayanan T, Sztucki M, Belina G, Pignon F. Microstructure and rheology near an attractive colloidal glass transition. PHYSICAL REVIEW LETTERS 2006; 96:258301. [PMID: 16907350 DOI: 10.1103/physrevlett.96.258301] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2005] [Indexed: 05/11/2023]
Abstract
Microstructure and rheological properties of a thermally reversible short-ranged attractive colloidal system are studied in the vicinity of the attractive glass transition line. At high volume fractions, the static structure factor changes very little but the low frequency shear moduli varies over several orders of magnitude across the transition. From the frequency dependence of shear moduli, fluid-attractive glass and repulsive glass-attractive glass transitions are identified.
Collapse
Affiliation(s)
- T Narayanan
- European Synchrotron Radiation Facility, F-38043 Grenoble, France.
| | | | | | | |
Collapse
|
9
|
Woutersen A, May R, de Kruif C. The equilibrium microstructure of adhesive hard sphere dispersions: A small-angle neutron scattering study. J Colloid Interface Sci 1992. [DOI: 10.1016/0021-9797(92)90490-d] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
10
|
Bezot P, Hesse-Bezot C, Bommelaer J. Stability of coated and slightly charged silica particles under pressure: A light scattering study. J Mol Liq 1992. [DOI: 10.1016/0167-7322(92)80010-f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
11
|
|
12
|
de Kruif CG, van Miltenburg JC. Phase transitions in sterically stabilized silica colloids studied by adiabatic calorimetry. J Chem Phys 1990. [DOI: 10.1063/1.458919] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|