1
|
Kim CA, Hu S, Van Voorhis T. Mechanism of Enhanced Triplet-Triplet Upconversion in Organic Molecules. J Phys Chem A 2023; 127:7175-7185. [PMID: 37585686 DOI: 10.1021/acs.jpca.3c03214] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
Abstract
We use time-dependent density functional theory (TDDFT) to investigate the mechanism of efficient triplet-triplet upconversion (TTU) in certain organic materials. In particular, we focus on materials where some singlets are generated in a two-step spin-nonconserving process (T1 + T1 → T2 → S1). For this mechanism to contribute significantly, the intersystem crossing (ISC) from the high-lying triplet to the singlet (T2 → S1) must outcompete the internal conversion (IC) to the low-lying triplet (T2 → T1). By considering multiple families of materials, we show that the T2 → S1 ISC can be enhanced in a number of ways: the substitution of electron-donating (ED) and electron-withdrawing (EW) groups at appropriate positions; the substitution of bulky groups that distort the molecular geometry; and the substitution of heavy atoms that enhance the spin-orbit coupling (SOC). In the first two cases, the enhancements are consistent with El-Sayed's rule in that rapid T2 → S1 ISC requires significant differences in the characters of the S1 and the T2 wavefunctions. Together, these effects enable a wide tunability of T2 → S1 ISC rates over at least 5 orders of magnitude. Meanwhile, the T2 → T1 IC is inhibited in these systems due to the large T2 - T1 energy gap >0.5 eV, which entails a high energy barrier to the T2 → T1 IC and the prediction of a slow rate regardless of the substituents or the presence of heavy atoms. In this way, tuning the T2 → S1 ISC appears to provide an effective strategy to achieve systematic improvement of TTU materials.
Collapse
Affiliation(s)
- Changhae Andrew Kim
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Shicheng Hu
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Troy Van Voorhis
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
2
|
Bozzi AS, Rocha WR. Calculation of Excited State Internal Conversion Rate Constant Using the One-Effective Mode Marcus-Jortner-Levich Theory. J Chem Theory Comput 2023; 19:2316-2326. [PMID: 37023359 DOI: 10.1021/acs.jctc.2c01288] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
Abstract
In this article, the one-effective mode Marcus-Jortner-Levich (MJL) theory and the classical Marcus theory for electron transfer were applied to estimate the internal conversion rate constant, kIC, of organic molecules and a Ru-based complex, all belonging to the Marcus inverted region. For this, the reorganization energy was calculated using the minimum energy conical intersection point to account for more vibrational levels, correcting the density of states. The results showed good agreement with experimental and theoretically determined kIC, with a small overestimation by the Marcus theory. Also, molecules less dependent on the solvent effects, like benzophenone, presented better results than molecules with an expressive dependence, like 1-aminonaphthalene. Moreover, the results suggest that each molecule possesses unique normal modes leading to the excited state deactivation that does not necessarily match the X-H bond stretching, as previously suggested.
Collapse
Affiliation(s)
- Aline S Bozzi
- Laboratório de Estudos Computacionais em Sistemas Moleculares, eCsMolab, Departamento de Química, ICEx, Universidade Federal de Minas Gerais, 31270-901, Pampulha, Belo Horizonte, MG Brazil
| | - Willian R Rocha
- Laboratório de Estudos Computacionais em Sistemas Moleculares, eCsMolab, Departamento de Química, ICEx, Universidade Federal de Minas Gerais, 31270-901, Pampulha, Belo Horizonte, MG Brazil
| |
Collapse
|
3
|
Xie C, Guan Y, Yarkony DR, Guo H. Vibrational energy levels of the S0 and S1 states of formaldehyde using an accurate ab initio based global diabatic potential energy matrix. Mol Phys 2021. [DOI: 10.1080/00268976.2021.1918775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Changjian Xie
- Institute of Modern Physics, Northwest University, Xi’an, Shaanxi, People’s Republic of China
| | - Yafu Guan
- Department of Chemistry, Johns Hopkins University, Baltimore, MD, USA
| | - David R. Yarkony
- Department of Chemistry, Johns Hopkins University, Baltimore, MD, USA
| | - Hua Guo
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, NM, USA
| |
Collapse
|
4
|
Guan Y, Xie C, Guo H, Yarkony DR. Enabling a Unified Description of Both Internal Conversion and Intersystem Crossing in Formaldehyde: A Global Coupled Quasi-Diabatic Hamiltonian for Its S 0, S 1, and T 1 States. J Chem Theory Comput 2021; 17:4157-4168. [PMID: 34132545 DOI: 10.1021/acs.jctc.1c00370] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
In our recent work, a diabatic Hamiltonian that couples the S0 and S1 states of formaldehyde was constructed using a robust fitting-and-diabatizing procedure with artificial neural networks, which is capable of representing adiabatic energies, energy gradients, and derivative couplings over a wide range of geometries including seams of conical intersection. In this work, based on the diabatization of S0 and S1, the spin-orbit couplings between singlet states (S0, S1) and triplet state T1 are also determined in the same diabatic representation. The diabatized spin-orbit couplings are then fit with a symmetrized neural-network functional form. The ab initio spin-orbit couplings are well reproduced in large configuration space. Together with the neural-network-based potential energy surface for T1, the full quasi-diabatic Hamiltonian for the S0, S1, and T1 states is completed, enabling a unified description of both internal conversion and intersystem crossing in formaldehyde. The vibrational levels on the three adiabatic states are found to be in good agreement with known experimental band origins.
Collapse
Affiliation(s)
- Yafu Guan
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Changjian Xie
- Institute of Modern Physics, Northwest University, Xi'an, Shaanxi 710069, People's Republic of China
| | - Hua Guo
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131, United States
| | - David R Yarkony
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| |
Collapse
|
5
|
Ianconescu R, Tatchen J, Pollak E. On-the-fly semiclassical study of internal conversion rates of formaldehyde. J Chem Phys 2013; 139:154311. [DOI: 10.1063/1.4825040] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
6
|
Chin CH, Shiu HJ, Wang HW, Chen YL, Wang CC, Lin SH, Hayashi M. Theoretical Treatments of Radiationless Transitions. J CHIN CHEM SOC-TAIP 2013. [DOI: 10.1002/jccs.200600016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
7
|
Lin CK, Li MC, Yamaki M, Hayashi M, Lin SH. A theoretical study on the spectroscopy and the radiative and non-radiative relaxation rate constants of the S01A1–S11A2 vibronic transitions of formaldehyde. Phys Chem Chem Phys 2010; 12:11432-44. [DOI: 10.1039/c004493h] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
8
|
Araújo M, Lasorne B, Magalhães AL, Worth GA, Bearpark MJ, Robb MA. The molecular dissociation of formaldehyde at medium photoexcitation energies: A quantum chemistry and direct quantum dynamics study. J Chem Phys 2009; 131:144301. [DOI: 10.1063/1.3242082] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
9
|
González J, Giménez X, Bofill JM. A restricted quantum reaction path Hamiltonian: Theory, discrete variable representation propagation algorithm, and applications. J Chem Phys 2009; 131:054108. [DOI: 10.1063/1.3194135] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
10
|
Angeli C, Borini S, Ferrighi L, Cimiraglia R. Ab initio n-electron valence state perturbation theory study of the adiabatic transitions in carbonyl molecules: Formaldehyde, acetaldehyde, and acetone. J Chem Phys 2005; 122:114304. [PMID: 15836212 DOI: 10.1063/1.1862236] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The application of the recently developed second-order n-electron valence state perturbation theory (NEVPT2) to small carbonyl molecules (formaldehyde, acetaldehyde, and acetone) is presented. The adiabatic transition energies are computed for the singlet and triplet n-->pi(*), pi-->pi(*), and sigma-->pi(*) states performing a full geometry optimization of the relevant states at the single state CASSCF level and taking into account the zero point energy correction in the harmonic approximation. The agreement with the known experimental values and with previously published high level calculations confirms that NEVPT2 is an efficient tool to be used for the interpretation of molecular electronic spectra. Moreover, different insight into the nature of the excited states has been obtained. Some of the transitions presented here have never been theoretically computed previously [(3)(pi-->pi(*)) and (3)(sigma-->pi(*)) adiabatic transitions in acetaldehyde and acetone] or have been studied only using moderate level (single reference based) ab initio methods (all adiabatic transitions in acetaldehyde). In the present work a consistent disagreement between NEVPT2 and experiment has been found for the (3)(pi-->pi(*)) adiabatic transition in all molecules: this result is attributed to the low intensity of the transition to the first vibrational levels of the excited state. The n-->pi(*) singlet and triplet vertical transition energies are also reported for all the molecules.
Collapse
|
11
|
Angeli C, Borini S, Ferrighi L, Cimiraglia R. A CASSCF theoretical study of the vibrational frequencies and structure of formaldehyde, acetaldehyde and acetone valence excited states. ACTA ACUST UNITED AC 2005. [DOI: 10.1016/j.theochem.2004.12.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
12
|
Shiu YJ, Hayashi M, Mebel AM, Chen YT, Lin SH. Computational formulas for symmetry-forbidden vibronic spectra and their application to n–π* transition in neat acetone. J Chem Phys 2001. [DOI: 10.1063/1.1386918] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
13
|
Liao DW, Mebel AM, Hayashi M, Shiu YJ, Chen YT, Lin SH. Ab initio study of the n-π* electronic transition in acetone: Symmetry-forbidden vibronic spectra. J Chem Phys 1999. [DOI: 10.1063/1.479285] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
|
14
|
Nakamura H, Kato S. Theoretical study on the spin-forbidden predissociation reaction of N2O: Ab initio potential energy surfaces and quantum dynamics calculations. J Chem Phys 1999. [DOI: 10.1063/1.478954] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
|
15
|
Bataev V, Pupyshev V, Godunov I. Structure and dynamics of conformationally non-rigid molecules in excited electronic states: Ab initio calculations of the R2CO (R=H, F, Cl). J Mol Struct 1999. [DOI: 10.1016/s0022-2860(98)00813-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
16
|
Godunov IA, Abramenkov AV, Bataev VA, Pupyshev VI. Potential functions of inversion of R2CO (R=H, F, Cl) molecules in the lowest excited electronic states. Russ Chem Bull 1999. [DOI: 10.1007/bf02496238] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
17
|
Fang JY, Hammes-Schiffer S. Time-dependent self-consistent-field dynamics based on a reaction path Hamiltonian. I. Theory. J Chem Phys 1998. [DOI: 10.1063/1.476126] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
18
|
Nakano H, Hirao K, Gordon MS. Analytic energy gradients for multiconfigurational self-consistent field second-order quasidegenerate perturbation theory (MC-QDPT). J Chem Phys 1998. [DOI: 10.1063/1.475975] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
19
|
Hayashi M, Mebel AM, Liang KK, Lin SH. Ab initio calculations of radiationless transitions between excited and ground singlet electronic states of ethylene. J Chem Phys 1998. [DOI: 10.1063/1.475584] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
20
|
Mebel A, Hayashi M, Lin S. Ab initio calculations of vibronic coupling. Applications to symmetry-forbidden vibronic spectra and internal conversion in ethylene. Chem Phys Lett 1997. [DOI: 10.1016/s0009-2614(97)00654-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
21
|
|