1
|
Khan RAA, Luo M, Alsaad AM, Qattan IA, Abedrabbo S, Hua D, Zulfqar A. The Role of Polymer Chain Stiffness and Guest Nanoparticle Loading in Improving the Glass Transition Temperature of Polymer Nanocomposites. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1896. [PMID: 37446412 DOI: 10.3390/nano13131896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/08/2023] [Accepted: 06/13/2023] [Indexed: 07/15/2023]
Abstract
The impact of polymer chain stiffness characterized by the bending modulus (kθ) on the glass transition temperature (Tg) of pure polymer systems, as well as polymer nanocomposites (PNCs), is investigated using molecular dynamics simulations. At small kθ values, the pure polymer system and respective PNCs are in an amorphous state, whereas at large kθ values, both systems are in a semicrystalline state with a glass transition at low temperature. For the pure polymer system, Tg initially increases with kθ and does not change obviously at large kθ. However, the Tg of PNCs shows interesting behaviors with the increasing volume fraction of nanoparticles (fNP) at different kθ values. Tg tends to increase with fNP at small kθ, whereas it becomes suppressed at large kθ.
Collapse
Affiliation(s)
- Raja Azhar Ashraaf Khan
- Department of Physics, Zhejiang Normal University, Jinhua 321004, China
- Department of Physics, Zhejiang University, Hangzhou 310027, China
| | - Mengbo Luo
- Department of Physics, Zhejiang University, Hangzhou 310027, China
| | - Ahmad M Alsaad
- Department of Physics, Jordan University of Science & Technology, P.O. Box 3030, Irbid 22110, Jordan
| | - Issam A Qattan
- Department of Physics, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi 127788, United Arab Emirates
| | - Sufian Abedrabbo
- Department of Physics, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi 127788, United Arab Emirates
| | - Daoyang Hua
- Department of Physics, Zhejiang University, Hangzhou 310027, China
| | - Afsheen Zulfqar
- Department of Physics, Zhejiang Normal University, Jinhua 321004, China
| |
Collapse
|
2
|
Yu B, Liang H, Rumyantsev AM, de Pablo JJ. Isotropic-to-Nematic Transition in Salt-Free Polyelectrolyte Coacervates from Coarse-Grained Simulations. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c01674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Boyuan Yu
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois60637, United States
| | - Heyi Liang
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois60637, United States
| | - Artem M. Rumyantsev
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois60637, United States
| | - Juan J. de Pablo
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois60637, United States
- Center for Molecular Engineering, Argonne National Laboratory, Lemont, Illinois60439, United States
| |
Collapse
|
3
|
Nikoubashman A. Ordering, phase behavior, and correlations of semiflexible polymers in confinement. J Chem Phys 2021; 154:090901. [DOI: 10.1063/5.0038052] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Affiliation(s)
- Arash Nikoubashman
- Institute of Physics, Johannes Gutenberg University Mainz, Staudingerweg 7, 55128 Mainz, Germany
| |
Collapse
|
4
|
Egorov SA, Milchev A, Nikoubashman A, Binder K. Phase Separation and Nematic Order in Lyotropic Solutions: Two Types of Polymers with Different Stiffnesses in a Common Solvent. J Phys Chem B 2021; 125:956-969. [PMID: 33440121 DOI: 10.1021/acs.jpcb.0c10411] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The interplay of the isotropic-nematic transition and phase separation in lyotropic solutions of two types of semiflexible macromolecules with pronounced difference in chain stiffness is studied by Density Functional Theory and Molecular Dynamics simulations. While the width of the isotropic-nematic two-phase coexistence region is narrow for solutions with a single type of semiflexible chain, the two-phase coexistence region widens for solutions containing two types of chains with rather disparate stiffness. In the nematic phase, both types of chains contribute to the nematic order, with intermediate values of the order parameter compared to the corresponding single component solutions. As the difference in bending stiffness is increased, the two chain types separate into two coexisting nematic phases. The phase behavior is rationalized by considering the chemical potentials of the two components and the Gibbs excess free energy. The geometric properties of the chain conformations under the various conditions are also discussed.
Collapse
Affiliation(s)
- Sergei A Egorov
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22901, United States.,Institute of Physics, Johannes Gutenberg University Mainz, Staudingerweg 7, 55128 Mainz, Germany
| | - Andrey Milchev
- Institute of Physical Chemistry, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria.,Institute of Physics, Johannes Gutenberg University Mainz, Staudingerweg 7, 55128 Mainz, Germany
| | - Arash Nikoubashman
- Institute of Physics, Johannes Gutenberg University Mainz, Staudingerweg 7, 55128 Mainz, Germany
| | - Kurt Binder
- Institute of Physics, Johannes Gutenberg University Mainz, Staudingerweg 7, 55128 Mainz, Germany
| |
Collapse
|
5
|
Affiliation(s)
- Michael P. Allen
- Department of Physics, University of Warwick, Coventry, UK
- H. H. Wills Physics Laboratory, Royal Fort, Bristol, UK
| |
Collapse
|
6
|
Nowak C, Escobedo FA. Stability of the Gyroid Phase in Rod–Coil Systems via Thermodynamic Integration with Molecular Dynamics. J Chem Theory Comput 2018; 14:5984-5991. [DOI: 10.1021/acs.jctc.8b00419] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Christian Nowak
- School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Fernando A. Escobedo
- School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
7
|
Nowak C, Escobedo FA. Effect of Block Immiscibility on Strain-Induced Microphase Segregation and Crystallization of Model Block Copolymer Elastomers. Macromolecules 2018. [DOI: 10.1021/acs.macromol.8b00965] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Christian Nowak
- School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Fernando A. Escobedo
- School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
8
|
Oyarzún B, Mognetti BM. Programming configurational changes in systems of functionalised polymers using reversible intramolecular linkages. Mol Phys 2018. [DOI: 10.1080/00268976.2018.1503745] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Bernardo Oyarzún
- Université Libre de Bruxelles (ULB), Interdisciplinary Center for Nonlinear Phenomena and Complex Systems, Brussels, Belgium
| | - Bortolo Matteo Mognetti
- Université Libre de Bruxelles (ULB), Interdisciplinary Center for Nonlinear Phenomena and Complex Systems, Brussels, Belgium
| |
Collapse
|
9
|
Shakirov T, Paul W. Crystallization in melts of short, semiflexible hard polymer chains: An interplay of entropies and dimensions. Phys Rev E 2018; 97:042501. [PMID: 29758595 DOI: 10.1103/physreve.97.042501] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Indexed: 12/19/2022]
Abstract
What is the thermodynamic driving force for the crystallization of melts of semiflexible polymers? We try to answer this question by employing stochastic approximation Monte Carlo simulations to obtain the complete thermodynamic equilibrium information for a melt of short, semiflexible polymer chains with purely repulsive nonbonded interactions. The thermodynamics is obtained based on the density of states of our coarse-grained model, which varies by up to 5600 orders of magnitude. We show that our polymer melt undergoes a first-order crystallization transition upon increasing the chain stiffness at fixed density. This crystallization can be understood by the interplay of the maximization of different entropy contributions in different spatial dimensions. At sufficient stiffness and density, the three-dimensional orientational interactions drive the orientational ordering transition, which is accompanied by a two-dimensional translational ordering transition in the plane perpendicular to the chains resulting in a hexagonal crystal structure. While the three-dimensional ordering can be understood in terms of Onsager theory, the two-dimensional transition can be understood in terms of the liquid-hexatic transition of hard disks. Due to the domination of lateral two-dimensional translational entropy over the one-dimensional translational entropy connected with columnar displacements, the chains form a lamellar phase. Based on this physical understanding, orientational ordering and translational ordering should be separable for polymer melts. A phenomenological theory based on this understanding predicts a qualitative phase diagram as a function of volume fraction and stiffness in good agreement with results from the literature.
Collapse
Affiliation(s)
- T Shakirov
- Institute of Physics, Martin-Luther-University, 06099 Halle, Germany
| | - W Paul
- Institute of Physics, Martin-Luther-University, 06099 Halle, Germany
| |
Collapse
|
10
|
Ramírez-Hernández A, Hur SM, Armas-Pérez JC, de la Cruz MO, de Pablo JJ. Demixing by a Nematic Mean Field: Coarse-Grained Simulations of Liquid Crystalline Polymers. Polymers (Basel) 2017; 9:E88. [PMID: 30970766 PMCID: PMC6431948 DOI: 10.3390/polym9030088] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Accepted: 02/24/2017] [Indexed: 11/17/2022] Open
Abstract
Liquid crystalline polymers exhibit a particular richness of behaviors that stems from their rigidity and their macromolecular nature. On the one hand, the orientational interaction between liquid-crystalline motifs promotes their alignment, thereby leading to the emergence of nematic phases. On the other hand, the large number of configurations associated with polymer chains favors formation of isotropic phases, with chain stiffness becoming the factor that tips the balance. In this work, a soft coarse-grained model is introduced to explore the interplay of chain stiffness, molecular weight and orientational coupling, and their role on the isotropic-nematic transition in homopolymer melts. We also study the structure of polymer mixtures composed of stiff and flexible polymeric molecules. We consider the effects of blend composition, persistence length, molecular weight and orientational coupling strength on the melt structure at the nano- and mesoscopic levels. Conditions are found where the systems separate into two phases, one isotropic and the other nematic. We confirm the existence of non-equilibrium states that exhibit sought-after percolating nematic domains, which are of interest for applications in organic photovoltaic and electronic devices.
Collapse
Affiliation(s)
- Abelardo Ramírez-Hernández
- Materials Science Division, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439, USA
- Institute for Molecular Engineering, The University of Chicago, Chicago, IL 60637, USA; (S.-M.H.); (J.C.A.-P.)
| | - Su-Mi Hur
- Institute for Molecular Engineering, The University of Chicago, Chicago, IL 60637, USA; (S.-M.H.); (J.C.A.-P.)
- School of Polymer Science and Engineering, Chonnam National University, Gwangju 500-757, Korea
| | - Julio C. Armas-Pérez
- Institute for Molecular Engineering, The University of Chicago, Chicago, IL 60637, USA; (S.-M.H.); (J.C.A.-P.)
- División de Ciencias e Ingenierías, Campus León, Universidad de Guanajuato, Loma del Bosque 103, León, Guanajuato 37150, Mexico
| | - Monica Olvera de la Cruz
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208, USA;
| | - Juan J. de Pablo
- Materials Science Division, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439, USA
- Institute for Molecular Engineering, The University of Chicago, Chicago, IL 60637, USA; (S.-M.H.); (J.C.A.-P.)
| |
Collapse
|
11
|
Nowak C, Escobedo FA. Tuning the Sawtooth Tensile Response and Toughness of Multiblock Copolymer Diamond Networks. Macromolecules 2016. [DOI: 10.1021/acs.macromol.6b00733] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Christian Nowak
- School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Fernando A. Escobedo
- School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
12
|
Egorov SA, Milchev A, Binder K. Semiflexible Polymers in the Bulk and Confined by Planar Walls. Polymers (Basel) 2016; 8:E296. [PMID: 30974573 PMCID: PMC6432127 DOI: 10.3390/polym8080296] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 07/27/2016] [Accepted: 07/29/2016] [Indexed: 11/21/2022] Open
Abstract
Semiflexible polymers in solution under good solvent conditions can undergo an isotropic-nematic transition. This transition is reminiscent of the well-known entropically-driven transition of hard rods described by Onsager's theory, but the flexibility of the macromolecules causes specific differences in behavior, such as anomalous long wavelength fluctuations in the ordered phase, which can be understood by the concept of the deflection length. A brief review of the recent progress in the understanding of these problems is given, summarizing results obtained by large-scale molecular dynamics simulations and density functional theory. These results include also the interaction of semiflexible polymers with hard walls and the wall-induced nematic order, which can give rise to capillary nematization in thin film geometry. Various earlier theoretical approaches to these problems are briefly mentioned, and an outlook on the status of experiments is given. It is argued that in many cases of interest, it is not possible to describe the scaled densities at the isotropic-nematic transition as functions of the ratio of the contour length and the persistence length alone, but the dependence on the ratio of chain diameter and persistence length also needs to be considered.
Collapse
Affiliation(s)
- Sergei A Egorov
- Department of Chemistry, University of Virginia, Charlottesville, VA 22901, USA.
- Institut für Physik, Johannes Gutenberg Universität Mainz, 55099 Mainz, Germany.
| | - Andrey Milchev
- Institute for Physical Chemistry, Bulgarian Academia of Sciences, 1113 Sofia, Bulgaria.
| | - Kurt Binder
- Institut für Physik, Johannes Gutenberg Universität Mainz, 55099 Mainz, Germany.
| |
Collapse
|
13
|
Zhang W, Gomez ED, Milner ST. Using surface-induced ordering to probe the isotropic-to-nematic transition for semiflexible polymers. SOFT MATTER 2016; 12:6141-7. [PMID: 27345760 DOI: 10.1039/c6sm01258b] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Semiflexible polymers undergo a weakly first order isotropic-to-nematic (IN) phase transition when the volume fraction ϕ is high enough that random alignment of the backbone segments is no longer viable. For semiflexible chains, the critical volume fraction ϕc is governed by the backbone stiffness Np. To locate the IN phase transition, we perform molecular dynamics (MD) simulations of bead-spring chains confined between two impenetrable parallel surfaces. We use the impenetrable surfaces to induce nematic-isotropic interfaces for semiflexible chains in the isotropic phase. By progressively increasing the backbone stiffness Np, we observe the propagation of surface-induced nematic order above a critical stiffness N for a given ϕ. Using the simulation results N(ϕ), we construct the IN phase boundry in the ϕ-Np plane, from which the scaling relation between ϕc and Np is obtained. For semiflexible chains with Np ≤ 5.78, our results suggest ϕc ∼ Np(-1), consistent with prediction by Khokhlov and Semenov. For chains with Np ≥ 5.78, we observe a new scaling regime in which ϕc ∼ Np(-2/3).
Collapse
Affiliation(s)
- Wenlin Zhang
- Department of Chemical Engineering, Pennsylvania State University, University Park, PA 16802, USA.
| | - Enrique D Gomez
- Department of Chemical Engineering, Pennsylvania State University, University Park, PA 16802, USA. and Materials Research Institute, Pennsylvania State University, University Park, PA 16802, USA
| | - Scott T Milner
- Department of Chemical Engineering, Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|
14
|
Egorov SA, Milchev A, Virnau P, Binder K. A new insight into the isotropic-nematic phase transition in lyotropic solutions of semiflexible polymers: density-functional theory tested by molecular dynamics. SOFT MATTER 2016; 12:4944-59. [PMID: 27249320 DOI: 10.1039/c6sm00778c] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Semiflexible polymers in solution are studied for a wide range of both contour length L and persistence length lp as a function of monomer concentration under good solvent conditions. Both density-functional theory (DFT) and molecular dynamics (MD) simulation methods are used, and a very good agreement between both techniques is observed for rather stiff polymers. Evidence for a new mechanism of order parameter fluctuations in the nematic phase is presented, namely collective deformations of bundles of wormlike chains twisted around each other, and the typical wavelengths and amplitudes of these modes are estimated. These long wavelength fluctuations cause a reduction of the order parameter in comparison with the DFT prediction. It is also found that DFT becomes unreliable for rather flexible polymers in predicting that the transition from the isotropic (I)-phase to the nematic (N)-phase still exists at very high monomer concentrations (which in reality does not occur). However, under conditions when DFT is accurate, it provides reliable predictions also for the width of the I-N two-phase coexistence region, which are difficult to obtain from MD in spite of the use of very large systems (up to 500 000 monomers) by means of graphics processing units (GPU). For short and not very stiff chains, a pre-transitional chain stretching is found in the isotropic phase near the I-N-transition, not predicted by theories. A comparison with theoretical predictions by Khokhlov-Semenov, Odijk, and Chen reveals that the scaled transition densities are not simply functions of L/lp only, as these theories predict, but depend on d/lp (where d is the chain diameter) as well. Chain properties in the nematically ordered phase are compared to those of chains confined in tubes, and the deflection length concept is tested. Eventually, some consequences for the interpretation of experiments are spelled out.
Collapse
Affiliation(s)
- Sergei A Egorov
- Department of Chemistry, University of Virginia, Charlottesville, VA 22901, USA.
| | | | | | | |
Collapse
|
15
|
Egorov SA, Milchev A, Virnau P, Binder K. Semiflexible polymers under good solvent conditions interacting with repulsive walls. J Chem Phys 2016; 144:174902. [DOI: 10.1063/1.4947254] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Sergei A. Egorov
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22901, USA
- Institut für Physik, Johannes Gutenberg Universität Mainz, 55099 Mainz, Germany
- Leibniz-Institut für Polymerforschung, Institut Theorie der Polymere, Hohe St. 6, 01069 Dresden, Germany
| | - Andrey Milchev
- Institute for Physical Chemistry, Bulgarian Academia of Sciences, 1113 Sofia, Bulgaria
| | - Peter Virnau
- Institut für Physik, Johannes Gutenberg Universität Mainz, 55099 Mainz, Germany
| | - Kurt Binder
- Institut für Physik, Johannes Gutenberg Universität Mainz, 55099 Mainz, Germany
| |
Collapse
|
16
|
Egorov SA, Milchev A, Binder K. Anomalous Fluctuations of Nematic Order in Solutions of Semiflexible Polymers. PHYSICAL REVIEW LETTERS 2016; 116:187801. [PMID: 27203343 DOI: 10.1103/physrevlett.116.187801] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Indexed: 05/22/2023]
Abstract
The nematic ordering in semiflexible polymers with contour length L exceeding their persistence length ℓ_{p} is described by a confinement of the polymers in a cylinder of radius r_{eff} much larger than the radius r_{ρ} expected from the respective concentration of the solution. Large-scale molecular dynamics simulations combined with density functional theory are used to locate the isotropic-nematic (I-N) transition and to validate this cylindrical confinement. Anomalous fluctuations due to chain deflections from neighboring chains in the nematic phase are proposed. Considering deflections as collective excitations in the nematically ordered phase of semiflexible polymers elucidates the origins of shortcomings in the description of the I-N transition by existing theories.
Collapse
Affiliation(s)
- Sergei A Egorov
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22901, USA
- Institut für Physik, Johannes Gutenberg Universität Mainz, 55099 Mainz, Germany
| | - Andrey Milchev
- Institute for Physical Chemistry, Bulgarian Academia of Sciences, 1113 Sofia, Bulgaria
| | - Kurt Binder
- Institut für Physik, Johannes Gutenberg Universität Mainz, 55099 Mainz, Germany
| |
Collapse
|
17
|
Oyarzún B, van Westen T, Vlugt TJH. Isotropic-nematic phase equilibria of hard-sphere chain fluids—Pure components and binary mixtures. J Chem Phys 2015; 142:064903. [DOI: 10.1063/1.4907639] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
|
18
|
Ivanov VA, Rodionova AS, Martemyanova JA, Stukan MR, Müller M, Paul W, Binder K. Conformational Properties of Semiflexible Chains at Nematic Ordering Transitions in Thin Films: A Monte Carlo Simulation. Macromolecules 2014. [DOI: 10.1021/ma402138c] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Victor A. Ivanov
- Faculty of Physics, Moscow State University, Moscow 119991, Russia
| | | | | | | | - Marcus Müller
- Institut
für Theoretische Physik, Georg-August-Universität, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
| | - Wolfgang Paul
- Institut für Physik, Martin-Luther-Universität Halle-Wittenberg, 06099 Halle (Saale), Germany
| | - Kurt Binder
- Institut für Physik, Johannes-Gutenberg-Universität, Staudinger Weg 7, 55099 Mainz, Germany
| |
Collapse
|
19
|
van Westen T, Vlugt TJH, Gross J. The isotropic-nematic and nematic-nematic phase transition of binary mixtures of tangent hard-sphere chain fluids: An analytical equation of state. J Chem Phys 2014; 140:034504. [DOI: 10.1063/1.4860980] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
20
|
|
21
|
Ivanov VA, Martemyanova JA, Rodionova AS, Stukan MR. Computer simulation of stiff-chain polymers. POLYMER SCIENCE SERIES C 2013. [DOI: 10.1134/s1811238213060039] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
22
|
Ivanov VA, Rodionova AS, Martemyanova JA, Stukan MR, Müller M, Paul W, Binder K. Wall-induced orientational order in athermal semidilute solutions of semiflexible polymers: Monte Carlo simulations of a lattice model. J Chem Phys 2013; 138:234903. [DOI: 10.1063/1.4810745] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
23
|
Oyarzún B, van Westen T, Vlugt TJH. The phase behavior of linear and partially flexible hard-sphere chain fluids and the solubility of hard spheres in hard-sphere chain fluids. J Chem Phys 2013; 138:204905. [DOI: 10.1063/1.4807056] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
24
|
Hong B, Chremos A, Panagiotopoulos AZ. Dynamics in coarse-grained models for oligomer-grafted silica nanoparticles. J Chem Phys 2012; 136:204904. [DOI: 10.1063/1.4719957] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
25
|
Padmanabhan V, Frischknecht AL, Mackay ME. Effect of Chain Stiffness on Nanoparticle Segregation in Polymer/Nanoparticle Blends Near a Substrate. MACROMOL THEOR SIMUL 2011. [DOI: 10.1002/mats.201100048] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
26
|
Ivanov VA, Rodionova AS, An EA, Martemyanova JA, Stukan MR, Müller M, Paul W, Binder K. Orientational ordering transitions of semiflexible polymers in thin films: a Monte Carlo simulation. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2011; 84:041810. [PMID: 22181168 DOI: 10.1103/physreve.84.041810] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2011] [Indexed: 05/31/2023]
Abstract
Athermal solutions (from dilute to concentrated) of semiflexible macromolecules confined in a film of thickness D between two hard walls are studied by means of grand-canonical lattice Monte Carlo simulation using the bond fluctuation model. This system exhibits two phase transitions as a function of the thickness of the film and polymer volume fraction. One of them is the bulk isotropic-nematic first-order transition, which ends in a critical point on decreasing the film thickness. The chemical potential at this transition decreases with decreasing film thickness ("capillary nematization"). The other transition is a continuous (or very weakly first-order) transition in the layers adjacent to the hard planar walls from the disordered phase, where the bond vectors of the macromolecules show local ordering (i.e., "preferential orientation" along the x or y axes of the simple cubic lattice, but no long-range orientational order occurs), to a quasi-two-dimensional nematic phase (with the director at each wall being oriented along either the x or y axis), while the bulk of the film is still disordered. When the chemical potential or monomer density increase, respectively, the thickness of these surface-induced nematic layers grows, causing the disappearance of the disordered region in the center of the film.
Collapse
Affiliation(s)
- V A Ivanov
- Faculty of Physics, Moscow State University, Moscow 119991, Russia
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Karayiannis NC, Foteinopoulou K, Laso M. Contact network in nearly jammed disordered packings of hard-sphere chains. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2009; 80:011307. [PMID: 19658698 DOI: 10.1103/physreve.80.011307] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2009] [Indexed: 05/28/2023]
Abstract
We present salient results of the analysis of the geometrical structure of a large fully equilibrated ensemble of nearly jammed packings of linear freely jointed chains of tangent hard spheres generated via extensive Monte Carlo simulations. In spite the expected differences due to chain connectivity, both the pair-correlation function and the contact network for chain packings are found to strongly resemble those in packings of monomeric hard spheres at the maximally random jammed (MRJ) state. A remarkable finding of the present work is the tendency of chains to form closed loops at the MRJ state as a consequence of chain collapse. Our simulations on disordered nearly jammed chain packings yield an average coordination number of 6, which fulfills the isostaticity condition and is in excellent agreement with the corresponding simulation [A. Donev, S. Torquato, and F. H. Stillinger, Phys. Rev. E 71, 011105 (2005)] and experimental [T. Aste, M. Saadatfar, and T. J. Senden, Phys. Rev. E 71, 061302 (2005)] findings for jammed packings of monatomic hard spheres. An exact correspondence between the statistical-mechanical ensembles of monomeric spheres and of hard-sphere chains offers insights regarding the structure and topology of the contact network of hard-sphere systems at the MRJ state.
Collapse
Affiliation(s)
- Nikos Ch Karayiannis
- Institute for Optoelectronics and Microsystems (ISOM) and ETSII, Universidad Politécnica de Madrid (UPM), José Gutiérrez Abascal 2, E-28006 Madrid, Spain
| | | | | |
Collapse
|
28
|
Karayiannis NC, Foteinopoulou K, Laso M. The structure of random packings of freely jointed chains of tangent hard spheres. J Chem Phys 2009; 130:164908. [DOI: 10.1063/1.3117903] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
29
|
Cinacchi G, De Gaetani L. Diffusivity of wormlike particles in isotropic melts and the influence of local nematization. J Chem Phys 2009; 130:144905. [DOI: 10.1063/1.3110605] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
30
|
Padmanabhan V, Kumar SK, Yethiraj A. Phase behavior of semiflexible polymer chains. J Chem Phys 2008; 128:124908. [DOI: 10.1063/1.2842135] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
31
|
Hörstermann H, Hentschke R. Effects due to molecular shape and flexibility on the permeability ratio of binary fluid mixtures in a model polymer network via computer simulation. J Chem Phys 2008; 128:084902. [DOI: 10.1063/1.2839435] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
32
|
Triplett DA, Fichthorn KA. Monte Carlo simulation of two-dimensional hard rectangles: confinement effects. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2008; 77:011707. [PMID: 18351866 DOI: 10.1103/physreve.77.011707] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2007] [Revised: 09/24/2007] [Indexed: 05/26/2023]
Abstract
We use orientational-bias Monte Carlo simulations to examine the phase behavior of two-dimensional hard rectangles in the bulk and under confinement by hard walls. For all of the rod aspect ratios and area fractions studied, we find that confinement increases the degree of nematic ordering over the bulk, as confined rods tend to align their long axes parallel to the confining walls. The extent of nematic ordering increases as the separation between the confining walls decreases. If the aspect ratio of the rectangles is sufficiently large, they exhibit nematic ordering in both the bulk and under confinement, where the nematic director is set by the walls. Rods with a small aspect ratio are isotropic in the bulk and exhibit weak tetratic tendencies for sufficiently high densities. From studies of density profiles, angular distributions, and orientational correlation functions for confined, low-aspect-ratio rods, it is apparent that they align their long axes parallel to the wall in the near-wall region, where layering occurs for sufficiently high rod densities. However, confined rods with low aspect ratios still exhibit weak tetratic (isotropic) tendencies near the center of the confined region for all but the smallest wall separations. We note that although our studies probe the ordering of hard rectangles, the entropic tendencies that we observe here will be present for rods with energetic interactions. Thus, these studies serve as a general starting point for understanding and controlling the assembly of rods in two-dimensional confining geometries.
Collapse
Affiliation(s)
- Derek A Triplett
- Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | | |
Collapse
|
33
|
De Pablo JJ, Escobedo FA. Monte Carlo Methods for Polymeric Systems. ADVANCES IN CHEMICAL PHYSICS 2007. [DOI: 10.1002/9780470141649.ch11] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
34
|
Kofke DA. Semigrand Canonical Monte Carlo Simulation; Integration Along Coexistence Lines. ADVANCES IN CHEMICAL PHYSICS 2007. [DOI: 10.1002/9780470141649.ch13] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
|
35
|
Methods for Examining Phase Equilibria. ACTA ACUST UNITED AC 2007. [DOI: 10.1007/978-3-540-38448-9_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
36
|
Takaba H, Hayashi H, Nakao SI. Development of Pressure Controlled Grand Canonical Ensemble Monte Carlo for Efficient Estimation of Solubility in Polymer. KAGAKU KOGAKU RONBUN 2006. [DOI: 10.1252/kakoronbunshu.32.31] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Hiromitsu Takaba
- Department of Chemical System Engineering, The University of Tokyo
| | - Hideki Hayashi
- Department of Chemical System Engineering, The University of Tokyo
| | - Shin-ichi Nakao
- Department of Chemical System Engineering, The University of Tokyo
| |
Collapse
|
37
|
Oyen E, Hentschke R. Computer simulation of polymer networks: Swelling by binary Lennard-Jones mixtures. J Chem Phys 2005; 123:054902. [PMID: 16108688 DOI: 10.1063/1.1979497] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The swelling of regular, tightly meshed model networks is investigated by a molecular-dynamics-Monte Carlo hybrid technique. The chemical equilibrium between two simulation boxes representing the gel phase and a solvent bath, respectively, is obtained by subjecting the Lennard-Jones particles of a binary mixture, serving as explicit solvent, to the particle transfer step of Gibbs ensemble-Monte Carlo. The swelling behavior, especially preferential absorption of a single component, whose dependence on temperature, pressure, and fluid composition is studied, also depends significantly on the size of the central simulation cell. These finite-size effects correlate well with those exhibited by the density of solvent-free (dry) networks. A theoretical expression, whose derivation is based on network elasticity (of dry networks) yields finite-size scaling behavior in good accord with simulation results for both dry networks and gels in contact with solvent baths. This expression can be used to extrapolate the swelling behavior of simulated finite systems to infinite system size.
Collapse
Affiliation(s)
- Enno Oyen
- Fachbereich Mathematik und Naturwissenschaften and Institut für Materialwissenschaften, Bergische Universität, D-42097 Wuppertal, Germany
| | | |
Collapse
|
38
|
Bhawe DM, Cohen C, Escobedo FA. Effect of chain stiffness and entanglements on the elastic behavior of end-linked elastomers. J Chem Phys 2005; 123:014909. [PMID: 16035871 DOI: 10.1063/1.1949210] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The effect of chain stiffness and entanglements on the elastic behavior and microscopic structure of cross-linked polymer networks was studied using Monte Carlo simulations. We investigated the behavior of entangled and entanglement-free networks at various degrees of chain stiffness and densities. Based on previous results that indicated that trapped entanglements prevent strain-induced order-disorder transitions in semiflexible chain networks, we prepared the entangled networks by end-linking the chains in very dilute conditions so as to minimize the extent of trapped entanglements. We also considered the entanglement-free case by using a "diamond" structure. We found that the presence of even a very small amount of trapped entanglements is enough to prevent a discontinuous strain-induced transition to an ordered phase. In these mildly entangled networks, a nematiclike order is eventually attained at high extensions but the elastic response remains continuous and the cross-links remain uniformly distributed through the simulation box. The entanglement-free diamond networks on the other hand show discontinuities in their stress-strain data. Networks at higher densities exhibit a more stable ordered phase and show an unusual staircaselike stress-strain curve. This is the result of a stepwise extension mechanism in which the chains form ordered domains that exclude the cross-links. Extension is achieved by increasing the number of these ordered domains in the strain direction. Cross-links aggregate in the spaces between these ordered domains and form periodic bands. Each vertical upturn in the stress-strain data corresponds to the existence of an integer number of ordered domains. This stepwise elastic behavior is found to be similar to that exhibited by some tough natural materials.
Collapse
Affiliation(s)
- Dhananjay M Bhawe
- School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, USA
| | | | | |
Collapse
|
39
|
Bhawe DM, Cohen C, Escobedo FA. Stepwise elastic behavior in a model elastomer. PHYSICAL REVIEW LETTERS 2004; 93:257804. [PMID: 15697945 DOI: 10.1103/physrevlett.93.257804] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2004] [Indexed: 05/24/2023]
Abstract
Monte Carlo simulations of an entanglement-free cross-linked polymer network of semiflexible chains reveal a peculiar stepwise elastic response. For increasing stress, step jumps in strain are observed that do not correlate with changes in the number of aligned chains. We show that this unusual behavior stems from the ability of the system to form multiple ordered chain domains that exclude the cross-linking species. This novel elastomer shows a toughening behavior similar to that observed in biological structural materials, such as muscle proteins and abalone shell adhesive.
Collapse
Affiliation(s)
- Dhananjay M Bhawe
- School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, USA
| | | | | |
Collapse
|
40
|
Lü X, Kindt JT. Monte Carlo simulation of the self-assembly and phase behavior of semiflexible equilibrium polymers. J Chem Phys 2004; 120:10328-38. [PMID: 15268058 DOI: 10.1063/1.1729855] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Grand canonical Monte Carlo simulations of a simple model semiflexible equilibrium polymer system, consisting of hard sphere monomers reversibly self-assembling into chains of arbitrary length, have been performed using a novel sampling method to add or remove multiple monomers during a single MC move. Systems with two different persistence lengths and a range of bond association constants have been studied. We find first-order lyotropic phase transitions between isotropic and nematic phases near the concentrations predicted by a statistical thermodynamic theory, but with significantly narrower coexistence regions. A possible contribution to the discrepancy between theory and simulation is that the length distribution of chains in the nematic phase is bi-exponential, differing from the simple exponential distribution found in the isotropic phase and predicted from a mean-field treatment of the nematic. The additional short length-scale characterizing the distribution appears to arise from the lower orientational order of short chains. The dependence of this length-scale on chemical potential, bond association constant, and total monomer concentration has been examined.
Collapse
Affiliation(s)
- Xinjiang Lü
- Department of Chemistry and Cherry L. Emerson Center for Scientific Computation, Emory University, Atlanta, GA 30322, USA
| | | |
Collapse
|
41
|
Bhawe DM, Cohen C, Escobedo FA. Formation and Characterization of Semiflexible Polymer Networks via Monte Carlo Simulations. Macromolecules 2004. [DOI: 10.1021/ma0354896] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Dhananjay M. Bhawe
- School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853
| | - Claude Cohen
- School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853
| | - Fernando A. Escobedo
- School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853
| |
Collapse
|
42
|
Abstract
This review provides a discussion of recent techniques for simulation of phase equilibria of complex fluids. Monte Carlo methods are emphasized over molecular dynamics methods. We describe recent developments, such as the use of expanded-ensemble, tempering, or histogram reweighting techniques. Our discussion of such developments is aimed at a general audience and is intended to provide an overview of the main advantages and limitations of each particular technique. References are provided to allow interested readers to identify and trace back most recent applications of a particular simulation technique. We conclude with general guidelines regarding selection of suitable simulation methods for particular problems and systems of interest.
Collapse
Affiliation(s)
- J J de Pablo
- Department of Chemical Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA.
| | | | | |
Collapse
|
43
|
Ivanov VA, Stukan MR, Müller M, Paul W, Binder K. Phase diagram of solutions of stiff-chain macromolecules: A Monte Carlo simulation. J Chem Phys 2003. [DOI: 10.1063/1.1572812] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
44
|
Escobedo FA. A simulation study of lyotropic isotropic–nematic phase transitions in polydisperse chain systems. J Chem Phys 2003. [DOI: 10.1063/1.1571811] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
|
45
|
Jaffer KM, Opps SB, Sullivan DE, Nickel BG, Mederos L. The nematic-isotropic phase transition in semiflexible fused hard-sphere chain fluids. J Chem Phys 2001. [DOI: 10.1063/1.1340606] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
46
|
Bunker A, Dünweg B. Parallel excluded volume tempering for polymer melts. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2001; 63:016701. [PMID: 11304387 DOI: 10.1103/physreve.63.016701] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2000] [Indexed: 05/23/2023]
Abstract
We have developed a technique to accelerate the acquisition of effectively uncorrelated configurations for off-lattice models of dense polymer melts that makes use of both parallel tempering and large-scale Monte Carlo moves. The method is based upon simulating a set of systems in parallel, each of which has a slightly different repulsive core potential, such that a thermodynamic path from full excluded volume to an ideal gas of random walks is generated. While each system is run with standard stochastic dynamics, resulting in an NVT ensemble, we implement the parallel tempering through stochastic swaps between the configurations of adjacent potentials, and the large-scale Monte Carlo moves through attempted pivot and translation moves that reach a realistic acceptance probability as the limit of the ideal gas of random walks is approached. Compared to pure stochastic dynamics, this results in an increased efficiency even for a system of chains as short as N=60 monomers, however at this chain length the large-scale Monte Carlo moves were ineffective. For even longer chains, the speedup becomes substantial, as observed from preliminary data for N=200. We also compare our scheme to the end bridging algorithm of Theodorou et al. For N=60, end bridging must allow a polydispersity of more than 10% in order to relax the end-to-end vector more quickly than our method. The comparison is, however, hampered by the fact that the end-to-end vector becomes a somewhat artificial quantity when one implements end bridging, and is perhaps no longer the slowest dynamic variable.
Collapse
Affiliation(s)
- A Bunker
- Max Planck Institute for Polymer Research, Ackermannweg 10, D-55128 Mainz, Germany
| | | |
Collapse
|
47
|
Sarkisov L, Monson PA. Computer simulations of phase equilibrium for a fluid confined in a disordered porous structure. PHYSICAL REVIEW. E, STATISTICAL PHYSICS, PLASMAS, FLUIDS, AND RELATED INTERDISCIPLINARY TOPICS 2000; 61:7231-7234. [PMID: 11088427 DOI: 10.1103/physreve.61.7231] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2000] [Indexed: 05/23/2023]
Abstract
We present calculations of the phase diagrams of a Lennard-Jones 12-6 fluid confined in a disordered porous structure made up of a dispersion of spherical particles, following up on an earlier work on the same system. In particular we present additional calculations using more realizations of the matrix and we investigate the applicability of the Gibbs-Duhem integration method to the calculation of phase equilibrium in these systems. The essential picture of disordered and inhomogeneous coexisting vapor and liquid phases, which emerged in the earlier work, is confirmed by the new calculations. However, a second phase transition associated with the wetting of the porous material by the fluid is found to be more sensitive to variations of the matrix realization. While for the present model this transition appears for particular realizations of the matrix, it does not seem to survive averaging over realizations.
Collapse
Affiliation(s)
- L Sarkisov
- Department of Chemical Engineering, University of Massachusetts, Amherst, Massachusetts 01003, USA
| | | |
Collapse
|
48
|
Fodi B, Hentschke R. Simulated phase behavior of reversibly assembled polymers. J Chem Phys 2000. [DOI: 10.1063/1.481320] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
49
|
Aydt EM, Hentschke R. Swelling of a model network: A Gibbs-ensemble molecular dynamics study. J Chem Phys 2000. [DOI: 10.1063/1.481114] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
50
|
Escobedo FA, de Pablo JJ. On the Scaling of the Critical Solution Temperature of Binary Polymer Blends with Chain Length. Macromolecules 1999. [DOI: 10.1021/ma9812276] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Fernando A. Escobedo
- Department of Chemical Engineering, University of Wisconsin, Madison, Wisconsin 53706-1691, and School of Chemical Engineering, Cornell University, Ithaca, New York 14853-5201
| | - Juan J. de Pablo
- Department of Chemical Engineering, University of Wisconsin, Madison, Wisconsin 53706-1691, and School of Chemical Engineering, Cornell University, Ithaca, New York 14853-5201
| |
Collapse
|