• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (4646905)   Today's Articles (613)   Subscriber (50666)
For: Zhou Y, Stell G. Nonlocal integral‐equation approximations. I. The zeroth order (hydrostatic) approximation with applications. J Chem Phys 1990. [DOI: 10.1063/1.458486] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]  Open
Number Cited by Other Article(s)
1
Zhang C, Lai CL, Pettitt BM. Computation of virial coefficients from integral equations. J Chem Phys 2015;142:214110. [PMID: 26049482 DOI: 10.1063/1.4921790] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]  Open
2
Electrolytes and the Electric Double Layer. ADVANCES IN CHEMICAL PHYSICS 2007. [DOI: 10.1002/9780470141519.ch1] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/12/2023]
3
Malijevský A, Pospíšil R, Smith W, Labík S. The Ornstein-Zernike equation for hard spheres near a hard wall. Mol Phys 2006. [DOI: 10.1080/00268979100100141] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
4
Kunor TR, Taraphder S. Molecular dynamics study of the density and temperature dependence of bridge functions in normal and supercritical Lennard-Jones fluids. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2005;72:031201. [PMID: 16241418 DOI: 10.1103/physreve.72.031201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2005] [Revised: 07/12/2005] [Indexed: 05/05/2023]
5
Zhou S. Local Solvent Density Augmentation around a Solute in Supercritical Solvent Bath:  1. A Mechanism Explanation and a New Phenomenon. J Phys Chem B 2005;109:7522-8. [PMID: 16851863 DOI: 10.1021/jp0463619] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
6
Kapko V, Egorov S. Ionic solvation in polar supercritical fluids: an integral equation study. Chem Phys Lett 2005. [DOI: 10.1016/j.cplett.2004.12.043] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
7
Patel N, Egorov SA. Interactions between colloidal particles in polymer solutions: A density functional theory study. J Chem Phys 2004;121:4987-97. [PMID: 15332935 DOI: 10.1063/1.1778671] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]  Open
8
Standard thermodynamic properties of solutes in supercritical solvents: simulation and theory. Chem Phys Lett 2003. [DOI: 10.1016/j.cplett.2003.10.050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
9
Bronstein L, Fernández DP, Fernández-Prini R. Near-criticality in dilute binary mixtures: Distribution of azulene between coexisting liquid and vapor carbon dioxide. J Chem Phys 2002. [DOI: 10.1063/1.1480862] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]  Open
10
Rabani E, S.A. Egorov. Integral Equation Theory for the Interactions between Passivated Nanocrystals in Supercritical Fluids:  Solvophobic and Solvophilic Cases. J Phys Chem B 2002. [DOI: 10.1021/jp025693f] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
11
Fernández-Prini R. Study of Local Density Enhancement in Near-Critical Solutions of Attractive Solutes Using Hydrostatic Hypernetted Chain Theory. J Phys Chem B 2002. [DOI: 10.1021/jp013034h] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
12
Egorov SA, Rabani E. Chemical equilibrium in supercritical fluids: Solvent effects on the dimerization equilibrium constant. J Chem Phys 2002. [DOI: 10.1063/1.1471553] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]  Open
13
Egorov SA, Rabani E. Solute–solute potential of mean force in supercritical solvents: A nonlocal integral equation study. J Chem Phys 2001. [DOI: 10.1063/1.1385163] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]  Open
14
Egorov SA. Preferential solvation in supercritical fluids: An integral equation study. J Chem Phys 2000. [DOI: 10.1063/1.1313555] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]  Open
15
Patra CN, Ghosh SK. Density functional approach to the structure of uniform fluids. J Chem Phys 1997. [DOI: 10.1063/1.473374] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]  Open
16
Zaini P, Modarress H, Mansoori GA. The concentrations of electrolytes in charged cylindrical pores: The hydrostatic hypernetted chain/mean spherical approximation. J Chem Phys 1996. [DOI: 10.1063/1.471036] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]  Open
17
Henderson D, Sokol/owski S. The bridge function of a Lennard‐Jones fluid calculated from a second‐order Percus–Yevick equation. J Chem Phys 1996. [DOI: 10.1063/1.471118] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]  Open
18
Henderson D, Sokol/owski S. Hard‐sphere bridge function calculated from a second‐order Percus–Yevick approximation. J Chem Phys 1995. [DOI: 10.1063/1.470322] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]  Open
19
Zhou Y, Stell G. Criticality of charged systems. II. The binary mixture of hard spheres and ions. J Chem Phys 1995. [DOI: 10.1063/1.469311] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]  Open
20
Pizio OA. On the simple derivation of approximate integral equations for triplet and higher-order distribution functions of homogeneous fluids. Mol Phys 1992. [DOI: 10.1080/00268979200102951] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
21
Schlijper AG, Harris CK. Distribution function theory for inhomogeneous fluids. J Chem Phys 1991. [DOI: 10.1063/1.461386] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]  Open
22
Calleja M, North A, Powles J, Rickayzen G. The structure of fluids confined to spherical pores: theory and simulation. Mol Phys 1991. [DOI: 10.1080/00268979100101701] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
23
Denton AR, Ashcroft NW. Density-functional approach to the structure of classical uniform fluids. PHYSICAL REVIEW. A, ATOMIC, MOLECULAR, AND OPTICAL PHYSICS 1991;44:1219-1227. [PMID: 9906070 DOI: 10.1103/physreva.44.1219] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
24
Yethiraj A, Hall CK. Monte Carlo simulation of the equilibrium partitioning of chain fluids between a bulk and a pore. Mol Phys 1991. [DOI: 10.1080/00268979100101351] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
25
Zhou Y, Stell G. Nonlocal integral‐equation approximations. II. Lennard‐Jones fluids. J Chem Phys 1990. [DOI: 10.1063/1.458487] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]  Open
PrevPage 1 of 1 1Next
© 2004-2024 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA