• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (4633588)   Today's Articles (4196)   Subscriber (49965)
For: Malli GL, Da Silva ABF, Ishikawa Y. Highly accurate relativistic universal Gaussian basis set: Dirac–Fock–Coulomb calculations for atomic systems up to nobelium. J Chem Phys 1994. [DOI: 10.1063/1.468311] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]  Open
Number Cited by Other Article(s)
1
Relativistic effects for the superheavy reaction Og + 2Ts2 → OgTs4 (Td or D4h): dramatic relativistic effects for atomization energy of superheavy Oganesson tetratennesside OgTs4 and prediction of the existence of tetrahedral OgTs4. Theor Chem Acc 2021. [DOI: 10.1007/s00214-021-02777-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
2
Lehtola S. Polarized Gaussian basis sets from one-electron ions. J Chem Phys 2020;152:134108. [DOI: 10.1063/1.5144964] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]  Open
3
Universal formulation of second-order generalized Møller–Plesset perturbation theory for a spin-dependent two-component relativistic many-electron Hamiltonian. Chem Phys Lett 2017. [DOI: 10.1016/j.cplett.2017.03.027] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
4
Zou W, Filatov M, Cremer D. Analytical energy gradient for the two-component normalized elimination of the small component method. J Chem Phys 2015;142:214106. [DOI: 10.1063/1.4921915] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]  Open
5
Teodoro TQ, da Silva ABF, Haiduke RLA. Relativistic Prolapse-Free Gaussian Basis Set of Quadruple-ζ Quality: (aug-)RPF-4Z. I. The s- and p-Block Elements. J Chem Theory Comput 2014;10:3800-6. [DOI: 10.1021/ct500518n] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
6
Filatov M, Zou W, Cremer D. Spin-orbit coupling calculations with the two-component normalized elimination of the small component method. J Chem Phys 2013;139:014106. [DOI: 10.1063/1.4811776] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]  Open
7
Dyall KG. Relativistic double-zeta, triple-zeta, and quadruple-zeta basis sets for the 7p elements, with atomic and molecular applications. Theor Chem Acc 2012. [DOI: 10.1007/s00214-012-1172-4] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
8
Relativistic double-zeta, triple-zeta, and quadruple-zeta basis sets for the lanthanides La–Lu. Theor Chem Acc 2010. [DOI: 10.1007/s00214-009-0725-7] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
9
Dyall KG. Relativistic double-zeta, triple-zeta, and quadruple-zeta basis sets for the 4s, 5s, 6s, and 7s elements. J Phys Chem A 2010;113:12638-44. [PMID: 19670829 DOI: 10.1021/jp905057q] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
10
Pershina V. Electronic Structure and Chemistry of the Heaviest Elements. CHALLENGES AND ADVANCES IN COMPUTATIONAL CHEMISTRY AND PHYSICS 2010. [DOI: 10.1007/978-1-4020-9975-5_11] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
11
Noro T, Sekiya M, Koga T, Saito SL. Relativistic contracted Gaussian-type basis functions for atoms K through Xe. Chem Phys Lett 2009. [DOI: 10.1016/j.cplett.2009.09.044] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
12
Thirty years of relativistic self-consistent field theory for molecules: relativistic and electron correlation effects for atomic and molecular systems of transactinide superheavy elements up to ekaplutonium E126 with g-atomic spinors in the ground state configuration. Theor Chem Acc 2007. [DOI: 10.1007/s00214-007-0335-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
13
Noro T, Sekiya M, Osanai Y, Koga T, Matsuyama H. Relativistic correlating basis sets for actinide atoms from90Th to103Lr. J Comput Chem 2007;28:2511-6. [PMID: 17508413 DOI: 10.1002/jcc.20537] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
14
Dyall KG. Relativistic double-zeta, triple-zeta, and quadruple-zeta basis sets for the 4d elements Y–Cd. Theor Chem Acc 2006. [DOI: 10.1007/s00214-006-0174-5] [Citation(s) in RCA: 112] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
15
Dyall KG. Relativistic double-zeta, triple-zeta, and quadruple-zeta basis sets for the actinides Ac–Lr. Theor Chem Acc 2006. [DOI: 10.1007/s00214-006-0175-4] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
16
Relativistic Quadruple-Zeta and Revised Triple-Zeta and Double-Zeta Basis Sets for the 4p, 5p, and 6p Elements. Theor Chem Acc 2006. [DOI: 10.1007/s00214-006-0126-0] [Citation(s) in RCA: 259] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
