• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (4646951)   Today's Articles (70)   Subscriber (50675)
For: Jose KVJ, Artrith N, Behler J. Construction of high-dimensional neural network potentials using environment-dependent atom pairs. J Chem Phys 2012;136:194111. [PMID: 22612084 DOI: 10.1063/1.4712397] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]  Open
Number Cited by Other Article(s)
1
Yang Y, Zhang S, Ranasinghe KD, Isayev O, Roitberg AE. Machine Learning of Reactive Potentials. Annu Rev Phys Chem 2024;75:371-395. [PMID: 38941524 DOI: 10.1146/annurev-physchem-062123-024417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/30/2024]
2
Ding Y, Huang J. Implementation and Validation of an OpenMM Plugin for the Deep Potential Representation of Potential Energy. Int J Mol Sci 2024;25:1448. [PMID: 38338727 PMCID: PMC10855459 DOI: 10.3390/ijms25031448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/08/2024] [Accepted: 01/11/2024] [Indexed: 02/12/2024]  Open
3
Yang Y, Zhang W, Chen S, Wang X, Xia Y, Liu J, Hu B, Lu Q, Zhang B. Structure-Energy Relationship Prediction of the HZSM-5 Zeolite with Different Acid Site Distributions by the Neural Network Model. ACS OMEGA 2024;9:3392-3400. [PMID: 38284028 PMCID: PMC10809367 DOI: 10.1021/acsomega.3c06689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/30/2023] [Accepted: 12/13/2023] [Indexed: 01/30/2024]
4
Illarionov A, Sakipov S, Pereyaslavets L, Kurnikov IV, Kamath G, Butin O, Voronina E, Ivahnenko I, Leontyev I, Nawrocki G, Darkhovskiy M, Olevanov M, Cherniavskyi YK, Lock C, Greenslade S, Sankaranarayanan SKRS, Kurnikova MG, Potoff J, Kornberg RD, Levitt M, Fain B. Combining Force Fields and Neural Networks for an Accurate Representation of Chemically Diverse Molecular Interactions. J Am Chem Soc 2023;145:23620-23629. [PMID: 37856313 PMCID: PMC10623557 DOI: 10.1021/jacs.3c07628] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Indexed: 10/21/2023]
5
Kývala L, Dellago C. Optimizing the architecture of Behler-Parrinello neural network potentials. J Chem Phys 2023;159:094105. [PMID: 37655764 DOI: 10.1063/5.0167260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 08/10/2023] [Indexed: 09/02/2023]  Open
6
Ricci E, Vergadou N. Integrating Machine Learning in the Coarse-Grained Molecular Simulation of Polymers. J Phys Chem B 2023;127:2302-2322. [PMID: 36888553 DOI: 10.1021/acs.jpcb.2c06354] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
7
Käser S, Vazquez-Salazar LI, Meuwly M, Töpfer K. Neural network potentials for chemistry: concepts, applications and prospects. DIGITAL DISCOVERY 2023;2:28-58. [PMID: 36798879 PMCID: PMC9923808 DOI: 10.1039/d2dd00102k] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022]
8
Huang C, Rubenstein BM. Machine Learning Diffusion Monte Carlo Forces. J Phys Chem A 2023;127:339-355. [PMID: 36576803 DOI: 10.1021/acs.jpca.2c05904] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
9
Cameron AR, Proud AJ, Pearson JK. Machine Learned Composite Methods for Electronic Structure Theory. J Chem Theory Comput 2023;19:51-60. [PMID: 36507875 DOI: 10.1021/acs.jctc.2c00564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
10
Karathanasopoulos N, Rodopoulos DC. Enhanced Cellular Materials through Multiscale, Variable-Section Inner Designs: Mechanical Attributes and Neural Network Modeling. MATERIALS 2022;15:ma15103581. [PMID: 35629611 PMCID: PMC9147841 DOI: 10.3390/ma15103581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 04/21/2022] [Accepted: 04/27/2022] [Indexed: 12/04/2022]
11
Fujioka K, Sun R. Interpolating Moving Ridge Regression (IMRR): A machine learning algorithm to predict energy gradients for ab initio molecular dynamics simulations. Chem Phys 2022. [DOI: 10.1016/j.chemphys.2022.111482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
12
Nigam J, Willatt MJ, Ceriotti M. Equivariant representations for molecular Hamiltonians and N-center atomic-scale properties. J Chem Phys 2022;156:014115. [PMID: 34998321 DOI: 10.1063/5.0072784] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]  Open
13
Kocer E, Ko TW, Behler J. Neural Network Potentials: A Concise Overview of Methods. Annu Rev Phys Chem 2022;73:163-186. [DOI: 10.1146/annurev-physchem-082720-034254] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
14
Schwalbe-Koda D, Tan AR, Gómez-Bombarelli R. Differentiable sampling of molecular geometries with uncertainty-based adversarial attacks. Nat Commun 2021;12:5104. [PMID: 34429418 PMCID: PMC8384857 DOI: 10.1038/s41467-021-25342-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 08/02/2021] [Indexed: 12/14/2022]  Open
15
Chen MS, Morawietz T, Mori H, Markland TE, Artrith N. AENET-LAMMPS and AENET-TINKER: Interfaces for accurate and efficient molecular dynamics simulations with machine learning potentials. J Chem Phys 2021;155:074801. [PMID: 34418919 DOI: 10.1063/5.0063880] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]  Open
16
Konrad M, Wenzel W. CONI-Net: Machine Learning of Separable Intermolecular Force Fields. J Chem Theory Comput 2021;17:4996-5006. [PMID: 34247485 DOI: 10.1021/acs.jctc.1c00328] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
17
Goscinski A, Fraux G, Imbalzano G, Ceriotti M. The role of feature space in atomistic learning. MACHINE LEARNING-SCIENCE AND TECHNOLOGY 2021. [DOI: 10.1088/2632-2153/abdaf7] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
18
Behler J. Four Generations of High-Dimensional Neural Network Potentials. Chem Rev 2021;121:10037-10072. [DOI: 10.1021/acs.chemrev.0c00868] [Citation(s) in RCA: 106] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
19
Vassilev-Galindo V, Fonseca G, Poltavsky I, Tkatchenko A. Challenges for machine learning force fields in reproducing potential energy surfaces of flexible molecules. J Chem Phys 2021;154:094119. [DOI: 10.1063/5.0038516] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]  Open
20
Townsend J, Vogiatzis KD. Transferable MP2-Based Machine Learning for Accurate Coupled-Cluster Energies. J Chem Theory Comput 2020;16:7453-7461. [DOI: 10.1021/acs.jctc.0c00927] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
21
Manzhos S, Carrington T. Neural Network Potential Energy Surfaces for Small Molecules and Reactions. Chem Rev 2020;121:10187-10217. [PMID: 33021368 DOI: 10.1021/acs.chemrev.0c00665] [Citation(s) in RCA: 119] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
22
Sauceda HE, Gastegger M, Chmiela S, Müller KR, Tkatchenko A. Molecular force fields with gradient-domain machine learning (GDML): Comparison and synergies with classical force fields. J Chem Phys 2020;153:124109. [DOI: 10.1063/5.0023005] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]  Open
23
Sugisawa H, Ida T, Krems RV. Gaussian process model of 51-dimensional potential energy surface for protonated imidazole dimer. J Chem Phys 2020;153:114101. [DOI: 10.1063/5.0023492] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]  Open
24
Pattnaik P, Raghunathan S, Kalluri T, Bhimalapuram P, Jawahar CV, Priyakumar UD. Machine Learning for Accurate Force Calculations in Molecular Dynamics Simulations. J Phys Chem A 2020;124:6954-6967. [DOI: 10.1021/acs.jpca.0c03926] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
25
Glick ZL, Metcalf DP, Koutsoukas A, Spronk SA, Cheney DL, Sherrill CD. AP-Net: An atomic-pairwise neural network for smooth and transferable interaction potentials. J Chem Phys 2020;153:044112. [DOI: 10.1063/5.0011521] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]  Open
26
Misawa M, Fukushima S, Koura A, Shimamura K, Shimojo F, Tiwari S, Nomura KI, Kalia RK, Nakano A, Vashishta P. Application of First-Principles-Based Artificial Neural Network Potentials to Multiscale-Shock Dynamics Simulations on Solid Materials. J Phys Chem Lett 2020;11:4536-4541. [PMID: 32443935 DOI: 10.1021/acs.jpclett.0c00637] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
27
Manzhos S. Machine learning for the solution of the Schrödinger equation. MACHINE LEARNING-SCIENCE AND TECHNOLOGY 2020. [DOI: 10.1088/2632-2153/ab7d30] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
28
Sauceda HE, Chmiela S, Poltavsky I, Müller KR, Tkatchenko A. Construction of Machine Learned Force Fields with Quantum Chemical Accuracy: Applications and Chemical Insights. MACHINE LEARNING MEETS QUANTUM PHYSICS 2020. [DOI: 10.1007/978-3-030-40245-7_14] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
29
Accurate Molecular Dynamics Enabled by Efficient Physically Constrained Machine Learning Approaches. MACHINE LEARNING MEETS QUANTUM PHYSICS 2020. [DOI: 10.1007/978-3-030-40245-7_7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
30
Li W, Ando Y. Dependence of a cooling rate on structural and vibrational properties of amorphous silicon: A neural network potential-based molecular dynamics study. J Chem Phys 2019;151:114101. [DOI: 10.1063/1.5114652] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]  Open
31
Townsend J, Vogiatzis KD. Data-Driven Acceleration of the Coupled-Cluster Singles and Doubles Iterative Solver. J Phys Chem Lett 2019;10:4129-4135. [PMID: 31290671 DOI: 10.1021/acs.jpclett.9b01442] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
32
Singraber A, Morawietz T, Behler J, Dellago C. Parallel Multistream Training of High-Dimensional Neural Network Potentials. J Chem Theory Comput 2019;15:3075-3092. [PMID: 30995035 DOI: 10.1021/acs.jctc.8b01092] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
33
Sauceda HE, Chmiela S, Poltavsky I, Müller KR, Tkatchenko A. Molecular force fields with gradient-domain machine learning: Construction and application to dynamics of small molecules with coupled cluster forces. J Chem Phys 2019;150:114102. [DOI: 10.1063/1.5078687] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]  Open
34
Li J, Song K, Behler J. A critical comparison of neural network potentials for molecular reaction dynamics with exact permutation symmetry. Phys Chem Chem Phys 2019;21:9672-9682. [DOI: 10.1039/c8cp06919k] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
35
Ziegler B, Rauhut G. Rigorous use of symmetry within the construction of multidimensional potential energy surfaces. J Chem Phys 2018;149:164110. [DOI: 10.1063/1.5047912] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]  Open
36
Towards exact molecular dynamics simulations with machine-learned force fields. Nat Commun 2018;9:3887. [PMID: 30250077 PMCID: PMC6155327 DOI: 10.1038/s41467-018-06169-2] [Citation(s) in RCA: 341] [Impact Index Per Article: 56.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Accepted: 08/22/2018] [Indexed: 12/25/2022]  Open
37
Imbalzano G, Anelli A, Giofré D, Klees S, Behler J, Ceriotti M. Automatic selection of atomic fingerprints and reference configurations for machine-learning potentials. J Chem Phys 2018;148:241730. [DOI: 10.1063/1.5024611] [Citation(s) in RCA: 163] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]  Open
38
Li W, Ando Y, Minamitani E, Watanabe S. Study of Li atom diffusion in amorphous Li3PO4 with neural network potential. J Chem Phys 2018;147:214106. [PMID: 29221381 DOI: 10.1063/1.4997242] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]  Open
39
Shen L, Yang W. Molecular Dynamics Simulations with Quantum Mechanics/Molecular Mechanics and Adaptive Neural Networks. J Chem Theory Comput 2018;14:1442-1455. [PMID: 29438614 PMCID: PMC6233882 DOI: 10.1021/acs.jctc.7b01195] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
40
Behler J. First Principles Neural Network Potentials for Reactive Simulations of Large Molecular and Condensed Systems. Angew Chem Int Ed Engl 2017;56:12828-12840. [PMID: 28520235 DOI: 10.1002/anie.201703114] [Citation(s) in RCA: 329] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2017] [Indexed: 11/06/2022]
41
Behler J. Hochdimensionale neuronale Netze für Potentialhyperflächen großer molekularer und kondensierter Systeme. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201703114] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
42
Energy-free machine learning force field for aluminum. Sci Rep 2017;7:8512. [PMID: 28819297 PMCID: PMC5561031 DOI: 10.1038/s41598-017-08455-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 07/10/2017] [Indexed: 11/28/2022]  Open
43
Chmiela S, Tkatchenko A, Sauceda HE, Poltavsky I, Schütt KT, Müller KR. Machine learning of accurate energy-conserving molecular force fields. SCIENCE ADVANCES 2017;3:e1603015. [PMID: 28508076 PMCID: PMC5419702 DOI: 10.1126/sciadv.1603015] [Citation(s) in RCA: 485] [Impact Index Per Article: 69.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 03/07/2017] [Indexed: 05/20/2023]
44
Behler J. Perspective: Machine learning potentials for atomistic simulations. J Chem Phys 2017;145:170901. [PMID: 27825224 DOI: 10.1063/1.4966192] [Citation(s) in RCA: 549] [Impact Index Per Article: 78.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]  Open
45
Shen L, Wu J, Yang W. Multiscale Quantum Mechanics/Molecular Mechanics Simulations with Neural Networks. J Chem Theory Comput 2016;12:4934-4946. [PMID: 27552235 PMCID: PMC6209101 DOI: 10.1021/acs.jctc.6b00663] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
46
Fletcher TL, Popelier PL. Polarizable multipolar electrostatics for cholesterol. Chem Phys Lett 2016. [DOI: 10.1016/j.cplett.2016.06.033] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
47
Kolb B, Zhao B, Li J, Jiang B, Guo H. Permutation invariant potential energy surfaces for polyatomic reactions using atomistic neural networks. J Chem Phys 2016;144:224103. [DOI: 10.1063/1.4953560] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]  Open
48
Fletcher TL, Popelier PLA. Multipolar Electrostatic Energy Prediction for all 20 Natural Amino Acids Using Kriging Machine Learning. J Chem Theory Comput 2016;12:2742-51. [DOI: 10.1021/acs.jctc.6b00457] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
49
Almas QL, Keefe BL, Profitt T, Pearson JK. Choosing an appropriate model chemistry in a big data context: Application to dative bonding. COMPUT THEOR CHEM 2016. [DOI: 10.1016/j.comptc.2016.04.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
50
Kroes GJ, Díaz C. Quantum and classical dynamics of reactive scattering of H2 from metal surfaces. Chem Soc Rev 2016;45:3658-700. [DOI: 10.1039/c5cs00336a] [Citation(s) in RCA: 120] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
PrevPage 1 of 2 12Next
© 2004-2024 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA