• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (4625221)   Today's Articles (1350)   Subscriber (49509)
For: Ming L, Davidsson J, Nordholm S. Molecular dynamics study of energy transfer in binary collisions of water molecules. J Chem Phys 1996. [DOI: 10.1063/1.471633] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]  Open
Number Cited by Other Article(s)
1
Classical trajectory studies of collisional energy transfer. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/b978-0-444-64207-3.00003-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
2
Ree J, Kim YH, Shin HK. Dynamics of the Water Dimer + Nitric Oxide Collision. B KOREAN CHEM SOC 2017. [DOI: 10.1002/bkcs.11063] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
3
Conte R, Houston PL, Bowman JM. Trajectory and Model Studies of Collisions of Highly Excited Methane with Water Using an ab Initio Potential. J Phys Chem A 2015;119:12304-17. [DOI: 10.1021/acs.jpca.5b06595] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
4
Houston PL, Conte R, Bowman JM. A Model For Energy Transfer in Collisions of Atoms with Highly Excited Molecules. J Phys Chem A 2015;119:4695-710. [DOI: 10.1021/acs.jpca.5b00219] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
5
Houston PL, Conte R, Bowman JM. Collisional Energy Transfer in Highly Excited Molecules. J Phys Chem A 2014;118:7758-75. [DOI: 10.1021/jp506202g] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
6
Conte R, Houston PL, Bowman JM. Trajectory Study of Energy Transfer and Unimolecular Dissociation of Highly Excited Allyl with Argon. J Phys Chem A 2014;118:7742-57. [DOI: 10.1021/jp5062013] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
7
Vess E, Anderson C, Awadalla V, Estes E, Jeon C, Wallace C, Hu X, Havey D. Investigation of an energy-gap model for photoacoustic O2 A-band spectra: H2O calibration near 7180cm−1. Chem Phys 2012. [DOI: 10.1016/j.chemphys.2012.02.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
8
Liessmann M, Miller Y, Gerber B, Abel B. Reaction of OH and NO at Low Temperatures in the Presence of Water: the Role of Clusters. Z PHYS CHEM 2011. [DOI: 10.1524/zpch.2011.0181] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
9
Analytical solution of the master equation with the transition probability derived from dynamical considerations. Chem Phys 2010. [DOI: 10.1016/j.chemphys.2010.05.032] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
10
Nordholm S, Börjesson LEB, Ming L, Svedung H. Progress on the modeling of the collisional energy transfer mechanism in unimolecular reactions. ACTA ACUST UNITED AC 2010. [DOI: 10.1002/bbpc.19971010333] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
11
Bustos-Marún RA, Coronado EA, Ferrero JC. Accounting for the dependence of P(E′,E) on the maximum impact parameter in classical trajectory calculations: Application to the H2O–H2O collisional relaxation. J Chem Phys 2007;127:154305. [DOI: 10.1063/1.2794760] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]  Open
12
Bustos-Marún RA, Coronado EA, Ferrero JC. Building transition probabilities for any condition using reduced cumulative energy transfer functions in H2O–H2O collisions. J Chem Phys 2007;126:124305. [PMID: 17411121 DOI: 10.1063/1.2430713] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]  Open
13
Nilsson D, Nordholm S. Statistical Theory of Collisional Energy Transfer in Molecular Collisions. trans-Stilbene Deactivation by Argon, Carbon Dioxide, and n-Heptane. J Phys Chem A 2006;110:3289-96. [PMID: 16509655 DOI: 10.1021/jp055144k] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
14
Bustos Marún RA, Coronado EA, Ferrero JC. Fitting complex potential energy surfaces to simple model potentials: application of the simplex-annealing method. J Comput Chem 2005;26:523-31. [PMID: 15726571 DOI: 10.1002/jcc.20168] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
15
Hold U, Lenzer T, Luther K, Symonds AC. Collisional energy transfer probabilities of highly excited molecules from KCSI. III. Azulene: P(E′,E) and moments of energy transfer for energies up to 40 000 cm−1 via self-calibrating experiments. J Chem Phys 2003. [DOI: 10.1063/1.1622382] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]  Open
16
Nilsson D, Nordholm S. Modeling energy transfer in molecular collisions: Statistical theory versus experiment for highly excited toluene and azulene. J Chem Phys 2003. [DOI: 10.1063/1.1622383] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]  Open
17
Nilsson D, Nordholm S. Statistical model of energy transfer in molecular collisions: De-energization of highly excited toluene. J Chem Phys 2002. [DOI: 10.1063/1.1458925] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]  Open
18
Ohara T. Intermolecular energy transfer in liquid water and its contribution to heat conduction: A molecular dynamics study. J Chem Phys 1999. [DOI: 10.1063/1.480025] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]  Open
19
Collisional deactivation of CF3I – a molecular dynamics simulation. Chem Phys 1999. [DOI: 10.1016/s0301-0104(99)00263-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
20
Westergren J, Grönbeck H, Rosén A, Nordholm S. Statistical theory of cluster cooling in rare gas. I. Energy transfer analysis for palladium clusters in helium. J Chem Phys 1998. [DOI: 10.1063/1.477654] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]  Open
21
The mechanism of energy transfer in H2O–H2O collisions – a molecular dynamics simulation. Chem Phys 1998. [DOI: 10.1016/s0301-0104(98)00231-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
22
Heidelbach C, Fedchenia II, Schwarzer D, Schroeder J. Molecular-dynamics simulation of collisional energy transfer from vibrationally highly excited azulene in compressed CO2. J Chem Phys 1998. [DOI: 10.1063/1.476474] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]  Open
23
Börjesson L, Ming L, Nordholm S. The PEMET model of collisional energy transfer in unimolecular reactions comparison with molecular dynamics simulation. Chem Phys 1997. [DOI: 10.1016/s0301-0104(97)00162-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
PrevPage 1 of 1 1Next
© 2004-2024 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA