1
|
Ellerbrock R, Manthe U. A non-hierarchical correlation discrete variable representation. J Chem Phys 2022; 156:134107. [PMID: 35395891 DOI: 10.1063/5.0088509] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The correlation discrete variable representation (CDVR) facilitates (multi-layer) multi-configurational time-dependent Hartree (MCTDH) calculations with general potentials. It employs a layered grid representation to efficiently evaluate all potential matrix elements appearing in the MCTDH equations of motion. The original CDVR approach and its multi-layer extension show a hierarchical structure: the size of the grids employed at the different layers increases when moving from an upper layer to a lower one. In this work, a non-hierarchical CDVR approach, which uses identically structured quadratures at all layers of the MCTDH wavefunction representation, is introduced. The non-hierarchical CDVR approach crucially reduces the number of grid points required, compared to the hierarchical CDVR, shows superior scaling properties, and yields identical results for all three representations showing the same topology. Numerical tests studying the photodissociation of NOCl and the vibrational states of CH3 demonstrate the accuracy of the non-hierarchical CDVR approach.
Collapse
Affiliation(s)
- Roman Ellerbrock
- Department of Chemistry and The PULSE Institute, Stanford University, Stanford, California 94305, USA
| | - Uwe Manthe
- Theoretische Chemie, Fakultät für Chemie, Universität Bielefeld, Universitätsstr. 25, D-33615 Bielefeld, Germany
| |
Collapse
|
2
|
Zhao B, Manthe U. Non-adiabatic transitions in the reaction of fluorine with methane. J Chem Phys 2020; 152:231102. [DOI: 10.1063/5.0013852] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Bin Zhao
- Theoretische Chemie, Fakultät für Chemie, Universität Bielefeld, Universitätsstr. 25, D-33615 Bielefeld, Germany
| | - Uwe Manthe
- Theoretische Chemie, Fakultät für Chemie, Universität Bielefeld, Universitätsstr. 25, D-33615 Bielefeld, Germany
| |
Collapse
|
3
|
Schäpers D, Manthe U. Vibronic coupling in the F·CH4 prereactive complex. J Chem Phys 2019; 151:104106. [DOI: 10.1063/1.5110246] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Daniela Schäpers
- Theoretische Chemie, Fakultät für Chemie, Universität Bielefeld, Universitätsstr. 25, D-33615 Bielefeld, Germany
| | - Uwe Manthe
- Theoretische Chemie, Fakultät für Chemie, Universität Bielefeld, Universitätsstr. 25, D-33615 Bielefeld, Germany
| |
Collapse
|
4
|
Zhang Z, Gatti F, Zhang DH. Full dimensional quantum mechanical calculations of the reaction probability of the H + NH3 collision based on a mixed Jacobi and Radau description. J Chem Phys 2019; 150:204301. [DOI: 10.1063/1.5096047] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Zhaojun Zhang
- State Key Laboratory of Molecular Reaction Dynamics and Center for Theoretical and Computational Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People’s Republic of China
| | - Fabien Gatti
- ISMO, Institut des Sciences Moléculaires d’Orsay—UMR 8214 CNRS/Université Paris-Sud, F-91405 Orsay, France
| | - Dong H. Zhang
- State Key Laboratory of Molecular Reaction Dynamics and Center for Theoretical and Computational Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People’s Republic of China
| |
Collapse
|
5
|
Coordinate systems and kinetic energy operators for multi-configurational time-dependent Hartree calculations studying reactions of methane. Chem Phys 2018. [DOI: 10.1016/j.chemphys.2018.02.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
6
|
Manthe U. Wavepacket dynamics and the multi-configurational time-dependent Hartree approach. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2017; 29:253001. [PMID: 28430111 DOI: 10.1088/1361-648x/aa6e96] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Multi-configurational time-dependent Hartree (MCTDH) based approaches are efficient, accurate, and versatile methods for high-dimensional quantum dynamics simulations. Applications range from detailed investigations of polyatomic reaction processes in the gas phase to high-dimensional simulations studying the dynamics of condensed phase systems described by typical solid state physics model Hamiltonians. The present article presents an overview of the different areas of application and provides a comprehensive review of the underlying theory. The concepts and guiding ideas underlying the MCTDH approach and its multi-mode and multi-layer extensions are discussed in detail. The general structure of the equations of motion is highlighted. The representation of the Hamiltonian and the correlated discrete variable representation (CDVR), which provides an efficient multi-dimensional quadrature in MCTDH calculations, are discussed. Methods which facilitate the calculation of eigenstates, the evaluation of correlation functions, and the efficient representation of thermal ensembles in MCTDH calculations are described. Different schemes for the treatment of indistinguishable particles in MCTDH calculations and recent developments towards a unified multi-layer MCTDH theory for systems including bosons and fermions are discussed.
Collapse
Affiliation(s)
- Uwe Manthe
- Theoretische Chemie, Fakultät für Chemie, Universität Bielefeld, Universitätsstr. 25, D-33615 Bielefeld, Germany
| |
Collapse
|
7
|
Palma J, Manthe U. Non-adiabatic effects in F + CHD3 reactive scattering. J Chem Phys 2017; 146:214117. [DOI: 10.1063/1.4984593] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Juliana Palma
- Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Sáenz Peña 352, Bernal B1876BXD, Argentina
| | - Uwe Manthe
- Theoretische Chemie, Fakultät für Chemie, Universität Bielefeld, Universitätsstr. 25, D-33615 Bielefeld, Germany
| |
Collapse
|
8
|
Wang Y, Ping L, Song H, Yang M. Breakdown of the vibrationally adiabatic approximation in the early-barrier CH3 + HBr → CH4 + Br reaction. Theor Chem Acc 2017. [DOI: 10.1007/s00214-017-2089-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
9
|
Abstract
Recent experimental and theoretical advances in transient reaction dynamics probed by photodetachment of polyatomic anions are reviewed.
Collapse
Affiliation(s)
- Robert E. Continetti
- Department of Chemistry and Biochemistry
- University of California San Diego
- La Jolla
- USA
| | - Hua Guo
- Department of Chemistry and Chemical Biology
- University of New Mexico
- Albuquerque
- USA
| |
Collapse
|
10
|
Xie C, Jiang B, Yang M, Guo H. State-to-State Mode Specificity in F + CHD3 → HF/DF + CD3/CHD2 Reaction. J Phys Chem A 2016; 120:6521-8. [DOI: 10.1021/acs.jpca.6b06450] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Changjian Xie
- Department of Chemistry
and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131, United States
| | - Bin Jiang
- Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| | - Minghui Yang
- Key Laboratory of Magnetic Resonance in
Biological Systems, Wuhan Center for Magnetic Resonance, State Key
Laboratory of Magnetic Resonance and Atomic and Molecular Physics,
Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China
| | - Hua Guo
- Department of Chemistry
and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131, United States
| |
Collapse
|
11
|
Qi J, Song H, Yang M, Palma J, Manthe U, Guo H. Communication: Mode specific quantum dynamics of the F + CHD3 → HF + CD3 reaction. J Chem Phys 2016; 144:171101. [DOI: 10.1063/1.4948547] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Ji Qi
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China
| | - Hongwei Song
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China
| | - Minghui Yang
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China
| | - Juliana Palma
- Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, CONICET, Sáenz Peña 352, Bernal B1876BXD, Argentina
| | - Uwe Manthe
- Theoretische Chemie, Fakultät für Chemie, Universität Bielefeld, Universitätsstr. 25, D-33615 Bielefeld, Germany
| | - Hua Guo
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131, USA
| |
Collapse
|
12
|
Affiliation(s)
- Daniela Schäpers
- Theoretische Chemie, Fakultät
für Chemie, Universität Bielefeld, Universitätsstraße 25, D-33615 Bielefeld, Germany
| | - Uwe Manthe
- Theoretische Chemie, Fakultät
für Chemie, Universität Bielefeld, Universitätsstraße 25, D-33615 Bielefeld, Germany
| |
Collapse
|
13
|
Ma J, Guo H. Reactive and Nonreactive Feshbach Resonances Accessed by Photodetachment of FH2O(-). J Phys Chem Lett 2015; 6:4822-4826. [PMID: 26580571 DOI: 10.1021/acs.jpclett.5b02366] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The photodetachment of the FH2O(-) anion is investigated quantum mechanically on accurate full-dimensional potential energy surfaces of the two lowest-lying electronic states of FH2O. The calculated photoelectron spectrum possesses both broad and sharp features, corresponding to reactive and nonreactive Feshbach resonances. The former extend to both reactant and product channels over the transition state, while the latter are supported by a hydrogen bonded HO-HF well in the product channel. Many of the resonances are assignable with quantum numbers for the stretching and bending modes of the HO-HF complex as well as the H-F vibration. The implications of these resonances in the F + H2O ↔ HF + HO reaction are discussed.
Collapse
Affiliation(s)
- Jianyi Ma
- Institute of Atomic and Molecular Physics, Sichuan University , Chengdu, Sichuan 610065, China
| | | |
Collapse
|
14
|
Palma J, Manthe U. A Quasiclassical Study of the F(2P) + CHD3 (ν1 = 0,1) Reactive System on an Accurate Potential Energy Surface. J Phys Chem A 2015; 119:12209-17. [DOI: 10.1021/acs.jpca.5b06184] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Juliana Palma
- Departamento
de Ciencia y Tecnología, Universidad Nacional de Quilmes, Sáenz Peña 352, Bernal B1876BXD, Argentina
| | - Uwe Manthe
- Theoretische Chemie, Fakultät für Chemie, Universität Bielefeld, Universitätsstr.
25, D-33615 Bielefeld, Germany
| |
Collapse
|
15
|
Westermann T, Kim JB, Weichman ML, Hock C, Yacovitch TI, Palma J, Neumark DM, Manthe U. Resonances in the Entrance Channel of the Elementary Chemical Reaction of Fluorine and Methane. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201307822] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
16
|
Westermann T, Kim JB, Weichman ML, Hock C, Yacovitch TI, Palma J, Neumark DM, Manthe U. Resonances in the entrance channel of the elementary chemical reaction of fluorine and methane. Angew Chem Int Ed Engl 2013; 53:1122-6. [PMID: 24307593 DOI: 10.1002/anie.201307822] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Indexed: 11/08/2022]
Abstract
Extending the fully quantum-state-resolved description of elementary chemical reactions beyond three or four atom systems is a crucial issue in fundamental chemical research. Reactions of methane with F, Cl, H or O are key examples that have been studied prominently. In particular, reactive resonances and nonintuitive mode-selective chemistry have been reported in experimental studies for the F+CH4 →HF+CH3 reaction. By investigating this reaction using transition-state spectroscopy, this joint theoretical and experimental study provides a clear picture of resonances in the F+CH4 system. This picture is deduced from high-resolution slow electron velocity-map imaging (SEVI) spectra and accurate full-dimensional (12D) quantum dynamics simulations in the picosecond regime.
Collapse
Affiliation(s)
- Till Westermann
- Theoretische Chemie, Fakultät für Chemie, Universität Bielefeld, Universitätsstr. 25, 33615 Bielefeld (Germany)
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Westermann T, Eisfeld W, Manthe U. Coupled potential energy surface for the F(2P) + CH4 → HF + CH3 entrance channel and quantum dynamics of the CH4 · F− photodetachment. J Chem Phys 2013; 139:014309. [DOI: 10.1063/1.4812251] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|