1
|
Cina JA. Dynamics of an excitation-transfer trimer: Interference, coherence, Berry's phase development, and vibrational control of non-adiabaticity. J Chem Phys 2023; 158:124307. [PMID: 37003733 DOI: 10.1063/5.0139174] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023] Open
Abstract
We detail several interesting features in the dynamics of an equilaterally shaped electronic excitation-transfer (EET) trimer with distance-dependent intermonomer excitation-transfer couplings. In the absence of electronic-vibrational coupling, symmetric and antisymmetric superpositions of two single-monomer excitations are shown to exhibit purely constructive, oscillatory, and purely destructive interference in the EET to the third monomer, respectively. In the former case, the transfer is modulated by motion in the symmetrical framework-expansion vibration induced by the Franck-Condon excitation. Distortions in the shape of the triangular framework degrade that coherent EET while activating excitation transfer in the latter case of an antisymmetric initial state. In its symmetrical configuration, two of the three single-exciton states of the trimer are degenerate. This degeneracy is broken by the Jahn-Teller-active framework distortions. The calculations illustrate closed, approximately circular pseudo-rotational wave-packet dynamics on both the lower and the upper adiabatic potential energy surfaces of the degenerate manifold, which lead to the acquisition after one cycle of physically meaningful geometric (Berry) phases of π. Another manifestation of Berry-phase development is seen in the evolution of the vibrational probability density of a wave packet on the lower Jahn-Teller adiabatic potential comprising a superposition of clockwise and counterclockwise circular motions. The circular pseudo-rotation on the upper cone is shown to stabilize the adiabatic electronic state against non-adiabatic internal conversion via the conical intersection, a dynamical process analogous to Slonczewski resonance. Strategies for initiating and monitoring these various dynamical processes experimentally using pre-resonant impulsive Raman excitation, short-pulse absorption, and multi-dimensional wave-packet interferometry are outlined in brief.
Collapse
Affiliation(s)
- Jeffrey A Cina
- Department of Chemistry and Biochemistry, Oregon Center for Optical, Molecular, and Quantum Science, University of Oregon, Eugene, Oregon 97403, USA
| |
Collapse
|
2
|
Nautiyal VV, Devi S, Tyagi A, Vidhani B, Maan A, Prasad V. Orientation and Alignment dynamics of polar molecule driven by shaped laser pulses. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 256:119663. [PMID: 33827039 DOI: 10.1016/j.saa.2021.119663] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 02/17/2021] [Accepted: 02/28/2021] [Indexed: 06/12/2023]
Abstract
We review the theoretical status of intense laser induced orientation and alignment-a field of study which lies at the interface of intense laser physics and chemical dynamics and having potential applications such as high harmonic generation, nano-scale processing and control of chemical reactions. The evolution of the rotational wave packet and its dynamics leading to orientation and alignment is the topic of the present discussion. The major part of this article primarily presents an overview of recent theoretical progress in controlling the orientation and alignment dynamics of a molecule by means of shaped laser pulses. The various theoretical approaches that lead to orientation and alignment such as static electrostatic field in combination with laser field(s), combination of orienting and aligning field, combination of aligning fields, combination of orienting fields, application of train of pulses etc. are discussed. It is observed that the train of pulses is quite an efficient tool for increasing the orientation or alignment of a molecule without causing the molecule to ionize. The orientation and alignment both can occur in adiabatic and non-adiabatic conditions with the rotational period of the molecule taken under consideration. The discussion is mostly limited to non-adiabatic rotational excitation (NAREX) i.e. cases in which the pulse duration is shorter than the rotational period of the molecule. We have emphasised on the so called half-cycle pulse (HCP) and square pulse (SQP). The effect of ramped pulses and of collision on the various laser parameters is also studied. We summarize the current discussion by presenting a consistent theoretical approach for describing the action of such pulses on movement of molecules. The impact of a particular pulse shape on the post-pulse dynamics is also calculated and analysed. In addition to this, the roles played by various laser parameters including the laser frequency, the pulse duration and the system temperature etc. are illustrated and discussed. The concept of alignment is extended from one-dimensional alignment to three-dimensional alignment with the proper choice of molecule and the polarised light. We conclude the article by discussing the potential applications of intense laser orientation and alignment.
Collapse
Affiliation(s)
- Vijit V Nautiyal
- Department of Physics and Astrophysics, University of Delhi, Delhi, Delhi 110007, India
| | - Sumana Devi
- Department of Physics and Astrophysics, University of Delhi, Delhi, Delhi 110007, India; Department of Physics, Miranda House College, University of Delhi, Delhi, Delhi 110007, India
| | - Ashish Tyagi
- Department of Physics, Swami Shradhanand College, University of Delhi, Delhi, Delhi 110036, India
| | - Bhavna Vidhani
- Department of Physics, Hansraj College, University of Delhi, Delhi, Delhi 110007, India
| | - Anjali Maan
- Department of Physics, Pt.N.R.S.G.C.Rohtak, Maharshi Dayanand University, Rohtak 124001, Haryana, India
| | - Vinod Prasad
- Department of Physics, Swami Shradhanand College, University of Delhi, Delhi, Delhi 110036, India.
| |
Collapse
|
3
|
Chen HT, Li TE, Sukharev M, Nitzan A, Subotnik JE. Ehrenfest+R dynamics. II. A semiclassical QED framework for Raman scattering. J Chem Phys 2019; 150:044103. [PMID: 30709300 DOI: 10.1063/1.5057366] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In Paper I [Chen et al., J. Chem. Phys. 150, 044102 (2019)], we introduced Ehrenfest+R dynamics for a two-level system and showed how spontaneous emission can be heuristically included such that, after averaging over an ensemble of Ehrenfest+R trajectories, one can recover both coherent and incoherent electromagnetic fields. In the present paper, we now show that Ehrenfest+R dynamics can also correctly describe Raman scattering, whose features are completely absent from standard Ehrenfest dynamics. Ehrenfest+R dynamics appear to be quantitatively accurate both for resonant and off-resonant Raman signals, as compared with Kramers-Heisenberg-Dirac theory.
Collapse
Affiliation(s)
- Hsing-Ta Chen
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Tao E Li
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Maxim Sukharev
- Department of Physics, Arizona State University, Tempe, Arizona 85287, USA
| | - Abraham Nitzan
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Joseph E Subotnik
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
4
|
Cina JA, Kovac PA, Jumper CC, Dean JC, Scholes GD. Ultrafast transient absorption revisited: Phase-flips, spectral fingers, and other dynamical features. J Chem Phys 2016; 144:175102. [DOI: 10.1063/1.4947568] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Jeffrey A. Cina
- Department of Chemistry and Biochemistry, and Oregon Center for Optical, Molecular, and Quantum Science, University of Oregon, Eugene, Oregon 97403, USA
| | - Philip A. Kovac
- Department of Chemistry and Biochemistry, and Oregon Center for Optical, Molecular, and Quantum Science, University of Oregon, Eugene, Oregon 97403, USA
| | - Chanelle C. Jumper
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Jacob C. Dean
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, USA
| | - Gregory D. Scholes
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, USA
| |
Collapse
|
5
|
Jiang CW, Zhou X, Xie RH, Li FL, Allen RE. Selective control of vibrational modes with sequential femtosecond-scale laser pulses. Chem Phys Lett 2011. [DOI: 10.1016/j.cplett.2011.09.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
6
|
Biggs JD, Cina JA. Using wave-packet interferometry to monitor the external vibrational control of electronic excitation transfer. J Chem Phys 2010; 131:224101. [PMID: 20001018 DOI: 10.1063/1.3257596] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We investigate the control of electronic energy transfer in molecular dimers through the preparation of specific vibrational coherences prior to electronic excitation, and its observation by nonlinear wave-packet interferometry (nl-WPI). Laser-driven coherent nuclear motion can affect the instantaneous resonance between site-excited electronic states and thereby influence short-time electronic excitation transfer (EET). We first illustrate this control mechanism with calculations on a dimer whose constituent monomers undergo harmonic vibrations. We then consider the use of nl-WPI experiments to monitor the nuclear dynamics accompanying EET in general dimer complexes following impulsive vibrational excitation by a subresonant control pulse (or control pulse sequence). In measurements of this kind, two pairs of polarized phase-related femtosecond pulses following the control pulse generate superpositions of coherent nuclear wave packets in optically accessible electronic states. Interference contributions to the time- and frequency-integrated fluorescence signals due to overlaps among the superposed wave packets provide amplitude-level information on the nuclear and electronic dynamics. We derive the basic expression for a control-pulse-dependent nl-WPI signal. The electronic transition moments of the constituent monomers are assumed to have a fixed relative orientation, while the overall orientation of the complex is distributed isotropically. We include the limiting case of coincident arrival by pulses within each phase-related pair in which control-influenced nl-WPI reduces to a fluorescence-detected pump-probe difference experiment. Numerical calculations of pump-probe signals based on these theoretical expressions are presented in the following paper [J. D. Biggs and J. A. Cina, J. Chem. Phys. 131, 224302 (2009)].
Collapse
Affiliation(s)
- Jason D Biggs
- Department of Chemistry and Oregon Center for Optics, University of Oregon, Eugene, Oregon 97403, USA
| | | |
Collapse
|
7
|
Chapman CT, Cina JA. Semiclassical treatments for small-molecule dynamics in low-temperature crystals using fixed and adiabatic vibrational bases. J Chem Phys 2007; 127:114502. [PMID: 17887852 DOI: 10.1063/1.2754270] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Time-resolved coherent nonlinear optical experiments on small molecules in low-temperature host crystals are exposing valuable information on quantum mechanical dynamics in condensed media. We make use of generic features of these systems to frame two simple, comprehensive theories that will enable the efficient calculations of their ultrafast spectroscopic signals and support their interpretation in terms of the underlying chemical dynamics. Without resorting to a simple harmonic analysis, both treatments rely on the identification of normal coordinates to unambiguously partition the well-structured guest-host complex into a system and a bath. Both approaches expand the overall wave function as a sum of product states between fully anharmonic vibrational basis states for the system and approximate Gaussian wave packets for the bath degrees of freedom. The theories exploit the fact that ultrafast experiments typically drive large-amplitude motion in a few intermolecular degrees of freedom of higher frequency than the crystal phonons, while these intramolecular vibrations indirectly induce smaller-amplitude--but still perhaps coherent--motion among the lattice modes. The equations of motion for the time-dependent parameters of the bath wave packets are fairly compact in a fixed vibrational basis/Gaussian bath (FVB/GB) approach. An alternative adiabatic vibrational basis/Gaussian bath (AVB/GB) treatment leads to more complicated equations of motion involving adiabatic and nonadiabatic vector potentials. Computational demands for propagation of the parameter equations of motion appear quite manageable for tens or hundreds of atoms and scale similarly with system size in the two cases. Because of the time-scale separation between intermolecular and lattice vibrations, the AVB/GB theory may in some instances require fewer vibrational basis states than the FVB/GB approach. Either framework should enable practical first-principles calculations of nonlinear optical signals from molecules in cryogenic matrices and their semiclassical interpretation in terms of electronic and vibrational decoherence and vibrational population relaxation, all within a pure-state description of the macroscopic many-body complex.
Collapse
Affiliation(s)
- Craig T Chapman
- Department of Chemistry, Oregon Center for Optics, University of Oregon, Eugene, Oregon 97403, USA
| | | |
Collapse
|
8
|
Hauer J, Buckup T, Motzkus M. Enhancement of molecular modes by electronically resonant multipulse excitation: Further progress towards mode selective chemistry. J Chem Phys 2006; 125:61101. [PMID: 16942265 DOI: 10.1063/1.2243273] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
We show that molecular vibrations induced by resonant excitation pulses can be enhanced by pulse trains, compared to Fourier-limited pulses of equal pulse energy. As a proof-of-principle, a low frequency mode of Nile Blue at 600 cm(-1) is observed and amplified in a pump and probe experiment. In addition to previous experiments in our group, an increased population transfer to the excited electronic state is identified as an important element of the underlying physical mechanism. These results suggest an enhancement on the level of individual molecules rather than a macroscopic effect.
Collapse
Affiliation(s)
- Jürgen Hauer
- Physikalische Chemie, Philipps-Universität Marburg, Hans-Meerwein-Strasse, D-35043 Marburg, Germany
| | | | | |
Collapse
|
9
|
Rohrdanz‡ MA, Cina JA. Probing intermolecular communication via lattice phonons with time-resolved coherent anti-Stokes Raman scattering†. Mol Phys 2006. [DOI: 10.1080/00268970500525515] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
10
|
Zou S, Kondorskiy A, Mil'nikov G, Nakamura H. Laser control of electronic transitions of wave packet by using quadratically chirped pulses. J Chem Phys 2005; 122:84112. [PMID: 15836025 DOI: 10.1063/1.1851499] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
An effective scheme is proposed for the laser control of wave packet dynamics. It is demonstrated that by using specially designed quadratically chirped pulses, fast and nearly complete excitation of wave packet can be achieved without significant distortion of its shape. The parameters of the laser pulse can be estimated analytically from the Zhu-Nakamura theory of nonadiabatic transition. If the wave packet is not too narrow or not too broad, then the scheme is expected to be utilizable for multidimensional systems. The scheme is applicable to various processes such as simple electronic excitation, pump-dump, and selective bond breaking, and it is actually numerically demonstrated to work well by taking diatomic and triatomic molecules (LiH, NaK, H(2)O) as examples.
Collapse
Affiliation(s)
- Shiyang Zou
- Department of Theoretical Studies, Institute for Molecular Science, Modioli, Okazaki 444-8585, Japan
| | | | | | | |
Collapse
|
11
|
Zhang GP, George TF. Controlling vibrational excitations in C60 by laser pulse durations. PHYSICAL REVIEW LETTERS 2004; 93:147401. [PMID: 15524839 DOI: 10.1103/physrevlett.93.147401] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2004] [Indexed: 05/24/2023]
Abstract
Two similar off-resonant ultrafast laser experiments in C60 have reported two different vibrational modes that dominate the relaxation process: one predicts the A(g) modes while the other the H(g) modes. A systematical simulation presented here reveals that this experimental discrepancy results from the laser pulse duration. The numerical results show that since each mode nu has a distinctive optimal duration tau(nu)(o), the A(g) modes are strongly suppressed for durations longer than 40 fs, while the H(g) modes start to grow. For the off-resonant and low-intensity excitations, the period Omega(o)(nu) of the dominant mode and tau(nu)(o) satisfy the relation Omega(o)(nu)/tau(nu)(o) approximately 3.4. By carefully scanning the laser frequencies and pulse durations, a comprehensive excitation diagram is constructed, which can be used to guide experiments to selectively excite the A(g) and H(g) modes in C60 by an ultrafast laser. Its potential impact is also discussed.
Collapse
Affiliation(s)
- G P Zhang
- Department of Physics, Indiana State University, Terre Haute, Indiana 47809, USA
| | | |
Collapse
|
12
|
Ohtsuki Y, Ohara K, Abe M, Nakagami K, Fujimura Y. New quantum control pathway for a coupled-potential system. Chem Phys Lett 2003. [DOI: 10.1016/s0009-2614(02)02030-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
13
|
Mirowski E, Stauffer HU, Ballard JB, Zhang B, Hetherington CL, Leone SR. Effect of nonresonant frequencies on the enhancement of quantum beat amplitudes in rovibrational states of Li2: The role of state spacing. J Chem Phys 2002. [DOI: 10.1063/1.1522717] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
14
|
Duarte-Zamorano RP, Romero-Rochı́n V. Analysis on the Cina–Harris proposal for the preparation and detection of chiral superposition states. J Chem Phys 2001. [DOI: 10.1063/1.1370069] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
15
|
|
16
|
Kumar ATN, Rosca F, Widom A, Champion PM. Investigations of ultrafast nuclear response induced by resonant and nonresonant laser pulses. J Chem Phys 2001. [DOI: 10.1063/1.1356011] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
|
17
|
Mishima K, Yamashita K. A Theoretical Study on Chirped Coherent Raman Spectroscopy. J Phys Chem A 2001. [DOI: 10.1021/jp003592g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Kenji Mishima
- Department of Theoretical Studies, Institute for Molecular Science, Myodaiji, Okazaki 444-8585, Japan
| | - Koichi Yamashita
- Department of Chemical System Engineering, Graduate School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan
| |
Collapse
|
18
|
Kumar ATN, Rosca F, Widom A, Champion PM. Investigations of amplitude and phase excitation profiles in femtosecond coherence spectroscopy. J Chem Phys 2001. [DOI: 10.1063/1.1329640] [Citation(s) in RCA: 152] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
|
19
|
|
20
|
Shen YC, Cina JA. What can short-pulse pump-probe spectroscopy tell us about Franck-Condon dynamics? J Chem Phys 1999. [DOI: 10.1063/1.478032] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
21
|
|
22
|
Wefers MM, Kawashima H, Nelson KA. Optical control over two-dimensional lattice vibrational trajectories in crystalline quartz. J Chem Phys 1998. [DOI: 10.1063/1.476485] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
23
|
Cao J, Che J, Wilson KR. Intrapulse Dynamical Effects in Multiphoton Processes: Theoretical Analysis. J Phys Chem A 1998. [DOI: 10.1021/jp973097t] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jianshu Cao
- Department of Chemistry and Biochemistry, University of California, San Diego, LaJolla, California 92093-0339
| | - Jianwei Che
- Department of Chemistry and Biochemistry, University of California, San Diego, LaJolla, California 92093-0339
| | - Kent R. Wilson
- Department of Chemistry and Biochemistry, University of California, San Diego, LaJolla, California 92093-0339
| |
Collapse
|
24
|
Brennan CJ, Nelson KA. Direct time-resolved measurement of anharmonic lattice vibrations in ferroelectric crystals. J Chem Phys 1997. [DOI: 10.1063/1.475293] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
25
|
Cao J, Wilson KR. A simple physical picture for quantum control of wave packet localization. J Chem Phys 1997. [DOI: 10.1063/1.475151] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
26
|
Cao J, Wilson KR. Detecting wave packet motion in pump–probe experiments: Theoretical analysis. J Chem Phys 1997. [DOI: 10.1063/1.473552] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
27
|
Pérez-Alcázar P, Romero-Rochín V. Polarizability effects in resonant ultrafast spectroscopy. PHYSICAL REVIEW. A, ATOMIC, MOLECULAR, AND OPTICAL PHYSICS 1996; 54:4489-4494. [PMID: 9914001 DOI: 10.1103/physreva.54.4489] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
|
28
|
Hiller EM, Cina JA. Can chirp enhance cumulative pre‐resonant impulsive stimulated Raman excitation? J Chem Phys 1996. [DOI: 10.1063/1.472212] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|