1
|
Yong H, Zotev N, Stankus B, Ruddock JM, Bellshaw D, Boutet S, Lane TJ, Liang M, Carbajo S, Robinson JS, Du W, Goff N, Chang Y, Koglin JE, Waters MDJ, Sølling TI, Minitti MP, Kirrander A, Weber PM. Determining Orientations of Optical Transition Dipole Moments Using Ultrafast X-ray Scattering. J Phys Chem Lett 2018; 9:6556-6562. [PMID: 30380873 DOI: 10.1021/acs.jpclett.8b02773] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Identification of the initially prepared, optically active state remains a challenging problem in many studies of ultrafast photoinduced processes. We show that the initially excited electronic state can be determined using the anisotropic component of ultrafast time-resolved X-ray scattering signals. The concept is demonstrated using the time-dependent X-ray scattering of N-methyl morpholine in the gas phase upon excitation by a 200 nm linearly polarized optical pulse. Analysis of the angular dependence of the scattering signal near time zero renders the orientation of the transition dipole moment in the molecular frame and identifies the initially excited state as the 3p z Rydberg state, thus bypassing the need for further experimental studies to determine the starting point of the photoinduced dynamics and clarifying inconsistent computational results.
Collapse
Affiliation(s)
- Haiwang Yong
- Department of Chemistry , Brown University , Providence , Rhode Island 02912 , United States
| | - Nikola Zotev
- School of Chemistry , University of Edinburgh , Edinburgh EH9 3FJ , United Kingdom
| | - Brian Stankus
- Department of Chemistry , Brown University , Providence , Rhode Island 02912 , United States
| | - Jennifer M Ruddock
- Department of Chemistry , Brown University , Providence , Rhode Island 02912 , United States
| | - Darren Bellshaw
- School of Chemistry , University of Edinburgh , Edinburgh EH9 3FJ , United Kingdom
| | - Sébastien Boutet
- SLAC National Accelerator Laboratory , Menlo Park , California 94025 , United States
| | - Thomas J Lane
- SLAC National Accelerator Laboratory , Menlo Park , California 94025 , United States
| | - Mengning Liang
- SLAC National Accelerator Laboratory , Menlo Park , California 94025 , United States
| | - Sergio Carbajo
- SLAC National Accelerator Laboratory , Menlo Park , California 94025 , United States
| | - Joseph S Robinson
- SLAC National Accelerator Laboratory , Menlo Park , California 94025 , United States
| | - Wenpeng Du
- Department of Chemistry , Brown University , Providence , Rhode Island 02912 , United States
| | - Nathan Goff
- Department of Chemistry , Brown University , Providence , Rhode Island 02912 , United States
| | - Yu Chang
- Department of Chemistry , Brown University , Providence , Rhode Island 02912 , United States
| | - Jason E Koglin
- SLAC National Accelerator Laboratory , Menlo Park , California 94025 , United States
| | - Max D J Waters
- Department of Chemistry , University of Copenhagen , Universitetsparken 5 , 2100 Copenhagen , Denmark
| | - Theis I Sølling
- Department of Chemistry , University of Copenhagen , Universitetsparken 5 , 2100 Copenhagen , Denmark
| | - Michael P Minitti
- SLAC National Accelerator Laboratory , Menlo Park , California 94025 , United States
| | - Adam Kirrander
- School of Chemistry , University of Edinburgh , Edinburgh EH9 3FJ , United Kingdom
| | - Peter M Weber
- Department of Chemistry , Brown University , Providence , Rhode Island 02912 , United States
| |
Collapse
|
3
|
Krasilnikov MB, Kuznetsov VV, Suits AG, Vasyutinskii OS. Vector correlations in photodissociation of polarized polyatomic molecules beyond the axial recoil limit. Phys Chem Chem Phys 2011; 13:8163-74. [DOI: 10.1039/c0cp01375g] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
4
|
Rakitzis TP. Photofragment angular momentum distributions in the molecular frame. III. Coherent effects in the photodissociation of polyatomic molecules with circularly polarized light. J Chem Phys 2010; 133:204301. [PMID: 21133438 DOI: 10.1063/1.3506578] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We extend the a(q) (k)(s) polarization parameter model [T. P. Rakitzis and A. J. Alexander, J. Chem. Phys. 132, 224310 (2010)] to describe the components of the product angular momentum polarization that arise from the one-photon photodissociation of asymmetric top molecules with circularly polarized photolysis light, and provide a general equation for fitting experimental signals. We show that the only polarization parameters that depend on the helicity of the circularly polarized photolysis light are the A(0) (k) and Re[A(1) (k)] (with odd k) and the Im[A(1) (k)] (with even k); in addition, for the unique recoil destination (URD) approximation [for which the photofragment recoil v arises from a unique parent molecule geometry], we show that these parameters arise only as a result the interference between at least two dissociative electronic states. Furthermore, we show that in the breakdown of the URD approximation (for which the photofragment recoil v arises from a distribution of parent molecule geometries), these parameters can also arise for dissociation via a single dissociative electronic state. In both cases, the A(0) (k) and Re[A(1) (k)] parameters (with odd k) are proportional to cosΔφ, and the Im[A(1) (k)] parameters (with even k) are proportional to sinΔφ, where Δφ is the phase shift (or average phase shift) between the interfering paths so that Δφ can be determined directly from the A(q) (k), or from ratios of these A(q) (k) parameters. Therefore, the determination of these A(q) (k) parameters with circularly polarized photolysis light allows the unambiguous measurement of coherent effects in polyatomic-molecule photodissociation.
Collapse
Affiliation(s)
- T Peter Rakitzis
- Department of Physics, University of Crete, and Institute of Electronic Structure and Laser, Foundation for Research and Technology-Hellas, 71110 Heraklion-Crete, Greece.
| |
Collapse
|
6
|
Suits AG, Vasyutinskii OS. Imaging Atomic Orbital Polarization in Photodissociation. Chem Rev 2008; 108:3706-46. [DOI: 10.1021/cr040085c] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Arthur G. Suits
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, Michigan 48202, and Ioffe Physico-Technical Institute, Russian Academy of Sciences, 194021 St. Petersburg, Russia
| | - Oleg S. Vasyutinskii
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, Michigan 48202, and Ioffe Physico-Technical Institute, Russian Academy of Sciences, 194021 St. Petersburg, Russia
| |
Collapse
|
7
|
Jia B, Laib J, Lobo RFM, Brooks PR. Evidence for orbital-specific electron transfer to oriented haloform molecules. J Am Chem Soc 2002; 124:13896-902. [PMID: 12431121 DOI: 10.1021/ja027710k] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Beams of hyperthermal K atoms cross beams of the oriented haloforms CF(3)H, CCl(3)H, and CBr(3)H, and transfer of an electron mainly produces K(+) and the X(-) halide ion which are detected in coincidence. As expected, the steric asymmetry of CCl(3)H and CBr(3)H is very small and the halogen end is more reactive. However, even though there are three potentially reactive centers on each molecule, the F(-) ion yield in CF(3)H is strongly dependent on orientation. At energies close to the threshold for ion-pair formation ( approximately 5.5 eV), H-end attack is more reactive to form F(-). As the energy is increased, the more productive end switches, and F-end attack dominates the reactivity. In CF(3)H near threshold the electron is apparently transferred to the sigma(CH) antibonding orbital, and small signals are observed from electrons and CF(3)(-) ions, indicating "activation" of this orbital. In CCl(3)H and CBr(3)H the steric asymmetry is very small, and signals from free electrons and CX(3)(-) ions are barely detectable, indicating that the sigma(CH) antibonding orbital is not activated. The electron is apparently transferred to the sigma(CX) orbital which is believed to be the LUMO. At very low energies the proximity of the incipient ions probably determines whether salt molecules or ions are formed.
Collapse
Affiliation(s)
- Beike Jia
- Chemistry Department and Rice Quantum Institute, Rice University, Houston, Texas 77251, USA
| | | | | | | |
Collapse
|
13
|
Barnes RJ, Sinha A, Dagdigian PJ, Lambert HM. Doppler line shapes in the photolysis of laser excited, aligned molecules: Application to the vibrationally mediated photodissociation of HN3. J Chem Phys 1999. [DOI: 10.1063/1.479261] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
15
|
Pipes LC, Brandstater N, Fuglesang CD, Baugh D. Photofragmentation of M-State Polarized Molecules: Comparison of Quantum and Semiclassical Treatments. J Phys Chem A 1997. [DOI: 10.1021/jp9711510] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Leonard C. Pipes
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095-1569
| | - Nathan Brandstater
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095-1569
| | - Christopher D. Fuglesang
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095-1569
| | - Delroy Baugh
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095-1569
| |
Collapse
|