1
|
Jang I, Kaur S, Yethiraj A. Importance of feature construction in machine learning for phase transitions. J Chem Phys 2022; 157:094904. [DOI: 10.1063/5.0102187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Machine learning is an important tool in the study of the phase behavior from molecular simulations. In this work we use un-supervised machine learning methods to study the phase behavior of two off-lattice models, a binary Lennard-Jones (LJ) mixture and the Widom-Rowlinson (WR) mixture. We find that the choice of the feature vector is crucial to the ability of the algorithm to predict a phase transition. We consider two feature vectors, one where the elements are distances of the particles of a given species from a probe (distance-based feature) and one where the elements are +1 if there is an excess of particles of the same species within a cut-off distance and -1 otherwise (affinity-based feature). We use principal component analysis (PCA) and t-distributed stochastic neighbor embedding (t-SNE) methods to investigate the phase behavior at a critical composition. We find that the choice of the feature vector is key to the success of unsupervised machine learning algorithm in predicting the phase behavior, and the sophistication of the machine learning algorithm is of secondary importance. In the case of the LJ mixture both feature vectors are adequate to accurately predict the critical point, but in the case of the WR mixture the affinity-based feature vector provides accurate estimates of the critical point, but the distance-based feature vector does not provide a clear signature of the phase transition. The study suggests that physical insight in choice of input features is an important aspect of implementing machine learning methods.
Collapse
Affiliation(s)
- Inhyuk Jang
- University of Wisconsin-Madison, United States of America
| | - Supreet Kaur
- University of Wisconsin-Madison, United States of America
| | - Arun Yethiraj
- Department of Chemistry, University of Wisconsin Madison, United States of America
| |
Collapse
|
2
|
Jadrich RB, Lindquist BA, Truskett TM. Treating random sequential addition via the replica method. J Chem Phys 2022; 157:084116. [DOI: 10.1063/5.0096276] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
While many physical processes are non-equilibrium in nature, the theory and modeling of such phenomena lag behind theoretical treatments of equilibrium systems. The diversity of powerful theoretical tools available to describe equilibrium systems has inspired strategies that map non-equilibrium systems onto equivalent equilibrium analogs so that interrogation with standard statistical mechanical approaches is possible. In this work, we revisit the mapping from the non-equilibrium random sequential addition process onto an equilibrium multi-component mixture via the replica method, allowing for theoretical predictions of non-equilibrium structural quantities. We validate the above approach by comparing the theoretical predictions to numerical simulations of random sequential addition.
Collapse
Affiliation(s)
| | | | - Thomas M. Truskett
- McKetta Department of Chemical Engineering, University of Texas at Austin, United States of America
| |
Collapse
|
3
|
Jung H, Yethiraj A. Phase behavior of continuous-space systems: A supervised machine learning approach. J Chem Phys 2020; 153:064904. [DOI: 10.1063/5.0014194] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Affiliation(s)
- Hyuntae Jung
- Theoretical Chemistry Institute and Department of Chemistry, University of Wisconsin, Madison, Wisconsin 53706, USA
| | - Arun Yethiraj
- Theoretical Chemistry Institute and Department of Chemistry, University of Wisconsin, Madison, Wisconsin 53706, USA
| |
Collapse
|
4
|
Torquato S. Perspective: Basic understanding of condensed phases of matter via packing models. J Chem Phys 2018; 149:020901. [DOI: 10.1063/1.5036657] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Affiliation(s)
- S. Torquato
- Department of Chemistry, Department of Physics, Princeton Center for Theoretical Science, Princeton Institute for the Science and Technology of Materials, and Program in Applied and Computational Mathematics, Princeton University, Princeton, New Jersey 08544, USA
| |
Collapse
|
5
|
Jung H, Yethiraj A. A simulation method for the phase diagram of complex fluid mixtures. J Chem Phys 2018; 148:244903. [PMID: 29960369 DOI: 10.1063/1.5033958] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The phase behavior of complex fluid mixtures is of continuing interest, but obtaining the phase diagram from computer simulations can be challenging. In the Gibbs ensemble method, for example, each of the coexisting phases is simulated in a different cell, and ensuring the equality of chemical potentials of all components requires the transfer of molecules from one cell to the other. For complex fluids such as polymers, successful insertions are rare. An alternative method is to simulate both coexisting phases in a single simulation cell, with an interface between them. The challenge here is that the interface position moves during the simulation, making it difficult to determine the concentration profile and coexisting concentrations. In this work, we propose a new method for single cell simulations that uses a spatial concentration autocorrelation function to (spatially) align instantaneous concentration profiles from different snapshots. This allows one to obtain average concentration profiles and hence the coexisting concentrations. We test the method by calculating the phase diagrams of two systems: the Widom-Rowlinson model and the symmetric blends of freely jointed polymer molecules for which phase diagrams from conventional methods are available. Excellent agreement is found, except in the neighborhood of the critical point where the interface is broad and finite size effects are important. The method is easy to implement and readily applied to any mixture of complex fluids.
Collapse
Affiliation(s)
- Hyuntae Jung
- Theoretical Chemistry Institute and Department of Chemistry, University of Wisconsin, Madison, Wisconsin 53706, USA
| | - Arun Yethiraj
- Theoretical Chemistry Institute and Department of Chemistry, University of Wisconsin, Madison, Wisconsin 53706, USA
| |
Collapse
|
6
|
Packing, entropic patchiness, and self-assembly of non-convex colloidal particles: A simulation perspective. Curr Opin Colloid Interface Sci 2017. [DOI: 10.1016/j.cocis.2017.05.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
7
|
Fantoni R, Santos A. Nonadditive hard-sphere fluid mixtures: a simple analytical theory. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2011; 84:041201. [PMID: 22181125 DOI: 10.1103/physreve.84.041201] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2011] [Indexed: 05/31/2023]
Abstract
We construct a nonperturbative fully analytical approximation for the thermodynamics and the structure of nonadditive hard-sphere fluid mixtures. The method essentially lies in a heuristic extension of the Percus-Yevick solution for additive hard spheres. Extensive comparison with Monte Carlo simulation data shows a generally good agreement, especially in the case of like-like radial distribution functions.
Collapse
Affiliation(s)
- Riccardo Fantoni
- National Institute for Theoretical Physics, Stellenbosch 7600, South Africa.
| | | |
Collapse
|
8
|
Djikaev Y. The interfacial tension and phase diagram of the Widom-Rowlinson mixture via Monte Carlo simulations. J Chem Phys 2008; 128:014712. [DOI: 10.1063/1.2806279] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
9
|
de Miguel E, Almarza NG, Jackson G. Surface tension of the Widom-Rowlinson model. J Chem Phys 2007; 127:034707. [PMID: 17655455 DOI: 10.1063/1.2751153] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We consider the computation of the surface tension of the fluid-fluid interface for the Widom-Rowlinson [J. Chem. Phys. 52, 1670 (1970)] binary mixture from direct simulation of the inhomogeneous system. We make use of the standard mechanical route, in which the surface tension follows from the computation of the normal and tangential components of the pressure tensor of the system. In addition to the usual approach, which involves simulations of the inhomogeneous system in the canonical ensemble, we also consider the computation of the surface tension in an ensemble where the pressure perpendicular (normal) to the planar interface is kept fixed. Both approaches are seen to provide consistent values of the interfacial tension. The issue of the system-size dependence of the surface tension is addressed. In addition, simulations of the fluid-fluid coexistence properties of the mixture are performed in the semigrand canonical ensemble. Our results are compared with existing data of the Widom-Rowlinson mixture and are also examined in the light of the vapor-liquid equilibrium of the thermodynamically equivalent one-component penetrable sphere model.
Collapse
Affiliation(s)
- E de Miguel
- Departamento de Física Aplicada, Facultad de Ciencias Experimentales, Universidad de Huelva, 21071 Huelva, Spain.
| | | | | |
Collapse
|
10
|
Malijevský A, Sokołowski S. Monte Carlo study of Widom-Rowlinson interface. J Chem Phys 2007; 126:106101. [PMID: 17362090 DOI: 10.1063/1.2710251] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Al Malijevský
- Eduard Hála Laboratory of Thermodynamics, ICPF, Academy of Sciences, 16502 Prague 6, Suchdol, Czech Republic
| | | |
Collapse
|
11
|
Kofke DA. Semigrand Canonical Monte Carlo Simulation; Integration Along Coexistence Lines. ADVANCES IN CHEMICAL PHYSICS 2007. [DOI: 10.1002/9780470141649.ch13] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
|
12
|
Malijevský A, Sokołowski S, Zientarski T. Structure and phase behavior of Widom-Rowlinson model calculated from a nonuniform Ornstein-Zernike equation. J Chem Phys 2006; 125:114505. [PMID: 16999488 DOI: 10.1063/1.2357146] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The second-order integral-equation formalism of [Attard J. Chem. Phys. 91, 3072 (1989); 95, 4471 (1991)], applied previously to one-component hard spheres and Lennard-Jones fluids, as well as to their mixtures, is used to binary Widom-Rowlinson mixtures. Comparison with Monte Carlo simulations of the pair correlation functions and of the demixing phase diagram shows that this method is also quite accurate in the case of highly nonadditive mixtures. Moreover, the results of the second-order theory are compared with previous theoretical predictions. Our interest is also in the calculation of the bridge functions, i.e., parts of the radial distribution functions either not included or simply approximated in the usual theories.
Collapse
Affiliation(s)
- Al Malijevský
- E. Hála Laboratory of Thermodynamics, ICPF, Academy of Sciences, 165 02 Prague 6, Suchdol, Czech Republic.
| | | | | |
Collapse
|
13
|
Vink RLC. Critical behavior of the Widom-Rowlinson mixture: Coexistence diameter and order parameter. J Chem Phys 2006; 124:94502. [PMID: 16526862 DOI: 10.1063/1.2171191] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The critical behavior of the Widom-Rowlinson [J. Chem. Phys. 52, 1670 (1970)] is studied in d = 3 dimensions by means of grand canonical Monte Carlo simulations. The finite-size scaling approach of Kim et al. [Phys. Rev. Lett. 91, 065701 (2003)] is used to extract the order parameter and the coexistence diameter. It is demonstrated that the critical behavior of the diameter is dominated by a singular term proportional to t(1-alpha), with t the relative distance from the critical point, and alpha the critical exponent of the specific heat. No sign of a term proportional to t(2beta) could be detected, with beta the critical exponent of the order parameter, indicating that pressure mixing in this model is small. The critical density is measured to be rhosigma3 = 0.7486 +/- 0.0002, with sigma the particle diameter. The critical exponents alpha and beta, as well as the correlation length exponent nu, are also measured and shown to comply with d = 3 Ising criticality.
Collapse
Affiliation(s)
- R L C Vink
- Institut für Theoretische Physik II, Heinrich Heine Universität Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany.
| |
Collapse
|
14
|
Djikaev Y. Histogram analysis as a method for determining the line tension of a three-phase contact region by Monte Carlo simulations. J Chem Phys 2005; 123:184704. [PMID: 16292918 DOI: 10.1063/1.2056548] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
A method is proposed for determining the line tension, which is the main physical characteristic of a three-phase contact region, by Monte Carlo (MC) simulations. The key idea of the proposed method is that if a three-phase equilibrium involves a three-phase contact region, the probability distribution of states of a system as a function of two order parameters depends not only on the surface tension, but also on the line tension. This probability distribution can be obtained as a normalized histogram by appropriate MC simulations, so one can use the combination of histogram analysis and finite-size scaling to study the properties of a three phase contact region. Every histogram and results extracted therefrom will depend on the size of the simulated system. Carrying out MC simulations for a series of system sizes and extrapolating the results, obtained from the corresponding series of histograms, to infinite size, one can determine the line tension of the three phase contact region and the interfacial tensions of all three interfaces (and hence the contact angles) in an infinite system. To illustrate the proposed method, it is applied to the three-dimensional ternary fluid mixture, in which molecular pairs of like species do not interact whereas those of unlike species interact as hard spheres. The simulated results are in agreement with expectations.
Collapse
Affiliation(s)
- Yuri Djikaev
- Department of Chemistry, Baker Laboratory, Cornell University, Ithaca, New York 14853-1301, USA.
| |
Collapse
|
15
|
Santos A, López de Haro M. Demixing can occur in binary hard-sphere mixtures with negative nonadditivity. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2005; 72:010501. [PMID: 16089927 DOI: 10.1103/physreve.72.010501] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2004] [Indexed: 05/03/2023]
Abstract
A binary fluid mixture of nonadditive hard spheres characterized by a size ratio gamma = sigma(2)/sigma(1) < 1 and a nonadditivity parameter Delta = 2 sigma(12)/(sigma(1) + sigma(2)) - 1 is considered in infinitely many dimensions. From the equation of state in the second virial approximation (which is exact in the limit d--> infinity) a demixing transition with a critical consolute point at a packing fraction scaling as eta approximately d2(-d) is found, even for slightly negative nonadditivity, if Delta >-1/8 (ln gamma)(2). Arguments concerning the stability of the demixing with respect to freezing are provided.
Collapse
Affiliation(s)
- A Santos
- Departamento de Física, Universidad de Extremadura, Badajoz, Spain.
| | | |
Collapse
|
16
|
Jagannathan K, Yethiraj A. Dynamics of fluids near the consolute critical point: A molecular-dynamics study of the Widom–Rowlinson mixture. J Chem Phys 2005; 122:244506. [PMID: 16035781 DOI: 10.1063/1.1940053] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Molecular-dynamics simulations are presented for the dynamic behavior of the Widom-Rowlinson mixture [B. Widom, and J. S. Rowlinson, J. Chem. Phys. 52, 1670 (1970)] at its critical point. This model consists of two components where like species do not interact and unlike species interact via a hard-core potential. Critical exponents are obtained from a finite-size scaling analysis. The self-diffusion coefficient shows no anomalous behavior near the critical point. The shear viscosity and thermal conductivity show no divergent behavior for the system sizes considered, although there is a significant critical enhancement. The mutual diffusion coefficient, D(AB), vanishes as D(AB) approximately xi(-1.26 +/- 0.08), where xi is the correlation length. This is different from the renormalization-group (D(AB) approximately xi(-1.065)) mode coupling theory (D(AB) approximately xi(-1)) predictions. The theories and simulations can be reconciled if we assume that logarithmic corrections to scaling are important.
Collapse
|
17
|
Góźdź WT. Phase separation of the Widom–Rowlinson mixture in confined geometry. J Chem Phys 2005; 122:074505. [PMID: 15743252 DOI: 10.1063/1.1844332] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The behavior of binary Widom-Rowlinson [J. Chem. Phys. 52, 1670 (1970)] mixture in confined geometry is investigated. The influence of confinement on phase separation is examined. Coexistence curves for the mixture in slitlike pores and pores of complex geometry are calculated in Monte Carlo simulations. Finite size scaling analysis is used to determine precisely the location of critical point for the bulk mixture.
Collapse
Affiliation(s)
- W T Góźdź
- Institute of Physical Chemistry Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| |
Collapse
|
18
|
Abstract
In this paper, we present a cluster algorithm for the numerical simulations of nonadditive hard-core mixtures. This algorithm allows one to simulate and equilibrate systems with a number of particles two orders of magnitude larger than previous simulations. The phase separation for symmetric binary mixtures is studied for different nonadditivities as well as for the Widom-Rowlinson model [B. Widom and J. S. Rowlinson, J. Chem. Phys. 52, 1670 (1970)] in two and three dimensions. The critical densities are determined from finite size scaling. The critical exponents for all the nonadditivities are consistent with the Ising universality class.
Collapse
Affiliation(s)
- Arnaud Buhot
- UMR 5819 (UJF, CNRS, CEA) DRFMC/SI3M, CEA Grenoble, 17 rue des Martyrs, 38054 Grenoble cedex 9, France
| |
Collapse
|
19
|
Jagannathan K, Reddy G, Yethiraj A. Integral Equation Theory for Symmetric Nonadditive Hard Sphere Mixtures. J Phys Chem B 2004; 109:6764-8. [PMID: 16851761 DOI: 10.1021/jp045515h] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
An integral equation theory is presented for the pair correlation functions and phase behavior of symmetric nonadditive hard sphere mixtures with hard sphere diameters given by sigma(A)(A)() = sigma(BB) = lambdad and sigma(AB) = d. This mixture exhibits a fluid-fluid phase separation into an A-rich phase and a B-rich phase at high densities. The theory incorporates, into the closure approximation, all terms that can be calculated exactly in the density expansion of the direct correlation functions. We find that the closure approximation developed in this work is accurate for the structure and phase behavior over the entire range of lambda, when compared to computer simulations, and is significantly more accurate than the previous theories.
Collapse
Affiliation(s)
- Kamakshi Jagannathan
- Theoretical Chemistry Institute and Department of Chemistry, University of Wisconsin, Madison, Wisconsin 53706, USA
| | | | | |
Collapse
|
20
|
Jagannathan K, Yethiraj A. Molecular dynamics simulations of a fluid near its critical point. PHYSICAL REVIEW LETTERS 2004; 93:015701. [PMID: 15323991 DOI: 10.1103/physrevlett.93.015701] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2003] [Indexed: 05/24/2023]
Abstract
We present computer simulations for the static and dynamic behavior of a fluid near its consolute critical point. We study the Widom-Rowlinson mixture, which is a two component fluid where like species do not interact and unlike species interact via a hard core repulsion. At high enough densities this fluid exhibits a second order demixing transition that is in the Ising universality class. We find that the mutual diffusion coefficient DAB vanishes as DAB approximately xi(-1.26 +/- 0.08), where xi is the correlation length. This is different from renormalization-group and mode coupling theory predictions for model H, which are DAB approximately xi(-1.065) and DAB approximately xi(-1), respectively.
Collapse
|
21
|
Góźdź WT. Critical-point and coexistence curve properties of a symmetric mixture of nonadditive hard spheres: A finite size scaling study. J Chem Phys 2003. [DOI: 10.1063/1.1589746] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
22
|
Jagannathan K, Yethiraj A. Monte Carlo simulations for the phase behavior of symmetric nonadditive hard sphere mixtures. J Chem Phys 2003. [DOI: 10.1063/1.1563595] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
23
|
Schmidt M, Denton AR. Colloids, polymers, and needles: demixing phase behavior. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2002; 65:021508. [PMID: 11863531 DOI: 10.1103/physreve.65.021508] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2001] [Indexed: 05/23/2023]
Abstract
We consider a ternary mixture of hard colloidal spheres, ideal polymer spheres, and rigid vanishingly thin needles, which model stretched polymers or colloidal rods. For this model, we develop a geometry-based density functional theory, apply it to bulk fluid phases, and predict demixing phase behavior. In the case of no polymer-needle interactions, two-phase coexistence between colloid-rich and colloid-poor phases is found. For hard needle-polymer interactions, we predict rich phase diagrams, exhibiting three-phase coexistence, and reentrant demixing behavior.
Collapse
Affiliation(s)
- Matthias Schmidt
- Department of Physics, North Dakota State University, Fargo, North Dakota 58105-5566, USA
| | | |
Collapse
|