17
Malli GL. Dissociation energy of ekaplutonium fluoride E126F: The first diatomic with molecular spinors consisting of g atomic spinors. J Chem Phys 2006;124:71102. [PMID: 16497023 DOI: 10.1063/1.2173233] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]  Open
18
Malli GL. Electronic structure and prediction of atomization energy of naked homoleptic uranium hexacarbonyl U(CO)6. J Chem Phys 2006;124:021102. [PMID: 16422561 DOI: 10.1063/1.2151890] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]  Open
19
Sekiya M, Noro T, Miyoshi E, Osanai Y, Koga T. Relativistic correlating basis sets for lanthanide atoms from Ce to Lu. J Comput Chem 2006;27:463-70. [PMID: 16419148 DOI: 10.1002/jcc.20357] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
20
Fægri K. Even tempered basis sets for four-component relativistic quantum chemistry. Chem Phys 2005. [DOI: 10.1016/j.chemphys.2004.09.032] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
21
Tatewaki H, Watanabe Y. Gaussian-type function set without prolapse 1H through 83Bi for the Dirac-Fock-Roothaan equation. J Chem Phys 2004;121:4528-33. [PMID: 15332882 DOI: 10.1063/1.1779213] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]  Open
22
Osanai Y, Noro T, Miyoshi E, Sekiya M, Koga T. Relativistic correlating basis sets for the sixth-period d-block atoms from Lu to Hg. J Chem Phys 2004;120:6408-13. [PMID: 15267529 DOI: 10.1063/1.1665395] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]  Open
23
Haiduke RLA, De Macedo LGM, Barbosa RC, da Silva ABF. A polynomial version of the generator coordinate Dirac-Fock method. J Comput Chem 2004;25:1904-9. [PMID: 15389748 DOI: 10.1002/jcc.20115] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
24
Tatewaki H, Watanabe Y. Gaussian-type function set without prolapse for the Dirac-Fock-Roothaan equation. J Comput Chem 2003;24:1823-8. [PMID: 14515364 DOI: 10.1002/jcc.10330] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
25
BARBOSA RC, DA SILVA ABF. A new proposal for the discretization of the Griffin—Wheeler—Hartree—Fock equations. Mol Phys 2003. [DOI: 10.1080/0026897021000044007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
26
Fukuda R, Hada M, Nakatsuji H. Quasirelativistic theory for the magnetic shielding constant. I. Formulation of Douglas–Kroll–Hess transformation for the magnetic field and its application to atomic systems. J Chem Phys 2003. [DOI: 10.1063/1.1528933] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]  Open
27
MALLI GULZARIL. Ab initioall-electron fully relativistic Dirac—Fock self-consistent field calculations for UCI6. Mol Phys 2003. [DOI: 10.1080/00268970210162790] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
28
Relativistic Electron Correlation Theory. ACTA ACUST UNITED AC 2003. [DOI: 10.1007/978-94-017-0105-1_7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
29
Malli GL. Dramatic relativistic effects in atomization energy and volatility of the superheavy Hassium tetroxide and OsO4. J Chem Phys 2002. [DOI: 10.1063/1.1527057] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]  Open
30
Malli GL. Ab initio all-electron fully relativistic Dirac–Fock self-consistent field calculations for molecules of superheavy elements: Seaborgium hexabromide. J Chem Phys 2002. [DOI: 10.1063/1.1453959] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]  Open
31
Liu W, van Wüllen C, Wang F, Li L. Spectroscopic constants of MH and M2 (M=Tl, E113, Bi, E115): Direct comparisons of four- and two-component approaches in the framework of relativistic density functional theory. J Chem Phys 2002. [DOI: 10.1063/1.1446026] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]  Open
32
F˦gri K, Dyall KG. Chapter 5 Basis sets for relativistic calculations. ACTA ACUST UNITED AC 2002. [DOI: 10.1016/s1380-7323(02)80031-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2023]
33
Relativistic quantum mechanics of many-electron systems. ACTA ACUST UNITED AC 2001. [DOI: 10.1016/s0166-1280(01)00540-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
34
Tsuchiya T, Abe M, Nakajima T, Hirao K. Accurate relativistic Gaussian basis sets for H through Lr determined by atomic self-consistent field calculations with the third-order Douglas–Kroll approximation. J Chem Phys 2001. [DOI: 10.1063/1.1390515] [Citation(s) in RCA: 146] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]  Open
35
Relativistic all-electron Dirac–Fock calculations on RnF6 and its ions. ACTA ACUST UNITED AC 2001. [DOI: 10.1016/s0166-1280(00)00663-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
36
Relativistic Quantum Chemistry of Superheavy Transactinide Elements. ACTA ACUST UNITED AC 2001. [DOI: 10.1007/0-306-46951-0_13] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
37
Wilson S, Moncrieff D. On 'infinite basis set limits' in molecular electronic structure calculations. COMPUTERS & CHEMISTRY 2001;25:109-15. [PMID: 11153797 DOI: 10.1016/s0097-8485(00)00094-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
38
Canal Neto A, Librelon P, Jorge F. Highly accurate relativistic gaussian basis sets for closed-shell atoms from He through to No. Chem Phys Lett 2000. [DOI: 10.1016/s0009-2614(00)00816-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
39
Hada M, Fukuda R, Nakatsuji H. Dirac–Fock calculations of the magnetic shielding constants of protons and heavy nuclei in XH2 (X=O, S, Se, and Te): a comparison with quasi-relativistic calculations. Chem Phys Lett 2000. [DOI: 10.1016/s0009-2614(00)00375-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
40
Schreckenbach G, Hay PJ, Martin RL. Density functional calculations on actinide compounds: Survey of recent progress and application to [UO2X4]2? (X=F, Cl, OH) and AnF6 (An=U, Np, Pu). J Comput Chem 1999. [DOI: 10.1002/(sici)1096-987x(19990115)20:1<70::aid-jcc9>3.0.co;2-f] [Citation(s) in RCA: 212] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
41
Schreckenbach G, Hay PJ, Martin RL. Density functional calculations on actinide compounds: Survey of recent progress and application to [UO2X4]2? (X=F, Cl, OH) and AnF6 (An=U, Np, Pu). J Comput Chem 1999. [DOI: 10.1002/(sici)1096-987x(19990115)20:1%3c70::aid-jcc9%3e3.0.co;2-f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
42
Malli GL, Ishikawa Y. The generator coordinate Dirac–Fock method for open-shell atomic systems. J Chem Phys 1998. [DOI: 10.1063/1.477545] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]  Open
43
Malli GL, Styszynski J. Ab initio all-electron fully relativistic Dirac–Fock–Breit calculations for molecules of the superheavy transactinide elements: Rutherfordium tetrachloride. J Chem Phys 1998. [DOI: 10.1063/1.477048] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]  Open
44
de Castro EVR, Jorge FE. Accurate universal Gaussian basis set for all atoms of the Periodic Table. J Chem Phys 1998. [DOI: 10.1063/1.475959] [Citation(s) in RCA: 125] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]  Open
45
Jorge FE, De Castro EVR, Da Silva ABF. A universal Gaussian basis set for atoms cerium through lawrencium generated with the generator coordinate Hartree-Fock method. J Comput Chem 1997. [DOI: 10.1002/(sici)1096-987x(199710)18:13<1565::aid-jcc1>3.0.co;2-p] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
46
Jorge F, Barreto M, da Silva A. Adapted Gaussian basis sets for closed-shell atoms from samarium to nobelium generated with the generator coordinate Dirac-Fock method. Chem Phys 1997. [DOI: 10.1016/s0301-0104(97)00133-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
47
Cao X, Wang Y. Molecular symmetry andab initio calculations: IV. Symmetry-matrix and symmetry-supermatrix in calculations of two-electron repulsion integrals. J Comput Chem 1997. [DOI: 10.1002/(sici)1096-987x(199706)18:8<971::aid-jcc1>3.0.co;2-n] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
48
Accurate universal gaussian basis set for helium through calcium generated with the generator coordinate Dirac-Fock method. ACTA ACUST UNITED AC 1997. [DOI: 10.1016/s0166-1280(96)04824-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
49
The generator coordinate Hartree-Fock method applied to the choice of a contracted gaussian basis for first-row atoms. ACTA ACUST UNITED AC 1997. [DOI: 10.1016/s0166-1280(96)04825-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
50
Cioslowski J, Piskorz P, Rez P. Accurate analytical representations of the core-electron densities of the elements 3 through 118. J Chem Phys 1997. [DOI: 10.1063/1.473440] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]  Open
PrevPage 1 of 2 12Next
© 2004-2024 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA