• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (4642360)   Today's Articles (2070)   Subscriber (50487)
For: Newman WH, Kuki A. Improved methods for path integral Monte Carlo integration in fermionic systems. J Chem Phys 1992. [DOI: 10.1063/1.462176] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]  Open
Number Cited by Other Article(s)
1
Voznesenskiy MA, Vorontsov-Velyaminov PN, Lyubartsev AP. Path-integral-expanded-ensemble Monte Carlo method in treatment of the sign problem for fermions. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2009;80:066702. [PMID: 20365297 DOI: 10.1103/physreve.80.066702] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2009] [Indexed: 05/29/2023]
2
Marx D. Rotational Motion of Linear Molecules in Three Dimensions. A Path-Integral Monte Carlo Approach. MOLECULAR SIMULATION 2006. [DOI: 10.1080/08927029408022534] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
3
Hall RW. Simulation of electronic and geometric degrees of freedom using a kink-based path integral formulation: application to molecular systems. J Chem Phys 2005;122:164112. [PMID: 15945677 DOI: 10.1063/1.1884945] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]  Open
4
Hall RW. Kink-based path integral calculations of atoms He–Ne. Chem Phys Lett 2002. [DOI: 10.1016/s0009-2614(02)01115-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
5
Hall RW. An adaptive, kink-based approach to path integral calculations. J Chem Phys 2002. [DOI: 10.1063/1.1423939] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]  Open
6
Lemmens LF, Brosens F, Devreese JT. Many-body diffusion and path integrals for identical particles. PHYSICAL REVIEW. E, STATISTICAL PHYSICS, PLASMAS, FLUIDS, AND RELATED INTERDISCIPLINARY TOPICS 1996;53:4467-4476. [PMID: 9964779 DOI: 10.1103/physreve.53.4467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
7
Lyubartsev AP, Vorontsov-Velyaminov PN. Path-integral Monte Carlo method in quantum statistics for a system of N identical fermions. PHYSICAL REVIEW. A, ATOMIC, MOLECULAR, AND OPTICAL PHYSICS 1993;48:4075-4083. [PMID: 9910106 DOI: 10.1103/physreva.48.4075] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
8
Alavi A, Frenkel D. Grand‐canonical simulations of solvated ideal fermions. Evidence for phase separation. J Chem Phys 1992. [DOI: 10.1063/1.463300] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]  Open
9
Hall RW. Formally exact path integral Monte Carlo calculations using approximate projection operators. J Chem Phys 1992. [DOI: 10.1063/1.463709] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]  Open
PrevPage 1 of 1 1Next
© 2004-2024 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA