• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (4612466)   Today's Articles (4057)   Subscriber (49383)
For: Klopper W. Limiting values for Mo/ller–Plesset second‐order correlation energies of polyatomic systems: A benchmark study on Ne, HF, H2O, N2, and He...He. J Chem Phys 1995. [DOI: 10.1063/1.469351] [Citation(s) in RCA: 140] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]  Open
Number Cited by Other Article(s)
1
Molecular multipoles and (hyper)polarizabilities of water by ab initio calculations. Chem Phys Lett 2020. [DOI: 10.1016/j.cplett.2020.137555] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
2
Almora-Díaz CX, Ramírez-Solís A, Bunge CF. Symmetric dissociation of the water molecule with truncation energy error. A benchmark study. Phys Chem Chem Phys 2019;21:4953-4964. [PMID: 30758017 DOI: 10.1039/c8cp06180g] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
3
Barclay AJ, Pietropolli Charmet A, Michaelian KH, McKellar ARW, Moazzen-Ahmadi N. Micro-solvation of CO in water: infrared spectra and structural calculations for (D2O)2–CO and (D2O)3–CO. Phys Chem Chem Phys 2019;21:26564-26568. [DOI: 10.1039/c9cp05480d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
4
Bytautas L, Dukelsky J. Seniority based energy renormalization group (Ω-ERG) approach in quantum chemistry: Initial formulation and application to potential energy surfaces. COMPUT THEOR CHEM 2018. [DOI: 10.1016/j.comptc.2018.08.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
5
Temelso B, Klein KL, Mabey JW, Pérez C, Pate BH, Kisiel Z, Shields GC. Exploring the Rich Potential Energy Surface of (H2O)11 and Its Physical Implications. J Chem Theory Comput 2018;14:1141-1153. [DOI: 10.1021/acs.jctc.7b00938] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
6
Holmes JD, Otero-de-la-Roza A, DiLabio GA. Accurate Modeling of Water Clusters with Density-Functional Theory Using Atom-Centered Potentials. J Chem Theory Comput 2017;13:4205-4215. [DOI: 10.1021/acs.jctc.7b00624] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
7
Singh G, Nandi A, Gadre SR. Breaking the bottleneck: Use of molecular tailoring approach for the estimation of binding energies at MP2/CBS limit for large water clusters. J Chem Phys 2016;144:104102. [PMID: 26979676 DOI: 10.1063/1.4943115] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]  Open
8
Bytautas L, Scuseria GE, Ruedenberg K. Seniority number description of potential energy surfaces: Symmetric dissociation of water, N2, C2, and Be2. J Chem Phys 2015;143:094105. [DOI: 10.1063/1.4929904] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]  Open
9
Miliordos E, Xantheas SS. An accurate and efficient computational protocol for obtaining the complete basis set limits of the binding energies of water clusters at the MP2 and CCSD(T) levels of theory: Application to (H2O)m, m = 2-6, 8, 11, 16, and 17. J Chem Phys 2015;142:234303. [DOI: 10.1063/1.4922262] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]  Open
10
Temelso B, Renner CR, Shields GC. Importance and Reliability of Small Basis Set CCSD(T) Corrections to MP2 Binding and Relative Energies of Water Clusters. J Chem Theory Comput 2015;11:1439-48. [DOI: 10.1021/ct500944v] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
11
Miliordos E, Xantheas SS. On the validity of the basis set superposition error and complete basis set limit extrapolations for the binding energy of the formic acid dimer. J Chem Phys 2015;142:094311. [DOI: 10.1063/1.4913766] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]  Open
12
Mayeux C, Burk P. Evaluation of Alkali Metal Cation Affinities and Basicities Using Extrapolation to the Complete Basis Set Limit. J Phys Chem A 2014;118:1906-17. [DOI: 10.1021/jp4090316] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
13
Richard RM, Lao KU, Herbert JM. Approaching the complete-basis limit with a truncated many-body expansion. J Chem Phys 2013;139:224102. [DOI: 10.1063/1.4836637] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]  Open
14
Pérez C, Lobsiger S, Seifert NA, Zaleski DP, Temelso B, Shields GC, Kisiel Z, Pate BH. Broadband Fourier transform rotational spectroscopy for structure determination: The water heptamer. Chem Phys Lett 2013. [DOI: 10.1016/j.cplett.2013.04.014] [Citation(s) in RCA: 145] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
15
Bryantsev VS. Predicting the stability of aprotic solvents in Li-air batteries: pKa calculations of aliphatic C–H acids in dimethyl sulfoxide. Chem Phys Lett 2013. [DOI: 10.1016/j.cplett.2012.12.066] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
16
Temelso B, Phan TN, Shields GC. Computational Study of the Hydration of Sulfuric Acid Dimers: Implications for Acid Dissociation and Aerosol Formation. J Phys Chem A 2012;116:9745-58. [DOI: 10.1021/jp3054394] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
17
Husar DE, Temelso B, Ashworth AL, Shields GC. Hydration of the Bisulfate Ion: Atmospheric Implications. J Phys Chem A 2012;116:5151-63. [DOI: 10.1021/jp300717j] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
18
Copeland KL, Tschumper GS. Hydrocarbon/Water Interactions: Encouraging Energetics and Structures from DFT but Disconcerting Discrepancies for Hessian Indices. J Chem Theory Comput 2012;8:1646-56. [DOI: 10.1021/ct300132e] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
19
Temelso B, Morrell TE, Shields RM, Allodi MA, Wood EK, Kirschner KN, Castonguay TC, Archer KA, Shields GC. Quantum Mechanical Study of Sulfuric Acid Hydration: Atmospheric Implications. J Phys Chem A 2012;116:2209-24. [DOI: 10.1021/jp2119026] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
20
Hättig C, Klopper W, Köhn A, Tew DP. Explicitly Correlated Electrons in Molecules. Chem Rev 2011;112:4-74. [DOI: 10.1021/cr200168z] [Citation(s) in RCA: 401] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
21
Temelso B, Archer KA, Shields GC. Benchmark Structures and Binding Energies of Small Water Clusters with Anharmonicity Corrections. J Phys Chem A 2011;115:12034-46. [DOI: 10.1021/jp2069489] [Citation(s) in RCA: 256] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
22
Shields RM, Temelso B, Archer KA, Morrell TE, Shields GC. Accurate predictions of water cluster formation, (H₂O)(n=2-10). J Phys Chem A 2011;114:11725-37. [PMID: 20882961 DOI: 10.1021/jp104865w] [Citation(s) in RCA: 161] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
23
Wang XB, Xantheas SS. Photodetachment of Isolated Bicarbonate Anion: Electron Binding Energy of HCO3(.). J Phys Chem Lett 2011;2:1204-1210. [PMID: 26295327 DOI: 10.1021/jz200327f] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
24
MULLER BHENDRIK, KUTZELNIGG WERNER. A CCSD(T)-R12 study of the ten-electron systems Ne, F-, HF, H2O, NH3, NH4+ and CH4. Mol Phys 2010. [DOI: 10.1080/002689797170284] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
25
ElSohly AM, Hopkins BW, Copeland KL, Tschumper GS. Anchoring the potential energy surface of the diacetylene dimer. Mol Phys 2010. [DOI: 10.1080/00268970802695404] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
26
Kahn K, Kirtman B, Noga J, Ten-no S. Anharmonic vibrational analysis of water with traditional and explicitly correlated coupled cluster methods. J Chem Phys 2010;133:074106. [DOI: 10.1063/1.3464837] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]  Open
27
Accurate computational thermochemistry from explicitly correlated coupled-cluster theory. Theor Chem Acc 2010. [DOI: 10.1007/s00214-010-0733-7] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
28
Bates DM, Tschumper GS. CCSD(T) Complete Basis Set Limit Relative Energies for Low-Lying Water Hexamer Structures. J Phys Chem A 2009;113:3555-9. [DOI: 10.1021/jp8105919] [Citation(s) in RCA: 176] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
29
Tschumper GS. Reliable Electronic Structure Computations for Weak Noncovalent Interactions in Clusters. REVIEWS IN COMPUTATIONAL CHEMISTRY 2009. [DOI: 10.1002/9780470399545.ch2] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2023]
30
Limpanuparb T, Gill PMW. Resolutions of the Coulomb operator : Part III. Reduced-rank Schrödinger equations. Phys Chem Chem Phys 2009;11:9176-81. [DOI: 10.1039/b910613h] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
31
Köhn A, Richings GW, Tew DP. Implementation of the full explicitly correlated coupled-cluster singles and doubles model CCSD-F12 with optimally reduced auxiliary basis dependence. J Chem Phys 2008;129:201103. [DOI: 10.1063/1.3028546] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]  Open
32
Copeland KL, Anderson JA, Farley AR, Cox JR, Tschumper GS. Probing phenylalanine/adenine pi-stacking interactions in protein complexes with explicitly correlated and CCSD(T) computations. J Phys Chem B 2008;112:14291-5. [PMID: 18922031 DOI: 10.1021/jp805528v] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
33
Shiozaki T, Kamiya M, Hirata S, Valeev EF. Explicitly correlated coupled-cluster singles and doubles method based on complete diagrammatic equations. J Chem Phys 2008;129:071101. [DOI: 10.1063/1.2967181] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]  Open
34
Helgaker T, Klopper W, Tew DP. Quantitative quantum chemistry. Mol Phys 2008. [DOI: 10.1080/00268970802258591] [Citation(s) in RCA: 148] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
35
Valeev EF, Daniel Crawford T. Simple coupled-cluster singles and doubles method with perturbative inclusion of triples and explicitly correlated geminals: The CCSD(T)R12¯ model. J Chem Phys 2008;128:244113. [DOI: 10.1063/1.2939577] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]  Open
36
Dahle P, Helgaker T, Jonsson D, Taylor PR. Second-order Møller–Plesset calculations on the water molecule using Gaussian-type orbital and Gaussian-type geminal theory. Phys Chem Chem Phys 2008;10:3377-82. [DOI: 10.1039/b803577f] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
37
Yamaki D, Koch H, Ten-no S. Basis set limits of the second order Møller-Plesset correlation energies of water, methane, acetylene, ethylene, and benzene. J Chem Phys 2007;127:144104. [DOI: 10.1063/1.2794036] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]  Open
38
Varandas AJC. Extrapolating to the one-electron basis-set limit in electronic structure calculations. J Chem Phys 2007;126:244105. [PMID: 17614535 DOI: 10.1063/1.2741259] [Citation(s) in RCA: 131] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]  Open
39
Dahle P, Helgaker T, Jonsson D, Taylor PR. Accurate quantum-chemical calculations using Gaussian-type geminal and Gaussian-type orbital basis sets: applications to atoms and diatomics. Phys Chem Chem Phys 2007;9:3112-26. [PMID: 17612735 DOI: 10.1039/b616488a] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
40
Valeev EF. Combining explicitly correlated R12 and Gaussian geminal electronic structure theories. J Chem Phys 2006;125:244106. [PMID: 17199339 DOI: 10.1063/1.2403852] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]  Open
41
Frey JA, Leutwyler S. An ab Initio Benchmark Study of Hydrogen Bonded Formamide Dimers. J Phys Chem A 2006;110:12512-8. [PMID: 17091957 DOI: 10.1021/jp064730q] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
42
Tew DP, Klopper W. A comparison of linear and nonlinear correlation factors for basis set limit Møller-Plesset second order binding energies and structures of He2, Be2, and Ne2. J Chem Phys 2006;125:094302. [PMID: 16965075 DOI: 10.1063/1.2338037] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]  Open
43
Klopper W, Manby FR, Ten-No S, Valeev EF. R12 methods in explicitly correlated molecular electronic structure theory. INT REV PHYS CHEM 2006. [DOI: 10.1080/01442350600799921] [Citation(s) in RCA: 303] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
44
Bytautas L, Ruedenberg K. Correlation energy extrapolation by intrinsic scaling. V. Electronic energy, atomization energy, and enthalpy of formation of water. J Chem Phys 2006;124:174304. [PMID: 16689568 DOI: 10.1063/1.2194542] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]  Open
45
Kahn K, Granovsky AA, Noga J. Convergence of third order correlation energy in atoms and molecules. J Comput Chem 2006;28:547-54. [PMID: 17186479 DOI: 10.1002/jcc.20562] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
46
Binding energies of hydrogen-bonded clusters from extrapolation-oriented basis sets. Theor Chem Acc 2005. [DOI: 10.1007/s00214-005-0675-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
47
Xantheas SS, Roth W, Fischer I. Competition between van der Waals and hydrogen bonding interactions: structure of the trans-1-naphthol/N(2) cluster. J Phys Chem A 2005;109:9584-9. [PMID: 16866411 DOI: 10.1021/jp053708e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
48
Mourik TV. A comment on “Accurate ab initio determination of binding energies for rare-gas dimers by basis set extrapolation”. Theor Chem Acc 2005. [DOI: 10.1007/s00214-005-0013-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
49
Frey JA, Leutwyler S. Comment on “Strength of the N−H···OC Bonds in Formamide and N-Methylacetamide Dimers”. J Phys Chem A 2005;109:6990; author reply 6991-2. [PMID: 16834059 DOI: 10.1021/jp051310c] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
50
Fanourgakis GS, Aprà E, de Jong WA, Xantheas SS. High-level ab initio calculations for the four low-lying families of minima of(H2O)20. II. Spectroscopic signatures of the dodecahedron, fused cubes, face-sharing pentagonal prisms, and edge-sharing pentagonal prisms hydrogen bonding networks. J Chem Phys 2005;122:134304. [PMID: 15847462 DOI: 10.1063/1.1864892] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]  Open
PrevPage 1 of 3 123Next
© 2004-2024 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA