1
|
Inoue M, Hayashi T, Yasuda S, Kato M, Ikeguchi M, Murata T, Kinoshita M. Statistical-Mechanics Analyses on Thermodynamics of Protein Folding Constructed by Privalov and Co-Workers. J Phys Chem B 2024; 128:10110-10125. [PMID: 39376155 DOI: 10.1021/acs.jpcb.4c05811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
Privalov and co-workers estimated the changes in hydration enthalpy and entropy upon ubiquitin unfolding and their temperature dependences denoted by ΔHhyd(T) and ΔShyd(T), respectively, from experimentally measured enthalpies and entropies of transfer of various model compounds from gaseous phase to water. We calculate ΔHhyd(T) and ΔShyd(T) for ubiquitin by our statistical-mechanics theory where molecular and atomistic models are employed for water and protein structure, respectively. ΔHhyd(T) and ΔShyd(T) calculated are in remarkably good agreement with those estimated by Privalov and co-workers. By examining relative magnitudes and signs of the changes in a variety of constituents of ΔHhyd(T) and ΔShyd(T), we confirm that the hydrophobic effect is an essential force driving a protein to fold. Detailed and comprehensive explanations are given for our claim that the prevailing views of the hydrophobic effect are not capable of elucidating its weakening at low temperatures, whereas our updated view is. We find out problematic points of the changes in enthalpy and entropy upon protein unfolding denoted by ΔH°(T) and ΔS°(T), respectively, which are measured using the differential scanning calorimetry at low pH, suggesting a theoretical method of calculating ΔH°(T) and ΔS°(T) at pH ∼ 7.
Collapse
Affiliation(s)
- Masao Inoue
- Graduate School of Medical Life Science, Yokohama City University, 1-7-29, Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Tomohiko Hayashi
- Interdisciplinary Program of Biomedical Engineering, Assistive Technology, and Art and Sports Sciences, Faculty of Engineering, Niigata University, 8050 Ikarashi 2-no-cho, Nishi-ku, Niigata 950-2181, Japan
| | - Satoshi Yasuda
- Graduate School of Science and Membrane Protein Research Center, Chiba University, 1-33 Yayoi-cho, Inage, Chiba 263-8522, Japan
| | - Minoru Kato
- Department of Applied Chemistry, College of Life Sciences, Ritsumeikan University, 1-1-1 Noji-higashi, Kusatsu, Shiga 525-8577, Japan
| | - Mitsunori Ikeguchi
- Graduate School of Medical Life Science, Yokohama City University, 1-7-29, Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
- RIKEN Medical Sciences Innovation Hub Program, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Takeshi Murata
- Graduate School of Science and Membrane Protein Research Center, Chiba University, 1-33 Yayoi-cho, Inage, Chiba 263-8522, Japan
| | - Masahiro Kinoshita
- Graduate School of Science, Chiba University, 1-33 Yayoi-cho, Inage, Chiba 263-8522, Japan
- Institute of Advanced Energy, Kyoto University, Uji, Kyoto 611-0011, Japan
| |
Collapse
|
2
|
Ganyecz Á, Kállay M. Implementation and Optimization of the Embedded Cluster Reference Interaction Site Model with Atomic Charges. J Phys Chem A 2022; 126:2417-2429. [PMID: 35394778 PMCID: PMC9036516 DOI: 10.1021/acs.jpca.1c07904] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
In this work, we
implemented the embedded cluster reference interaction
site model (EC-RISM) originally developed by Kloss, Heil, and Kast
(J. Phys. Chem. B2008, 112, 4337–4343).
This method combines quantum mechanical calculations with the 3D reference
interaction site model (3D-RISM). Numerous options, such as buffer,
grid space, basis set, charge model, water model, closure relation,
and so forth, were investigated to find the best settings. Additionally,
the small point charges, which are derived from the solvent distribution
from the 3D-RISM solution to represent the solvent in the QM calculation,
were neglected to reduce the overhead without the loss of accuracy.
On the MNSOL[a], MNSOL, and FreeSolv databases, our implemented and
optimized method provides solvation free energies in water with 5.70,
6.32, and 6.44 kJ/mol root-mean-square deviations, respectively, but
with different settings, 5.22, 6.08, and 6.63 kJ/mol can also be achieved.
Only solvent models containing fitting parameters, like COSMO-RS and
EC-RISM with universal correction and directly used electrostatic
potential, perform better than our EC-RISM implementation with atomic
charges.
Collapse
Affiliation(s)
- Ádám Ganyecz
- Department of Physical Chemistry and Materials Science, Budapest University of Technology and Economics, Budapest P.O. Box 91, H-1521 Hungary
| | - Mihály Kállay
- Department of Physical Chemistry and Materials Science, Budapest University of Technology and Economics, Budapest P.O. Box 91, H-1521 Hungary
| |
Collapse
|
3
|
Comparison based on statistical thermodynamics between globule-to-coil transition of poly(N-isopropylacrylamide) and cold denaturation of a protein. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.114129] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
4
|
Abstract
The electrostatic response underlying the 3D-RISM theory and its general relationship to models in which the solvent is represented in terms of a dielectric continuum are examined. It is found that the theory provides a coherent picture of solvation, although its behavior is not entirely consistent with the trends that are expected in the limit of a large solute. The electrostatic discrepancy is due to the nature of the isotropic pair additive site-site correlation function associated with the susceptibility response of the uniform fluid. The influence of the discrepancy in the magnitude of the solvation free energy is negligible for a solvent with a large dielectric constant.
Collapse
Affiliation(s)
- Benoît Roux
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, Illinois 60637-1454, United States
| |
Collapse
|
5
|
Inoue M, Hayashi T, Hikiri S, Ikeguchi M, Kinoshita M. Hydration properties of a protein at low and high pressures: Physics of pressure denaturation. J Chem Phys 2020; 152:065103. [PMID: 32061219 DOI: 10.1063/1.5140499] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Using experimentally determined structures of ubiquitin at 1 and 3000 bar, we generate sufficiently large ensembles of model structures in the native and pressure-induced (denatured) states by means of molecular dynamics simulations with explicit water. We calculate the values of a free-energy function (FEF), which comprises the hydration free energy (HFE) and the intramolecular (conformational) energy and entropy, for the two states at 1 and 3000 bar. The HFE and the conformational entropy, respectively, are calculated using our statistical-mechanical method, which has recently been shown to be accurate, and the Boltzmann-quasi-harmonic method. The HFE is decomposed into a variety of physically insightful components. We show that the FEF of the native state is lower than that of the denatured state at 1 bar, whereas the opposite is true at 3000 bar, thus being successful in reproducing the pressure denaturation. We argue that the following two quantities of hydration play essential roles in the denaturation: the WASA-dependent term in the water-entropy loss upon cavity creation for accommodating the protein (WASA is the water-accessible surface area of the cavity) and the protein-water Lennard-Jones interaction energy. At a high pressure, the mitigation of the serious water crowding in the system is the most important, and the WASA needs to be sufficiently enlarged with the increase in the excluded-volume being kept as small as possible. The denatured structure thus induced is characterized by the water penetration into the protein interior. The pressure denaturation is accompanied by a significantly large gain of water entropy.
Collapse
Affiliation(s)
- Masao Inoue
- Institute of Advanced Energy, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Tomohiko Hayashi
- Institute of Advanced Energy, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Simon Hikiri
- Institute of Advanced Energy, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Mitsunori Ikeguchi
- Graduate School of Medical Life Science, Yokohama City University, 1-7-29, Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Masahiro Kinoshita
- Institute of Advanced Energy, Kyoto University, Uji, Kyoto 611-0011, Japan
| |
Collapse
|
6
|
Inoue M, Hayashi T, Hikiri S, Ikeguchi M, Kinoshita M. Mechanism of globule-to-coil transition of poly(N-isopropylacrylamide) in water: Relevance to cold denaturation of a protein. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.111374] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
7
|
Yamada T, Hayashi T, Hikiri S, Kobayashi N, Yanagawa H, Ikeguchi M, Katahira M, Nagata T, Kinoshita M. How Does the Recently Discovered Peptide MIP Exhibit Much Higher Binding Affinity than an Anticancer Protein p53 for an Oncoprotein MDM2? J Chem Inf Model 2019; 59:3533-3544. [PMID: 31282659 DOI: 10.1021/acs.jcim.9b00226] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
An oncoprotein MDM2 binds to the extreme N-terminal peptide region of a tumor suppressor protein p53 (p53NTD) and inhibits its anticancer activity. We recently discovered a peptide named MIP which exhibits much higher binding affinity for MDM2 than p53NTD. Experiments showed that the binding free energy (BFE) of MDM2-MIP is lower than that of MDM2-p53NTD by approximately -4 kcal/mol. Here, we develop a theoretical method which is successful in reproducing this quantitative difference and elucidating its physical origins. It enables us to decompose the BFE into a variety of energetic and entropic components, evaluate their relative magnitudes, and identify the physical factors driving or opposing the binding. It should be applicable also to the assessment of differences among ligands in the binding affinity for a particular receptor, which is a central issue in modern chemistry. In the MDM2 case, the higher affinity of MIP is ascribed to a larger gain of translational, configurational entropy of water upon binding. This result is useful to the design of a peptide possessing even higher affinity for MDM2 as a reliable drug against a cancer.
Collapse
Affiliation(s)
- Tatsuya Yamada
- Institute of Advanced Energy, Kyoto University , Uji , Kyoto 611-0011 , Japan
| | - Tomohiko Hayashi
- Institute of Advanced Energy, Kyoto University , Uji , Kyoto 611-0011 , Japan
| | - Simon Hikiri
- Institute of Advanced Energy, Kyoto University , Uji , Kyoto 611-0011 , Japan.,Graduate School of Science , Chiba University , 1-33 Yayoi-cho , Inage , Chiba 263-8522 , Japan
| | - Naohiro Kobayashi
- Institute for Protein Research , Osaka University , 3-2 Yamadaoka , Suita , Osaka 565-0871 , Japan
| | - Hiroshi Yanagawa
- Y-Lab. of IDAC Theranostics, Inc. , 1-1-48 Suehiro-cho , Tsurumi, Yokohama 230-0045 , Japan
| | - Mitsunori Ikeguchi
- Graduate School of Medical Life Science , Yokohama City University , 1-7-29, Suehiro-cho , Tsurumi-ku, Yokohama 230-0045 , Japan.,RIKEN Medical Sciences Innovation Hub Program , 1-7-22 Suehiro-cho , Tsurumi-ku, Yokohama 230-0045 , Japan
| | - Masato Katahira
- Institute of Advanced Energy, Kyoto University , Uji , Kyoto 611-0011 , Japan
| | - Takashi Nagata
- Institute of Advanced Energy, Kyoto University , Uji , Kyoto 611-0011 , Japan
| | - Masahiro Kinoshita
- Institute of Advanced Energy, Kyoto University , Uji , Kyoto 611-0011 , Japan
| |
Collapse
|
8
|
Hikiri S, Hayashi T, Inoue M, Ekimoto T, Ikeguchi M, Kinoshita M. An accurate and rapid method for calculating hydration free energies of a variety of solutes including proteins. J Chem Phys 2019; 150:175101. [DOI: 10.1063/1.5093110] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
- Simon Hikiri
- Institute of Advanced Energy, Kyoto University, Uji, Kyoto 611-0011, Japan
- Graduate School of Science, Chiba University, 1-33 Yayoi-cho, Inage, Chiba 263-8522, Japan
| | - Tomohiko Hayashi
- Institute of Advanced Energy, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Masao Inoue
- Institute of Advanced Energy, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Toru Ekimoto
- Graduate School of Medical Life Science, Yokohama City University, 1-7-29, Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Mitsunori Ikeguchi
- Graduate School of Medical Life Science, Yokohama City University, 1-7-29, Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
- RIKEN Medical Sciences Innovation Hub Program, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Masahiro Kinoshita
- Institute of Advanced Energy, Kyoto University, Uji, Kyoto 611-0011, Japan
| |
Collapse
|
9
|
Hayashi T, Matsuda T, Nagata T, Katahira M, Kinoshita M. Mechanism of protein-RNA recognition: analysis based on the statistical mechanics of hydration. Phys Chem Chem Phys 2019; 20:9167-9180. [PMID: 29560998 DOI: 10.1039/c8cp00155c] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
We investigate the RBD1-r(GUAGU) binding as a case study using all-atom models for the biomolecules, molecular models for water, and the currently most reliable statistical-mechanical method. RBD1 is one of the RNA-binding domains of mammalian Musashi1 (Msi1), and r(GUAGU) contains the minimum recognition sequence for Msi1, r(GUAG). We show that the binding is driven by a large gain of configurational entropy of water in the entire system. It is larger than the sum of conformational-entropy losses for RBD1 and r(GUAGU). The decrease in RBD1-r(GUAGU) interaction energy upon binding is largely cancelled out by the increase in the sum of RBD1-water, r(GUAGU)-water, and water-water interaction energies. We refer to this increase as "energetic dehydration". The decrease is larger than the increase for the van der Waals component, whereas the opposite is true for the electrostatic component. We give a novel reason for the empirically known fact that protein residues possessing side chains with positive charges and with flat moieties frequently appear within protein-RNA binding interfaces. A physical picture of the general protein-RNA binding mechanism is then presented. To achieve a sufficiently large water-entropy gain, shape complementarity at the atomic level needs to be constructed by utilizing the stacking and sandwiching of flat moieties (aromatic rings of the protein and nucleobases of RNA) as fundamental motifs. To compensate for electrostatic energetic dehydration, charge complementarity becomes crucial within the binding interface. We argue the reason why the RNA recognition motif (RRM) is the most ubiquitous RNA binding domain.
Collapse
Affiliation(s)
- Tomohiko Hayashi
- Institute of Advanced Energy, Kyoto University, Uji, Kyoto 611-0011, Japan.
| | - Tomoaki Matsuda
- Institute of Advanced Energy, Kyoto University, Uji, Kyoto 611-0011, Japan.
| | - Takashi Nagata
- Institute of Advanced Energy, Kyoto University, Uji, Kyoto 611-0011, Japan.
| | - Masato Katahira
- Institute of Advanced Energy, Kyoto University, Uji, Kyoto 611-0011, Japan.
| | - Masahiro Kinoshita
- Institute of Advanced Energy, Kyoto University, Uji, Kyoto 611-0011, Japan.
| |
Collapse
|
10
|
Huggins DJ, Biggin PC, Dämgen MA, Essex JW, Harris SA, Henchman RH, Khalid S, Kuzmanic A, Laughton CA, Michel J, Mulholland AJ, Rosta E, Sansom MSP, van der Kamp MW. Biomolecular simulations: From dynamics and mechanisms to computational assays of biological activity. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE 2018. [DOI: 10.1002/wcms.1393] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- David J. Huggins
- TCM Group, Cavendish Laboratory University of Cambridge Cambridge UK
- Unilever Centre, Department of Chemistry University of Cambridge Cambridge UK
- Department of Physiology and Biophysics Weill Cornell Medical College New York NY
| | | | - Marc A. Dämgen
- Department of Biochemistry University of Oxford Oxford UK
| | - Jonathan W. Essex
- School of Chemistry University of Southampton Southampton UK
- Institute for Life Sciences University of Southampton Southampton UK
| | - Sarah A. Harris
- School of Physics and Astronomy University of Leeds Leeds UK
- Astbury Centre for Structural and Molecular Biology University of Leeds Leeds UK
| | - Richard H. Henchman
- Manchester Institute of Biotechnology The University of Manchester Manchester UK
- School of Chemistry The University of Manchester Oxford UK
| | - Syma Khalid
- School of Chemistry University of Southampton Southampton UK
- Institute for Life Sciences University of Southampton Southampton UK
| | | | - Charles A. Laughton
- School of Pharmacy University of Nottingham Nottingham UK
- Centre for Biomolecular Sciences University of Nottingham Nottingham UK
| | - Julien Michel
- EaStCHEM school of Chemistry University of Edinburgh Edinburgh UK
| | - Adrian J. Mulholland
- Centre of Computational Chemistry, School of Chemistry University of Bristol Bristol UK
| | - Edina Rosta
- Department of Chemistry King's College London London UK
| | | | - Marc W. van der Kamp
- Centre of Computational Chemistry, School of Chemistry University of Bristol Bristol UK
- School of Biochemistry, Biomedical Sciences Building University of Bristol Bristol UK
| |
Collapse
|
11
|
Hikiri S, Hayashi T, Ikeguchi M, Kinoshita M. Statistical thermodynamics for the unexpectedly large difference between disaccharide stereoisomers in terms of solubility in water. Phys Chem Chem Phys 2018; 20:23684-23693. [PMID: 30191211 DOI: 10.1039/c8cp04377a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We unravel the physical origins of the large difference between cellobiose and maltose, which consist of two β-1,4 and α-1,4 linked d-glucose units, respectively, in terms of the solubility in water. We construct a thermodynamic theory where the chemical-potential difference between disaccharides in water and in vacuum is identified as the key free-energy function. Its energetic and entropic components are calculated for cellobiose and maltose by statistical-mechanical theories for solute hydration. The disaccharide structures are taken into account at the atomic level and a molecular model is adopted for water. Molecular dynamics simulations are used to account for the conformational fluctuation of a disaccharide molecule, which also enables us to estimate the conformational entropy. We show that the cellobiose/maltose solubility ratio calculated is in good agreement with the experimental value. The solubility becomes much lower for cellobiose due to conformational-entropy and water-entropy effects. The former effect is relevant to higher stability of the intramolecular hydrogen bond between oxygen atoms in the six-membered ring and in the neighboring hydroxyl group: the hydration alters the fluctuation of a molecular conformation to a larger or less regular one, but the degree of this alteration is smaller. The latter effect is attributed to more separation of two hydroxymethyl groups in a molecule, causing lower probability of the overlap of excluded volumes generated by the groups for water molecules. We suggest that physicochemical properties of disaccharides in water become variable depending on the stereoisomerism through hydration effects and the origins of the variety are entropic.
Collapse
Affiliation(s)
- Simon Hikiri
- Graduate School of Science, Chiba University, 1-33 Yayoi-cho, Inage, Chiba 263-8522, Japan
| | | | | | | |
Collapse
|
12
|
Vyalov I, Rocchia W. Including diverging electrostatic potential in 3D-RISM theory: The charged wall case. J Chem Phys 2018; 148:114106. [PMID: 29566525 DOI: 10.1063/1.5019596] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Although three-dimensional site-site molecular integral equations of liquids are a powerful tool of the modern theoretical chemistry, their applications to the problem of characterizing the electrical double layer originating at the solid-liquid interface with a macroscopic substrate are severely limited by the fact that an infinitely extended charged plane generates a divergent electrostatic potential. Such potentials cannot be treated within the standard 3D-Reference Interaction Site Model equation solution framework since it leads to functions that are not Fourier transformable. In this paper, we apply a renormalization procedure to overcome this obstacle. We then check the validity and numerical accuracy of the proposed computational scheme on the prototypical gold (111) surface in contact with water/alkali chloride solution. We observe that despite the proposed method requires, to achieve converged charge densities, a higher spatial resolution than that suited to the estimation of biomolecular solvation with either 3D-RISM or continuum electrostatics approaches, it still is computationally efficient. Introducing the electrostatic potential of an infinite wall, which is periodic in 2 dimensions, we avoid edge effects, permit a robust integration of Poisson's equation, and obtain the 3D electrostatic potential profile for the first time in such calculations. We show that the potential within the electrical double layer presents oscillations which are not grasped by the Debye-Hückel and Gouy-Chapman theories. This electrostatic potential deviates from its average of up to 1-2 V at small distances from the substrate along the lateral directions. Applications of this theoretical development are relevant, for example, for liquid scanning tunneling microscopy imaging.
Collapse
Affiliation(s)
- Ivan Vyalov
- CONCEPT Lab, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genoa, Italy
| | - Walter Rocchia
- CONCEPT Lab, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genoa, Italy
| |
Collapse
|
13
|
Ansari SM, Palmer DS. Comparative Molecular Field Analysis Using Molecular Integral Equation Theory. J Chem Inf Model 2018; 58:1253-1265. [DOI: 10.1021/acs.jcim.7b00600] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Samiul M. Ansari
- Department of Pure and Applied Chemistry, University of Strathclyde, Thomas Graham Building, 295 Cathedral Street, Glasgow, Scotland G1 1XL, U.K
| | - David S. Palmer
- Department of Pure and Applied Chemistry, University of Strathclyde, Thomas Graham Building, 295 Cathedral Street, Glasgow, Scotland G1 1XL, U.K
| |
Collapse
|
14
|
Okumura H, Higashi M, Yoshida Y, Sato H, Akiyama R. Theoretical approaches for dynamical ordering of biomolecular systems. Biochim Biophys Acta Gen Subj 2017; 1862:212-228. [PMID: 28988931 DOI: 10.1016/j.bbagen.2017.10.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 09/30/2017] [Accepted: 10/04/2017] [Indexed: 01/21/2023]
Abstract
BACKGROUND Living systems are characterized by the dynamic assembly and disassembly of biomolecules. The dynamical ordering mechanism of these biomolecules has been investigated both experimentally and theoretically. The main theoretical approaches include quantum mechanical (QM) calculation, all-atom (AA) modeling, and coarse-grained (CG) modeling. The selected approach depends on the size of the target system (which differs among electrons, atoms, molecules, and molecular assemblies). These hierarchal approaches can be combined with molecular dynamics (MD) simulation and/or integral equation theories for liquids, which cover all size hierarchies. SCOPE OF REVIEW We review the framework of quantum mechanical/molecular mechanical (QM/MM) calculations, AA MD simulations, CG modeling, and integral equation theories. Applications of these methods to the dynamical ordering of biomolecular systems are also exemplified. MAJOR CONCLUSIONS The QM/MM calculation enables the study of chemical reactions. The AA MD simulation, which omits the QM calculation, can follow longer time-scale phenomena. By reducing the number of degrees of freedom and the computational cost, CG modeling can follow much longer time-scale phenomena than AA modeling. Integral equation theories for liquids elucidate the liquid structure, for example, whether the liquid follows a radial distribution function. GENERAL SIGNIFICANCE These theoretical approaches can analyze the dynamic behaviors of biomolecular systems. They also provide useful tools for exploring the dynamic ordering systems of biomolecules, such as self-assembly. This article is part of a Special Issue entitled "Biophysical Exploration of Dynamical Ordering of Biomolecular Systems" edited by Dr. Koichi Kato.
Collapse
Affiliation(s)
- Hisashi Okumura
- Research Center for Computational Science, Institute for Molecular Science, Okazaki, Aichi 444-8585, Japan; Department of Structural Molecular Science, The Graduate University for Advanced Studies, Okazaki, Aichi 444-8585, Japan.
| | - Masahiro Higashi
- Department of Chemistry, Biology and Marine Science, University of the Ryukyus, Nishihara, Okinawa 903-0213, Japan
| | - Yuichiro Yoshida
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan
| | - Hirofumi Sato
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan; Elements Strategy Initiative for Catalysts and Batteries, Kyoto University, Japan
| | - Ryo Akiyama
- Department of Chemistry, Kyushu University, Fukuoka 819-0395, Japan
| |
Collapse
|
15
|
Oshima H, Hayashi T, Kinoshita M. Statistical Thermodynamics for Actin-Myosin Binding: The Crucial Importance of Hydration Effects. Biophys J 2017; 110:2496-2506. [PMID: 27276267 DOI: 10.1016/j.bpj.2016.05.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 05/03/2016] [Accepted: 05/04/2016] [Indexed: 01/01/2023] Open
Abstract
Actomyosin is an important molecular motor, and the binding of actin and myosin is an essential research target in biophysics. Nevertheless, the physical factors driving or opposing the binding are still unclear. Here, we investigate the role of water in actin-myosin binding using the most reliable statistical-mechanical method currently available for assessing biomolecules immersed in water. This method is characterized as follows: water is treated not as a dielectric continuum but as an ensemble of molecules; the polyatomic structures of proteins are taken into consideration; and the binding free energy is decomposed into physically insightful entropic and energetic components by accounting for the hydration effect to its full extent. We find that the actin-myosin binding brings large gains of electrostatic and Lennard-Jones attractive interactions. However, these gains are accompanied by even larger losses of actin-water and myosin-water electrostatic and LJ attractive interactions. Although roughly half of the energy increase due to the losses is cancelled out by the energy decrease arising from structural reorganization of the water released upon binding, the remaining energy increase is still larger than the energy decrease brought by the gains mentioned above. Hence, the net change in system energy is positive, which opposes binding. Importantly, the binding is driven by a large gain of configurational entropy of water, which surpasses the positive change in system energy and the conformational entropy loss occurring for actin and myosin. The principal physical origin of the large water-entropy gain is as follows: the actin-myosin interface is closely packed with the achievement of high shape complementarity on the atomic level, leading to a large increase in the total volume available to the translational displacement of water molecules in the system and a resultant reduction of water crowding (i.e., entropic correlations among water molecules).
Collapse
Affiliation(s)
- Hiraku Oshima
- Institute of Advanced Energy, Kyoto University, Uji, Kyoto, Japan
| | - Tomohiko Hayashi
- Institute of Advanced Energy, Kyoto University, Uji, Kyoto, Japan
| | | |
Collapse
|
16
|
Riniker S. Molecular Dynamics Fingerprints (MDFP): Machine Learning from MD Data To Predict Free-Energy Differences. J Chem Inf Model 2017; 57:726-741. [DOI: 10.1021/acs.jcim.6b00778] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Sereina Riniker
- Laboratory of Physical Chemistry, ETH Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| |
Collapse
|
17
|
Murakami S, Hayashi T, Kinoshita M. Effects of salt or cosolvent addition on solubility of a hydrophobic solute in water: Relevance to those on thermal stability of a protein. J Chem Phys 2017; 146:055102. [DOI: 10.1063/1.4975165] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
18
|
Aono S, Nakagaki M, Sakaki S. Theoretical study of one-electron-oxidized salen complexes of group 7 (Mn(iii), Tc(iii), and Re(iii)) and group 10 metals (Ni(ii), Pd(ii), and Pt(ii)) with the 3D-RISM-GMC-QDPT method: localized vs. delocalized ground and excited states in solution. Phys Chem Chem Phys 2017. [DOI: 10.1039/c7cp02992f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Mixed-valence natures of one-electron oxidized salen complexes of group 7 and 10 metals are theoretically investigated by GMC-QDPT, incorporating solvation effects.
Collapse
Affiliation(s)
- Shinji Aono
- Fukui Institute for Fundamental Chemistry
- Kyoto University
- Sakyo-ku
- Japan
| | - Masayuki Nakagaki
- Fukui Institute for Fundamental Chemistry
- Kyoto University
- Sakyo-ku
- Japan
| | - Shigeyoshi Sakaki
- Fukui Institute for Fundamental Chemistry
- Kyoto University
- Sakyo-ku
- Japan
| |
Collapse
|
19
|
Kasahara K, Sato H. Dynamics theory for molecular liquids based on an interaction site model. Phys Chem Chem Phys 2017; 19:27917-27929. [DOI: 10.1039/c7cp05423h] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Dynamics theories for molecular liquids based on an interaction site model have been developed over the past few decades and proved to be powerful tools to investigate various dynamical phenomena.
Collapse
Affiliation(s)
- Kento Kasahara
- Department of Molecular Engineering
- Kyoto University
- Japan
| | - Hirofumi Sato
- Department of Molecular Engineering and Elements Strategy for Catalysts and Batteries (ESICB)
- Kyoto University
- Japan
| |
Collapse
|
20
|
Hayashi T, Oshima H, Harano Y, Kinoshita M. Water based on a molecular model behaves like a hard-sphere solvent for a nonpolar solute when the reference interaction site model and related theories are employed. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2016; 28:344003. [PMID: 27366886 DOI: 10.1088/0953-8984/28/34/344003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
For neutral hard-sphere solutes, we compare the reduced density profile of water around a solute g(r), solvation free energy μ, energy U, and entropy S under the isochoric condition predicted by the two theories: dielectrically consistent reference interaction site model (DRISM) and angle-dependent integral equation (ADIE) theories. A molecular model for water pertinent to each theory is adopted. The hypernetted-chain (HNC) closure is employed in the ADIE theory, and the HNC and Kovalenko-Hirata (K-H) closures are tested in the DRISM theory. We also calculate g(r), U, S, and μ of the same solute in a hard-sphere solvent whose molecular diameter and number density are set at those of water, in which case the radial-symmetric integral equation (RSIE) theory is employed. The dependences of μ, U, and S on the excluded volume and solvent-accessible surface area are analyzed using the morphometric approach (MA). The results from the ADIE theory are in by far better agreement with those from computer simulations available for g(r), U, and μ. For the DRISM theory, g(r) in the vicinity of the solute is quite high and becomes progressively higher as the solute diameter d U increases. By contrast, for the ADIE theory, it is much lower and becomes further lower as d U increases. Due to unphysically positive U and significantly larger |S|, μ from the DRISM theory becomes too high. It is interesting that μ, U, and S from the K-H closure are worse than those from the HNC closure. Overall, the results from the DRISM theory with a molecular model for water are quite similar to those from the RSIE theory with the hard-sphere solvent. Based on the results of the MA analysis, we comparatively discuss the different theoretical methods for cases where they are applied to studies on the solvation of a protein.
Collapse
Affiliation(s)
- Tomohiko Hayashi
- Institute of Advanced Energy, Kyoto University, Uji, Kyoto 611-0011, Japan
| | | | | | | |
Collapse
|
21
|
Lomba E, Bores C, Notario R, Sánchez-Gil V. An integral equation and simulation study of hydrogen inclusions in a molecular crystal of short-capped nanotubes. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2016; 28:344006. [PMID: 27367179 DOI: 10.1088/0953-8984/28/34/344006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
In this work we have assessed the ability of a recently proposed three-dimensional integral equation approach to describe the explicit spatial distribution of molecular hydrogen confined in a crystal formed by short-capped nanotubes of C50 H10. To that aim we have resorted to extensive molecular simulation calculations whose results have been compared with our three-dimensional integral equation approximation. We have first tested the ability of a single C50 H10 nanocage for the encapsulation of H2 by means of molecular dynamics simulations, in particular using targeted molecular dynamics to estimate the binding Gibbs energy of a host hydrogen molecule inside the nanocage. Then, we have investigated the adsorption isotherm of the nanocage crystal using grand canonical Monte Carlo simulations in order to evaluate the maximum load of molecular hydrogen. For a packing close to the maximum load explicit hydrogen density maps and density profiles have been determined using molecular dynamics simulations and the three-dimensional Ornstein-Zernike equation with a hypernetted chain closure. In these conditions of extremely tight confinement the theoretical approach has shown to be able to reproduce the three-dimensional structure of the adsorbed fluid with accuracy down to the finest details.
Collapse
Affiliation(s)
- Enrique Lomba
- Instituto de Química Física Rocasolano, CSIC, Calle Serrano 119, E-28026 Madrid, Spain
| | | | | | | |
Collapse
|
22
|
Murakami S, Kinoshita M. Effects of monohydric alcohols and polyols on the thermal stability of a protein. J Chem Phys 2016; 144:125105. [PMID: 27036482 DOI: 10.1063/1.4944680] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The thermal stability of a protein is lowered by the addition of a monohydric alcohol, and this effect becomes larger as the size of hydrophobic group in an alcohol molecule increases. By contrast, it is enhanced by the addition of a polyol possessing two or more hydroxyl groups per molecule, and this effect becomes larger as the number of hydroxyl groups increases. Here, we show that all of these experimental observations can be reproduced even in a quantitative sense by rigid-body models focused on the entropic effect originating from the translational displacement of solvent molecules. The solvent is either pure water or water-cosolvent solution. Three monohydric alcohols and five polyols are considered as cosolvents. In the rigid-body models, a protein is a fused hard spheres accounting for the polyatomic structure in the atomic detail, and the solvent is formed by hard spheres or a binary mixture of hard spheres with different diameters. The effective diameter of cosolvent molecules and the packing fractions of water and cosolvent, which are crucially important parameters, are carefully estimated using the experimental data of properties such as the density of solid crystal of cosolvent, parameters in the pertinent cosolvent-cosolvent interaction potential, and density of water-cosolvent solution. We employ the morphometric approach combined with the integral equation theory, which is best suited to the physical interpretation of the calculation result. It is argued that the degree of solvent crowding in the bulk is the key factor. When it is made more serious by the cosolvent addition, the solvent-entropy gain upon protein folding is magnified, leading to the enhanced thermal stability. When it is made less serious, the opposite is true. The mechanism of the effects of monohydric alcohols and polyols is physically the same as that of sugars. However, when the rigid-body models are employed for the effect of urea, its addition is predicted to enhance the thermal stability, which conflicts with the experimental fact. We then propose, as two essential factors, not only the solvent-entropy gain but also the loss of protein-solvent interaction energy upon protein folding. The competition of changes in these two factors induced by the cosolvent addition determines the thermal-stability change.
Collapse
Affiliation(s)
- Shota Murakami
- Graduate School of Energy Science, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Masahiro Kinoshita
- Institute of Advanced Energy, Kyoto University, Uji, Kyoto 611-0011, Japan
| |
Collapse
|
23
|
Hara R, Amano KI, Kinoshita M, Yoshimori A. Dynamics of the entropic insertion of a large sphere into a cylindrical vessel. J Chem Phys 2016; 144:105103. [DOI: 10.1063/1.4943394] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
24
|
Aono S, Mori T, Sakaki S. 3D-RISM-MP2 Approach to Hydration Structure of Pt(II) and Pd(II) Complexes: Unusual H-Ahead Mode vs Usual O-Ahead One. J Chem Theory Comput 2016; 12:1189-206. [PMID: 26863511 DOI: 10.1021/acs.jctc.5b01137] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Solvation of transition metal complexes with water has been one of the fundamental topics in physical and coordination chemistry. In particular, Pt(II) complexes have recently attracted considerable interest for their relation to anticancer activity in cisplatin and its analogues, yet the interaction of the water molecule and the metal center has been obscured. The challenge from a theoretical perspective remains that both the microscopic solvation effect and the dynamical electron correlation (DEC) effect have to be treated simultaneously in a reasonable manner. In this work we derive the analytical gradient for the three-dimensional reference interaction site model Møller-Plesset second order (3D-RISM-MP2) free energy. On the basis of the three-regions 3D-RISM self-consistent field (SCF) method recently proposed by us, we apply a new layer of the Z-vector method to the CP-RISM equation as well as point-charge approximation to the derivatives with respect to the density matrix elements in the RISM-CPHF equation to remarkably reduce the computational cost. This method is applied to study the interaction of H2O with the d(8) square planar transition metal complexes in aqueous solution, trans-[Pt(II)Cl2(NH3)(glycine)] (1a), [Pt(II)(NH3)4](2+) (1b), [Pt(II)(CN)4](2-) (1c), and their Pd(II) analogues 2a, 2b, and 2c, respectively, to elucidate whether the usual H2O interaction through O atom (O-ahead mode) or unusual one through H atom (H-ahead mode) is stable in these complexes. We find that the interaction energy of the coordinating water and the transition metal complex changes little when switching from gas to aqueous phase, but the solvation free energy differs remarkably between the two interaction modes, thereby affecting the relative stability of the H-ahead and O-ahead modes. Particularly, in contrast to the expectation that the O-ahead mode is preferred due to the presence of positive charges in 1b, the H-ahead mode is also found to be more stable. The O-ahead mode is found to be more stable than the H-ahead one only in 2b. The energy decomposition analysis (EDA) at the 3D-RISM-MP2 level revealed that the O-ahead mode is stabilized by the electrostatic (ES) interaction, whereas the H-ahead one is mainly stabilized by the DEC effect. The ES interaction is also responsible for the difference between the Pd(II) and Pt(II) complexes; because the electrostatic potential is more negative along the z-axis in the Pt(II) complex than in the Pd(II) one, the O-ahead mode prefers the Pd(II) complexes, whereas the H-ahead becomes predominant in the Pt(II) complexes.
Collapse
Affiliation(s)
- Shinji Aono
- Fukui Institute for Fundamental Chemistry, Kyoto University , Nishihiraki-cho, Takano, Sakyo-ku, Kyoto 606-8103, Japan
| | - Toshifumi Mori
- Institute for Molecular Science , Okazaki, Aichi 444-8585, Japan.,School of Physical Sciences, The Graduate University for Advanced Studies , Okazaki, Aichi 444-8585, Japan
| | - Shigeyoshi Sakaki
- Fukui Institute for Fundamental Chemistry, Kyoto University , Nishihiraki-cho, Takano, Sakyo-ku, Kyoto 606-8103, Japan
| |
Collapse
|
25
|
Hayashi T, Kinoshita M. Statistical thermodynamics of aromatic–aromatic interactions in aqueous solution. Phys Chem Chem Phys 2016; 18:32406-32417. [DOI: 10.1039/c6cp06000e] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
To elucidate the interactions between aromatic rings, which are believed to play essential roles in a variety of biological processes, we analyze the water-mediated interactions between toluene molecules along face-to-face stacked (FF) and point-to-face T-shaped (TS) paths using a statistical-mechanical theory of liquids combined with a molecular model for water.
Collapse
|
26
|
Oshima H, Kinoshita M. A highly efficient hybrid method for calculating the hydration free energy of a protein. J Comput Chem 2015; 37:712-23. [DOI: 10.1002/jcc.24253] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Revised: 10/28/2015] [Accepted: 10/29/2015] [Indexed: 11/10/2022]
Affiliation(s)
- Hiraku Oshima
- Institute of Advanced Energy, Kyoto University; Uji Kyoto 611-0011 Japan
| | - Masahiro Kinoshita
- Institute of Advanced Energy, Kyoto University; Uji Kyoto 611-0011 Japan
| |
Collapse
|
27
|
Lomba E, Bores C, Sánchez-Gil V, Noya EG. A three dimensional integral equation approach for fluids under confinement: Argon in zeolites. J Chem Phys 2015; 143:164703. [PMID: 26520539 DOI: 10.1063/1.4934230] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In this work, we explore the ability of an inhomogeneous integral equation approach to provide a full three dimensional description of simple fluids under conditions of confinement in porous media. Explicitly, we will consider the case of argon adsorbed into silicalite-1, silicalite-2, and an all-silica analogue of faujasite, with a porous structure composed of linear (and zig-zag in the case of silicalite-1) channels of 5-8 Å diameter. The equation is based on the three dimensional Ornstein-Zernike approximation proposed by Beglov and Roux [J. Chem. Phys. 103, 360 (1995)] in combination with the use of an approximate fluid-fluid direct correlation function furnished by the replica Ornstein-Zernike equation with a hypernetted chain closure. Comparison with the results of grand canonical Monte Carlo/molecular dynamics simulations evidences that the theory provides an accurate description for the three dimensional density distribution of the adsorbed fluid, both at the level of density profiles and bidimensional density maps across representative sections of the porous material. In the case of very tight confinement (silicalite-1 and silicalite-2), solutions at low temperatures could not be found due to convergence difficulties, but for faujasite, which presents substantially larger channels, temperatures as low as 77 K are accessible to the integral equation. The overall results indicate that the theoretical approximation can be an excellent tool to characterize the microscopic adsorption behavior of porous materials.
Collapse
Affiliation(s)
- Enrique Lomba
- Instituto de Química Física Rocasolano, CSIC, Serrano 119, E-28006 Madrid, Spain
| | - Cecilia Bores
- Instituto de Química Física Rocasolano, CSIC, Serrano 119, E-28006 Madrid, Spain
| | - Vicente Sánchez-Gil
- Instituto de Química Física Rocasolano, CSIC, Serrano 119, E-28006 Madrid, Spain
| | - Eva G Noya
- Instituto de Química Física Rocasolano, CSIC, Serrano 119, E-28006 Madrid, Spain
| |
Collapse
|
28
|
Hayashi T, Oshima H, Yasuda S, Kinoshita M. Mechanism of One-to-Many Molecular Recognition Accompanying Target-Dependent Structure Formation: For the Tumor Suppressor p53 Protein as an Example. J Phys Chem B 2015; 119:14120-9. [PMID: 26421917 DOI: 10.1021/acs.jpcb.5b08513] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The new type of molecular recognition, in which an intrinsically disordered region (IDR) of a protein binds to many different target proteins with target-dependent structure formation, is indispensable to the expression of life phenomena and also implicated in a number of diseases. According to the prevailing view, the physicochemical factors responsible for the binding are also target dependent. Here we consider an IDR of the tumor suppressor p53 protein, p53CTD, as an important example related to carcinogenesis and analyze its binding to four targets accompanying the formation of target-dependent structures (i.e., helix, sheet, and two different coils) using our statistical-mechanical method combined with molecular models for water. We find that all of the seemingly different binding processes are driven by a large gain of the translational, configurational entropy of water in the system. The gain originates from sufficiently high shape complementarity on the atomic level within the p53CTD-target interface. It is also required that the electrostatic complementarity be ensured as much as possible to compensate for the dehydration. Such complementarities are achieved in harmony with the portion of the target to which p53CTD binds, leading to a large diversity of structures of p53CTD formed upon binding: If they are not achievable, the binding does not occur. This finding is made possible only by calculating the changes in thermodynamic quantities upon binding and decomposing them into physically insightful components.
Collapse
Affiliation(s)
- Tomohiko Hayashi
- Institute of Advanced Energy, Kyoto University , Uji, Kyoto 611-0011, Japan
| | - Hiraku Oshima
- Institute of Advanced Energy, Kyoto University , Uji, Kyoto 611-0011, Japan
| | - Satoshi Yasuda
- Institute of Advanced Energy, Kyoto University , Uji, Kyoto 611-0011, Japan
| | - Masahiro Kinoshita
- Institute of Advanced Energy, Kyoto University , Uji, Kyoto 611-0011, Japan
| |
Collapse
|
29
|
Matveev A, Li B, Rösch N. Uranyl Solvation by a Three-Dimensional Reference Interaction Site Model. J Phys Chem A 2015; 119:8702-13. [PMID: 26167741 DOI: 10.1021/acs.jpca.5b03712] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We report an implementation of the three-dimensional reference interaction site model (3D RISM) that in particular addresses the treatment of the long-range Coulomb field of charged species, represented by point charges and/or a distributed charge density. A comparison of 1D and 3D results for atomic ions demonstrates a reasonable accuracy, even for a moderate size of the unit cell and a moderate grid resolution. In an application to uranyl complexes with 4-6 explicit aqua ligands and an implicit bulk solvent modeled by RISM, we show that the 3D technique is not susceptible to the deficiencies of the 1D technique exposed in our previous work [Li, Matveev, Krüger, Rösch, Comp. Theor. Chem. 2015, 1051, 151]. The 3D method eliminates the artificial superposition of explicit aqua ligands and the RISM medium and predicts essentially the same values for uranyl and uranyl-water bond lengths as a state-of-the-art polarizable continuum model. With the first solvation shell treated explicitly, the observables are nearly independent of the order of the closure relationship used when solving the set of integral equations for the various distribution functions. Furthermore, we calculated the activation barrier of water exchange with a hybrid approach that combines the 3D RISM model for the bulk aqueous solvent and a quantum mechanical description (at the level of electronic density functional theory) of uranyl interacting with explicitly represented water molecules. The calculated result agrees very well with experiment and the best theoretical estimates.
Collapse
Affiliation(s)
| | | | - Notker Rösch
- §Institute of High Performance Computing, Agency for Science, Technology and Research, 1 Fusionopolis Way, Connexis #16-16, Singapore 138632, Singapore
| |
Collapse
|
30
|
Ratkova EL, Palmer DS, Fedorov MV. Solvation thermodynamics of organic molecules by the molecular integral equation theory: approaching chemical accuracy. Chem Rev 2015; 115:6312-56. [PMID: 26073187 DOI: 10.1021/cr5000283] [Citation(s) in RCA: 135] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Ekaterina L Ratkova
- †G. A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences, Akademicheskaya Street 1, Ivanovo 153045, Russia.,‡The Max Planck Institute for Mathematics in the Sciences, Inselstrasse 22, Leipzig 04103, Germany
| | - David S Palmer
- ‡The Max Planck Institute for Mathematics in the Sciences, Inselstrasse 22, Leipzig 04103, Germany.,§Department of Chemistry, University of Strathclyde, Thomas Graham Building, 295 Cathedral Street, Glasgow, Scotland G1 1XL, United Kingdom
| | - Maxim V Fedorov
- ‡The Max Planck Institute for Mathematics in the Sciences, Inselstrasse 22, Leipzig 04103, Germany.,∥Department of Physics, Scottish Universities Physics Alliance (SUPA), University of Strathclyde, John Anderson Building, 107 Rottenrow East, Glasgow G4 0NG, United Kingdom
| |
Collapse
|
31
|
Misin M, Fedorov MV, Palmer DS. Communication: Accurate hydration free energies at a wide range of temperatures from 3D-RISM. J Chem Phys 2015; 142:091105. [DOI: 10.1063/1.4914315] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Affiliation(s)
- Maksim Misin
- Department of Physics, SUPA, University of Strathclyde, 107 Rottenrow, Glasgow G4 0NG, United Kingdom
| | - Maxim V. Fedorov
- Department of Physics, SUPA, University of Strathclyde, 107 Rottenrow, Glasgow G4 0NG, United Kingdom
| | - David S. Palmer
- Department of Pure and Applied Chemistry, University of Strathclyde, Thomas Graham Building, 295 Cathedral Street, Glasgow G1 1XL, United Kingdom
| |
Collapse
|
32
|
Li B, Matveev AV, Krüger S, Rösch N. Uranyl solvation by a reference interaction site model. COMPUT THEOR CHEM 2015. [DOI: 10.1016/j.comptc.2014.10.032] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
33
|
Lomba E, Bores C, Kahl G. Explicit spatial description of fluid inclusions in porous matrices in terms of an inhomogeneous integral equation. J Chem Phys 2014; 141:164704. [DOI: 10.1063/1.4898713] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Enrique Lomba
- Instituto de Química Física Rocasolano, CSIC, Serrano 119, E-28006 Madrid, Spain
| | - Cecilia Bores
- Instituto de Química Física Rocasolano, CSIC, Serrano 119, E-28006 Madrid, Spain
| | - Gerhard Kahl
- Institut für Theoretische Physik, Technische Universität Wien and Center for Computational Materials Science (CMS), Wiedner Hauptstraße 8-10, A-1040 Wien, Austria
| |
Collapse
|
34
|
Hayashi T, Chiba S, Kaneta Y, Furuta T, Sakurai M. ATP-induced conformational changes of nucleotide-binding domains in an ABC transporter. Importance of the water-mediated entropic force. J Phys Chem B 2014; 118:12612-20. [PMID: 25302667 DOI: 10.1021/jp507930e] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
ATP binding cassette (ABC) proteins belong to a superfamily of active transporters. Recent experimental and computational studies have shown that binding of ATP to the nucleotide binding domains (NBDs) of ABC proteins drives the dimerization of NBDs, which, in turn, causes large conformational changes within the transmembrane domains (TMDs). To elucidate the active substrate transport mechanism of ABC proteins, it is first necessary to understand how the NBD dimerization is driven by ATP binding. In this study, we selected MalKs (NBDs of a maltose transporter) as a representative NBD and calculated the free-energy change upon dimerization using molecular mechanics calculations combined with a statistical thermodynamic theory of liquids, as well as a method to calculate the translational, rotational, and vibrational entropy change. This combined method is applied to a large number of snapshot structures obtained from molecular dynamics simulations containing explicit water molecules. The results suggest that the NBD dimerization proceeds with a large gain of water entropy when ATP molecules bind to the NBDs. The energetic gain arising from direct NBD-NBD interactions is canceled by the dehydration penalty and the configurational-entropy loss. ATP hydrolysis induces a loss of the shape complementarity between the NBDs, which leads to the dissociation of the dimer, due to a decrease in the water-entropy gain and an increase in the configurational-entropy loss. This interpretation of the NBD dimerization mechanism in concert with ATP, especially focused on the water-mediated entropy force, is potentially applicable to a wide variety of the ABC transporters.
Collapse
Affiliation(s)
- Tomohiko Hayashi
- Center for Biological Resources and Informatics, Tokyo Institute of Technology , 4259-B-62, Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan
| | | | | | | | | |
Collapse
|
35
|
Lynch GC, Perkyns JS, Nguyen BL, Pettitt BM. Solvation and cavity occupation in biomolecules. Biochim Biophys Acta Gen Subj 2014; 1850:923-931. [PMID: 25261777 DOI: 10.1016/j.bbagen.2014.09.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Revised: 09/15/2014] [Accepted: 09/17/2014] [Indexed: 11/24/2022]
Abstract
BACKGROUND Solvation density locations are important for protein dynamics and structure. Knowledge of the preferred hydration sites at biomolecular interfaces and those in the interior of cavities can enhance understanding of structure and function. While advanced X-ray diffraction methods can provide accurate atomic structures for proteins, that technique is challenged when it comes to providing accurate hydration structures, especially for interfacial and cavity bound solvent molecules. METHODS Advances in integral equation theories which include more accurate methods for calculating the long-ranged Coulomb interaction contributions to the three-dimensional distribution functions make it possible to calculate angle dependent average solvent structure, accurately, around and inside irregular molecular conformations. The proximal radial distribution method provides another approximate method to determine average solvent structures for biomolecular systems based on a proximal or near neighbor solvent distribution that can be constructed from previously collected solvent distributions. These two approximate methods, along with all-atom molecular dynamics simulations are used to determine the solvent density inside the myoglobin heme cavity. DISCUSSION AND RESULTS Myoglobin is a good test system for these methods because the cavities are many and one is large, tens of Å(3), but is shown to have only four hydration sites. These sites are not near neighbors which implies that the large cavity must have more than one way in and out. CONCLUSIONS Our results show that main solvation sites are well reproduced by all three methods. The techniques also produce a clearly identifiable solvent pathway into the interior of the protein. GENERAL SIGNIFICANCE The agreement between molecular dynamics and less computationally demanding approximate methods is encouraging. This article is part of a Special Issue entitled Recent developments of molecular dynamics.
Collapse
Affiliation(s)
- Gillian C Lynch
- Sealy Center for Structural Biology and Molecular Biophysics, Departments of Biochemistry and Molecular Biology and Pharmacology and Toxicology, The University of Texas Medical Branch at Galveston, 301 University Blvd, Galveston, TX 77555-0304, USA.
| | - John S Perkyns
- Sealy Center for Structural Biology and Molecular Biophysics, Departments of Biochemistry and Molecular Biology and Pharmacology and Toxicology, The University of Texas Medical Branch at Galveston, 301 University Blvd, Galveston, TX 77555-0304, USA
| | - Bao Linh Nguyen
- Sealy Center for Structural Biology and Molecular Biophysics, Departments of Biochemistry and Molecular Biology and Pharmacology and Toxicology, The University of Texas Medical Branch at Galveston, 301 University Blvd, Galveston, TX 77555-0304, USA
| | - B Montgomery Pettitt
- Sealy Center for Structural Biology and Molecular Biophysics, Departments of Biochemistry and Molecular Biology and Pharmacology and Toxicology, The University of Texas Medical Branch at Galveston, 301 University Blvd, Galveston, TX 77555-0304, USA.
| |
Collapse
|
36
|
Fedotova MV, Kruchinin SE. Ion-binding of glycine zwitterion with inorganic ions in biologically relevant aqueous electrolyte solutions. Biophys Chem 2014; 190-191:25-31. [DOI: 10.1016/j.bpc.2014.04.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Revised: 04/02/2014] [Accepted: 04/02/2014] [Indexed: 11/29/2022]
|
37
|
Hayashi T, Oshima H, Mashima T, Nagata T, Katahira M, Kinoshita M. Binding of an RNA aptamer and a partial peptide of a prion protein: crucial importance of water entropy in molecular recognition. Nucleic Acids Res 2014; 42:6861-75. [PMID: 24803670 PMCID: PMC4066790 DOI: 10.1093/nar/gku382] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
It is a central issue to elucidate the new type of molecular recognition accompanied by a global structural change of a molecule upon binding to its targets. Here we investigate the driving force for the binding of R12 (a ribonucleic acid aptamer) and P16 (a partial peptide of a prion protein) during which P16 exhibits the global structural change. We calculate changes in thermodynamic quantities upon the R12–P16 binding using a statistical-mechanical approach combined with molecular models for water which is currently best suited to studies on hydration of biomolecules. The binding is driven by a water-entropy gain originating primarily from an increase in the total volume available to the translational displacement of water molecules in the system. The energy decrease due to the gain of R12–P16 attractive (van der Waals and electrostatic) interactions is almost canceled out by the energy increase related to the loss of R12–water and P16–water attractive interactions. We can explain the general experimental result that stacking of flat moieties, hydrogen bonding and molecular-shape and electrostatic complementarities are frequently observed in the complexes. It is argued that the water-entropy gain is largely influenced by the geometric characteristics (overall shapes, sizes and detailed polyatomic structures) of the biomolecules.
Collapse
Affiliation(s)
- Tomohiko Hayashi
- Institute of Advanced Energy, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Hiraku Oshima
- Institute of Advanced Energy, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Tsukasa Mashima
- Institute of Advanced Energy, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Takashi Nagata
- Institute of Advanced Energy, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Masato Katahira
- Institute of Advanced Energy, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Masahiro Kinoshita
- Institute of Advanced Energy, Kyoto University, Uji, Kyoto 611-0011, Japan
| |
Collapse
|
38
|
Maruyama Y, Yoshida N, Tadano H, Takahashi D, Sato M, Hirata F. Massively parallel implementation of 3D-RISM calculation with volumetric 3D-FFT. J Comput Chem 2014; 35:1347-55. [PMID: 24771232 DOI: 10.1002/jcc.23619] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Revised: 03/26/2014] [Accepted: 04/06/2014] [Indexed: 01/19/2023]
Abstract
A new three-dimensional reference interaction site model (3D-RISM) program for massively parallel machines combined with the volumetric 3D fast Fourier transform (3D-FFT) was developed, and tested on the RIKEN K supercomputer. The ordinary parallel 3D-RISM program has a limitation on the number of parallelizations because of the limitations of the slab-type 3D-FFT. The volumetric 3D-FFT relieves this limitation drastically. We tested the 3D-RISM calculation on the large and fine calculation cell (2048(3) grid points) on 16,384 nodes, each having eight CPU cores. The new 3D-RISM program achieved excellent scalability to the parallelization, running on the RIKEN K supercomputer. As a benchmark application, we employed the program, combined with molecular dynamics simulation, to analyze the oligomerization process of chymotrypsin Inhibitor 2 mutant. The results demonstrate that the massive parallel 3D-RISM program is effective to analyze the hydration properties of the large biomolecular systems.
Collapse
Affiliation(s)
- Yutaka Maruyama
- Department of Physics, Faculty of Science and Technology, Keio University, Yokohama, Kanagawa, 223-8522, Japan
| | | | | | | | | | | |
Collapse
|
39
|
Aono S, Nakagaki M, Kurahashi T, Fujii H, Sakaki S. Theoretical Study of One-Electron Oxidized Mn(III)– and Ni(II)–Salen Complexes: Localized vs Delocalized Ground and Excited States in Solution. J Chem Theory Comput 2014; 10:1062-73. [DOI: 10.1021/ct401014p] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Shinji Aono
- Fukui
Institute for Fundamental ChemistryKyoto, University, Nishihiraki-cho, Takano, Sakyo-ku, Kyoto 606-8103, Japan
| | - Masayuki Nakagaki
- Fukui
Institute for Fundamental ChemistryKyoto, University, Nishihiraki-cho, Takano, Sakyo-ku, Kyoto 606-8103, Japan
| | - Takuya Kurahashi
- Institute for Molecular Science & Okazaki Institute for Integrative Bioscience, National Institutes of Natural Sciences, Myodaiji, Okazaki, Aichi 444-8787, Japan
| | - Hiroshi Fujii
- Institute for Molecular Science & Okazaki Institute for Integrative Bioscience, National Institutes of Natural Sciences, Myodaiji, Okazaki, Aichi 444-8787, Japan
| | - Shigeyoshi Sakaki
- Fukui
Institute for Fundamental ChemistryKyoto, University, Nishihiraki-cho, Takano, Sakyo-ku, Kyoto 606-8103, Japan
| |
Collapse
|
40
|
Oshima H, Kinoshita M. Effects of sugars on the thermal stability of a protein. J Chem Phys 2014; 138:245101. [PMID: 23822280 DOI: 10.1063/1.4811287] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
It is experimentally known that the heat-denaturation temperature of a protein is raised (i.e., its thermal stability is enhanced) by sugar addition. In earlier works, we proposed a physical picture of thermal denaturation of proteins in which the measure of the thermal stability is defined as the solvent-entropy gain upon protein folding at 298 K normalized by the number of residues. A multipolar-model water was adopted as the solvent. The polyatomic structures of the folded and unfolded states of a protein were taken into account in the atomic detail. A larger value of the measure implies higher thermal stability. First, we show that the measure remains effective even when the model water is replaced by the hard-sphere solvent whose number density and molecular diameter are set at those of real water. The physical picture is then adapted to the elucidation of the effects of sugar addition on the thermal stability of a protein. The water-sugar solution is modeled as a binary mixture of hard spheres. The thermal stability is determined by a complex interplay of the diameter of sugar molecules dC and the total packing fraction of the solution η: dC is estimated from the volume per molecule in the sugar crystal and η is calculated using the experimental data of the solution density. We find that the protein is more stabilized as the sucrose or glucose concentration becomes higher and the stabilization effect is stronger for sucrose than for glucose. These results are in accord with the experimental observations. Using a radial-symmetric integral equation theory and the morphometric approach, we decompose the change in the measure upon sugar addition into two components originating from the protein-solvent pair and protein-solvent many-body correlations, respectively. Each component is further decomposed into the excluded-volume and solvent-accessible-surface terms. These decompositions give physical insights into the microscopic origin of the thermal-stability enhancement by sugar addition. As an example, the higher stability of the native state relative to that of the unfolded state is found to be attributable primarily to an increase in the solvent crowding caused by sugar addition. Due to the hydrophilicity of sugar molecules, the addition of sugar by a larger amount or that with a larger molecular size leads to an increase in η which is large enough to make the solvent crowding more serious.
Collapse
Affiliation(s)
- Hiraku Oshima
- Institute of Advanced Energy, Kyoto University, Uji, Kyoto 611-0011, Japan
| | | |
Collapse
|
41
|
Mishima H, Oshima H, Yasuda S, Amano KI, Kinoshita M. On the physics of multidrug efflux through a biomolecular complex. J Chem Phys 2013; 139:205102. [DOI: 10.1063/1.4832896] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
42
|
Ishizuka R, Yoshida N. Extended molecular Ornstein-Zernike integral equation for fully anisotropic solute molecules: Formulation in a rectangular coordinate system. J Chem Phys 2013; 139:084119. [DOI: 10.1063/1.4819211] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
|
43
|
|
44
|
Multiscale modeling of solvation in chemical and biological nanosystems and in nanoporous materials. PURE APPL CHEM 2013. [DOI: 10.1351/pac-con-12-06-03] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Statistical–mechanical, 3D-RISM-KH molecular theory of solvation (3D reference interaction site model with the Kovalenko–Hirata closure) is promising as an essential part of multiscale methodology for chemical and biomolecular nanosystems in solution. 3D-RISM-KH explains the molecular mechanisms of self-assembly and conformational stability of synthetic organic rosette nanotubes (RNTs), aggregation of prion proteins and β-sheet amyloid oligomers, protein-ligand binding, and function-related solvation properties of complexes as large as the Gloeobacter violaceus pentameric ligand-gated ion channel (GLIC) and GroEL/ES chaperone. Molecular mechanics/Poisson–Boltzmann (generalized Born) surface area [MM/PB(GB)SA] post-processing of molecular dynamics (MD) trajectories involving SA empirical nonpolar terms is replaced with MM/3D-RISM-KH statistical–mechanical evaluation of the solvation thermodynamics. 3D-RISM-KH has been coupled with multiple time-step (MTS) MD of the solute biomolecule driven by effective solvation forces, which are obtained analytically by converging the 3D-RISM-KH integral equations at outer time-steps and are calculated in between by using solvation force coordinate extrapolation (SFCE) in the subspace of previous solutions to 3D-RISM-KH. The procedure is stabilized by the optimized isokinetic Nosé–Hoover (OIN) chain thermostatting, which enables gigantic outer time-steps up to picoseconds to accurately calculate equilibrium properties. The multiscale OIN/SFCE/3D-RISM-KH algorithm is implemented in the Amber package and illustrated on a fully flexible model of alanine dipeptide in aqueous solution, exhibiting the computational rate of solvent sampling 20 times faster than standard MD with explicit solvent. Further substantial acceleration can be achieved with 3D-RISM-KH efficiently sampling essential events with rare statistics such as exchange and localization of solvent, ions, and ligands at binding sites and pockets of the biomolecule. 3D-RISM-KH was coupled with ab initio complete active space self-consistent field (CASSCF) and orbital-free embedding (OFE) Kohn–Sham (KS) density functional theory (DFT) quantum chemistry methods in an SCF description of electronic structure, optimized geometry, and chemical reactions in solution. The (OFE)KS-DFT/3D-RISM-KH multi-scale method is implemented in the Amsterdam Density Functional (ADF) package and extensively validated against experiment for solvation thermochemistry, photochemistry, conformational equilibria, and activation barriers of various nanosystems in solvents and ionic liquids (ILs). Finally, the replica RISM-KH-VM molecular theory for the solvation structure, thermodynamics, and electrochemistry of electrolyte solutions sorbed in nanoporous materials reveals the molecular mechanisms of sorption and supercapacitance in nanoporous carbon electrodes, which is drastically different from a planar electrical double layer.
Collapse
|
45
|
Aono S, Hosoya T, Sakaki S. A 3D-RISM-SCF method with dual solvent boxes for a highly polarized system: application to 1,6-anhydrosugar formation reaction of phenyl α- and β-d-glucosides under basic conditions. Phys Chem Chem Phys 2013; 15:6368-81. [DOI: 10.1039/c3cp43892a] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
46
|
Sato H. A modern solvation theory: quantum chemistry and statistical chemistry. Phys Chem Chem Phys 2013; 15:7450-65. [DOI: 10.1039/c3cp50247c] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
47
|
Omelyan I, Kovalenko A. Generalised canonical–isokinetic ensemble: speeding up multiscale molecular dynamics and coupling with 3D molecular theory of solvation. MOLECULAR SIMULATION 2013. [DOI: 10.1080/08927022.2012.700486] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
48
|
Sergiievskyi VP, Frolov AI. A universal bridge functional for infinitely diluted solutions: A case study for Lennard-Jones spheres of different diameters. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A 2012. [DOI: 10.1134/s0036024412080122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
49
|
Sergiievskyi VP, Fedorov MV. 3DRISM Multigrid Algorithm for Fast Solvation Free Energy Calculations. J Chem Theory Comput 2012; 8:2062-70. [DOI: 10.1021/ct200815v] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | - Maxim V. Fedorov
- Nanoscience
Division, Department
of Physics, Scottish Universities Physics Alliance (SUPA), Strathclyde University, Room JA 6.10, John Anderson
Building 107, Rottenrow East Glasgow, United Kingdom G4 0NG
| |
Collapse
|
50
|
Luchko T, Joung IS, Case DA. Integral Equation Theory of Biomolecules and Electrolytes. INNOVATIONS IN BIOMOLECULAR MODELING AND SIMULATIONS 2012. [DOI: 10.1039/9781849735049-00051] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The so-called three-dimensional version (3D-RISM) can be used to describe the interactions of solvent components (here we treat water and ions) with a chemical or biomolecular solute of arbitrary size and shape. Here we give an overview of the current status of such models, describing some aspects of “pure” electrolytes (water plus simple ions) and of ionophores, proteins and nucleic acids in the presence of water and salts. Here we focus primarily on interactions with water and dissolved salts; as a practical matter, the discussion is mostly limited to monovalent ions, since studies of divalent ions present many difficult problems that have not yet been addressed. This is not a comprehensive review, but covers a few recent examples that illustrate current issues.
Collapse
Affiliation(s)
- Tyler Luchko
- Department of Chemistry and Chemical Biology and BioMaPS Institute Rutgers University Piscataway NJ 08854, USA
| | - In Suk Joung
- Department of Chemistry and Chemical Biology and BioMaPS Institute Rutgers University Piscataway NJ 08854, USA
| | - David A. Case
- Department of Chemistry and Chemical Biology and BioMaPS Institute Rutgers University Piscataway NJ 08854, USA
| |
Collapse
|