1
|
Villaseco Arribas E, Vindel-Zandbergen P, Roy S, Maitra NT. Different flavors of exact-factorization-based mixed quantum-classical methods for multistate dynamics. Phys Chem Chem Phys 2023; 25:26380-26395. [PMID: 37750820 DOI: 10.1039/d3cp03464j] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
The exact factorization approach has led to the development of new mixed quantum-classical methods for simulating coupled electron-ion dynamics. We compare their performance for dynamics when more than two electronic states are occupied at a given time, and analyze: (1) the use of coupled versus auxiliary trajectories in evaluating the electron-nuclear correlation terms, (2) the approximation of using these terms within surface-hopping and Ehrenfest frameworks, and (3) the relevance of the exact conditions of zero population transfer away from nonadiabatic coupling regions and total energy conservation. Dynamics through the three-state conical intersection in the uracil radical cation as well as polaritonic models in one dimension are studied.
Collapse
Affiliation(s)
| | - Patricia Vindel-Zandbergen
- Department of Physics, Rutgers University, Newark 07102, New Jersey, USA.
- Department of Chemistry, New York University, New York, New York 10003, USA
| | - Saswata Roy
- Department of Physics, Rutgers University, Newark 07102, New Jersey, USA.
| | - Neepa T Maitra
- Department of Physics, Rutgers University, Newark 07102, New Jersey, USA.
| |
Collapse
|
2
|
DECIDE: A Deterministic Mixed Quantum-Classical Dynamics Approach. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12147022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Mixed quantum-classical dynamics provides an efficient way of simulating the dynamics of quantum subsystems coupled to many-body environments. Many processes, including proton-transfer reactions, electron-transfer reactions, and vibrational energy transport, for example, take place in such open systems. The most accurate algorithms for performing mixed quantum-classical simulations require very large ensembles of trajectories to obtain converged expectation values, which is computationally prohibitive for quantum subsystems containing even a few degrees of freedom. The recently developed “Deterministic evolution of coordinates with initial decoupled equations” (DECIDE) method has demonstrated high accuracy and low computational cost for a host of model systems; however, these applications relied on representing the equations of motion in subsystem and adiabatic energy bases. While these representations are convenient for certain systems, the position representation is convenient for many other systems, including systems undergoing proton- and electron-transfer reactions. Thus, in this review, we provide a step-by-step derivation of the DECIDE approach and demonstrate how to cast the DECIDE equations in a quantum harmonic oscillator position basis for a simple one-dimensional (1D) hydrogen bond model. After integrating the DECIDE equations of motion on this basis, we show that the total energy of the system is conserved for this model and calculate various quantities of interest. Limitations of casting the equations in an incomplete basis are also discussed.
Collapse
|
3
|
Sindhu A, Jain A. Benchmarking the Surface Hopping Method to Include Nuclear Quantum Effects. J Chem Theory Comput 2021; 17:655-665. [PMID: 33432812 DOI: 10.1021/acs.jctc.0c01065] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We have benchmarked the surface hopping method to capture nuclear quantum effects in the spin-Boson model in the deep tunneling regime. The thermal populations and the rate constants calculated using the surface hopping method are compared with those calculated using Boltzmann theory and Fermi's golden rule, respectively. Additionally, we have proposed a simple kinetic model that partially includes nuclear quantum effects within Marcus theory, and the results of the surface hopping method are analyzed under the framework of this simple kinetic model. A broad range of parameters are investigated to identify the regimes for the successes and failures of the surface hopping method. This work shows that with the accurate treatment of decoherence and velocity reversal, surface hopping can generally capture the nuclear quantum effects in the deep tunneling and weak diabatic coupling regime.
Collapse
Affiliation(s)
- Aarti Sindhu
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Amber Jain
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400076, India
| |
Collapse
|
4
|
Brown SE, Shakib FA. Recent progress in approximate quantum dynamics methods for the study of proton-coupled electron transfer reactions. Phys Chem Chem Phys 2021; 23:2535-2556. [PMID: 33367437 DOI: 10.1039/d0cp05166g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Proton-coupled electron transfer (PCET) reactions are ubiquitous natural processes at the heart of energy conversion reactions in photosynthesis and respiration, DNA repair, and diverse enzymatic reactions. Theoretical formulation and computational method developments have eyed modeling of thermal and photoinduced PCET for the last three decades. The accumulation of these studies, collected in dozens of reviews, accounts, and perspectives, has firmly established the influence of quantum effects, including non-adiabatic electronic transitions, vibrational relaxation, zero-point energy, and proton tunneling, on the rate and mechanism of PCET reactions. Here, we focus on some recently-developed methods, spanning the last eight years, that can quantitatively capture these effects in the PCET context and provide efficient means for their qualitative description in complex systems. The theoretical background of each method and their accuracy with respect to exact results are discussed and the results of relevant PCET simulations based on each method are presented.
Collapse
Affiliation(s)
- Sandra E Brown
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Farnaz A Shakib
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, NJ 07102, USA.
| |
Collapse
|
5
|
Martinez P, Rosenzweig B, Hoffmann NM, Lacombe L, Maitra NT. Case studies of the time-dependent potential energy surface for dynamics in cavities. J Chem Phys 2021; 154:014102. [PMID: 33412864 PMCID: PMC7968936 DOI: 10.1063/5.0033386] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 12/10/2020] [Indexed: 11/14/2022] Open
Abstract
The exact time-dependent potential energy surface driving the nuclear dynamics was recently shown to be a useful tool to understand and interpret the coupling of nuclei, electrons, and photons in cavity settings. Here, we provide a detailed analysis of its structure for exactly solvable systems that model two phenomena: cavity-induced suppression of proton-coupled electron-transfer and its dependence on the initial state, and cavity-induced electronic excitation. We demonstrate the inadequacy of simply using a weighted average of polaritonic surfaces to determine the dynamics. Such a weighted average misses a crucial term that redistributes energy between the nuclear and the polaritonic systems, and this term can in fact become a predominant term in determining the nuclear dynamics when several polaritonic surfaces are involved. Evolving an ensemble of classical trajectories on the exact potential energy surface reproduces the nuclear wavepacket quite accurately, while evolving on the weighted polaritonic surface fails after a short period of time. The implications and prospects for application of mixed quantum-classical methods based on this surface are discussed.
Collapse
Affiliation(s)
- Phillip Martinez
- Department of Physics and Astronomy, Hunter College of the City University of New York, 695 Park Avenue, New York, New York 10065, USA
| | | | - Norah M. Hoffmann
- Department of Physics, Rutgers University, Newark, New Jersey 07102, USA
| | - Lionel Lacombe
- Department of Physics, Rutgers University, Newark, New Jersey 07102, USA
| | - Neepa T. Maitra
- Department of Physics, Rutgers University, Newark, New Jersey 07102, USA
| |
Collapse
|
6
|
Hoffmann NM, Lacombe L, Rubio A, Maitra NT. Effect of many modes on self-polarization and photochemical suppression in cavities. J Chem Phys 2020; 153:104103. [PMID: 32933282 DOI: 10.1063/5.0012723] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The standard description of cavity-modified molecular reactions typically involves a single (resonant) mode, while in reality, the quantum cavity supports a range of photon modes. Here, we demonstrate that as more photon modes are accounted for, physicochemical phenomena can dramatically change, as illustrated by the cavity-induced suppression of the important and ubiquitous process of proton-coupled electron-transfer. Using a multi-trajectory Ehrenfest treatment for the photon-modes, we find that self-polarization effects become essential, and we introduce the concept of self-polarization-modified Born-Oppenheimer surfaces as a new construct to analyze dynamics. As the number of cavity photon modes increases, the increasing deviation of these surfaces from the cavity-free Born-Oppenheimer surfaces, together with the interplay between photon emission and absorption inside the widening bands of these surfaces, leads to enhanced suppression. The present findings are general and will have implications for the description and control of cavity-driven physical processes of molecules, nanostructures, and solids embedded in cavities.
Collapse
Affiliation(s)
- Norah M Hoffmann
- Department of Physics, Rutgers University at Newark, Newark, New Jersey 07102, USA
| | - Lionel Lacombe
- Department of Physics, Rutgers University at Newark, Newark, New Jersey 07102, USA
| | - Angel Rubio
- Department of Physics, Center for Free-Electron Laser Science, Max Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Neepa T Maitra
- Department of Physics, Rutgers University at Newark, Newark, New Jersey 07102, USA
| |
Collapse
|
7
|
Mandal A, Hunt KLC. Variance of the energy of a quantum system in a time-dependent perturbation: Determination by nonadiabatic transition probabilities. J Chem Phys 2020; 152:104110. [DOI: 10.1063/1.5140009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Affiliation(s)
- Anirban Mandal
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, USA
| | - Katharine L. C. Hunt
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, USA
| |
Collapse
|
8
|
Lacombe L, Hoffmann NM, Maitra NT. Exact Potential Energy Surface for Molecules in Cavities. PHYSICAL REVIEW LETTERS 2019; 123:083201. [PMID: 31491208 DOI: 10.1103/physrevlett.123.083201] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Indexed: 06/10/2023]
Abstract
We find and analyze the exact time-dependent potential energy surface driving the proton motion for a model of cavity-induced suppression of proton-coupled electron transfer. We show how, in contrast to the polaritonic surfaces, its features directly correlate to the proton dynamics and we discuss cavity modifications of its structure responsible for the suppression. The results highlight the interplay between nonadiabatic effects from coupling to photons and coupling to electrons and suggest caution is needed when applying traditional dynamics methods based on polaritonic surfaces.
Collapse
Affiliation(s)
- Lionel Lacombe
- Department of Physics and Astronomy, Hunter College of the City University of New York, 695 Park Avenue, New York, New York 10065, USA
| | - Norah M Hoffmann
- Department of Physics and Astronomy, Hunter College of the City University of New York, 695 Park Avenue, New York, New York 10065, USA
- Max Planck Institute for the Structure and Dynamics of Matter and Center for Free-Electron Laser Science and Department of Physics, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Neepa T Maitra
- Department of Physics and Astronomy, Hunter College of the City University of New York, 695 Park Avenue, New York, New York 10065, USA
- Physics Program and Chemistry Program, Graduate Center of the City University of New York, New York 10016, USA
| |
Collapse
|
9
|
Porkhun VI, Gonik IL, Zhukov SS. Identifying Elementary Acts of the Photoreactions between Benzophenones and Aliphatic Amines from the Effects of CIDNP. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A 2019. [DOI: 10.1134/s0036024419060256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
10
|
Mandal A, Sandoval C. JS, Shakib FA, Huo P. Quasi-Diabatic Propagation Scheme for Direct Simulation of Proton-Coupled Electron Transfer Reaction. J Phys Chem A 2019; 123:2470-2482. [DOI: 10.1021/acs.jpca.9b00077] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Arkajit Mandal
- Department of Chemistry, University of Rochester, 120 Trustee Road, Rochester, New York 14627, United States
| | - Juan S. Sandoval C.
- Department of Chemistry, University of Rochester, 120 Trustee Road, Rochester, New York 14627, United States
| | - Farnaz A. Shakib
- Department of Chemistry, University of Rochester, 120 Trustee Road, Rochester, New York 14627, United States
| | - Pengfei Huo
- Department of Chemistry, University of Rochester, 120 Trustee Road, Rochester, New York 14627, United States
| |
Collapse
|
11
|
Mandal A, Shakib FA, Huo P. Investigating photoinduced proton coupled electron transfer reaction using quasi diabatic dynamics propagation. J Chem Phys 2018; 148:244102. [DOI: 10.1063/1.5030634] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Affiliation(s)
- Arkajit Mandal
- Department of Chemistry, University of Rochester, 120 Trustee Road, Rochester, New York 14627, USA
| | - Farnaz A. Shakib
- Department of Chemistry, University of Rochester, 120 Trustee Road, Rochester, New York 14627, USA
| | - Pengfei Huo
- Department of Chemistry, University of Rochester, 120 Trustee Road, Rochester, New York 14627, USA
| |
Collapse
|
12
|
Abstract
Electronic friction is a correction to the Born-Oppenheimer approximation, whereby nuclei in motion experience a drag in the presence of a manifold of electronic states. The notion of electronic friction has a long history and has been (re-)discovered in the context of a wide variety of different chemical and physical systems including, but not limited to, surface scattering events, surface reactions or chemisorption, electrochemistry, and conduction through molecular-(or nano-) junctions. Over the years, quite a few different forms of electronic friction have been offered in the literature. In this perspective, we briefly review these developments of electronic friction, highlighting the fact that we can now isolate a single, unifying form for (Markovian) electronic friction. We also focus on the role of electron-electron interactions for understanding frictional effects and offer our thoughts on the strengths and weaknesses of using electronic friction to model dynamics in general.
Collapse
Affiliation(s)
- Wenjie Dou
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Joseph E Subotnik
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
13
|
Pierre S, Duke JR, Hele TJH, Ananth N. A mapping variable ring polymer molecular dynamics study of condensed phase proton-coupled electron transfer. J Chem Phys 2017; 147:234103. [DOI: 10.1063/1.4986517] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Affiliation(s)
- Sadrach Pierre
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, USA
| | - Jessica R. Duke
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, USA
| | - Timothy J. H. Hele
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, USA
| | - Nandini Ananth
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, USA
| |
Collapse
|
14
|
Importance of eigenvector sign consistency in computations of expectation values via mixed quantum-classical surface-hopping dynamics. Theor Chem Acc 2017. [DOI: 10.1007/s00214-017-2105-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
15
|
Affiliation(s)
- M. C. Sherman
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - S. A. Corcelli
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, USA
| |
Collapse
|
16
|
Shakib F, Hanna G. Mixed Quantum-Classical Liouville Approach for Calculating Proton-Coupled Electron-Transfer Rate Constants. J Chem Theory Comput 2016; 12:3020-9. [DOI: 10.1021/acs.jctc.6b00362] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Farnaz Shakib
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Gabriel Hanna
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| |
Collapse
|
17
|
Shakib FA, Hanna G. New insights into the nonadiabatic state population dynamics of model proton-coupled electron transfer reactions from the mixed quantum-classical Liouville approach. J Chem Phys 2016; 144:024110. [DOI: 10.1063/1.4939586] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Affiliation(s)
- Farnaz A. Shakib
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Gabriel Hanna
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| |
Collapse
|
18
|
Liu Y, Liu H, Song K, Xu Y, Shi Q. Theoretical Study of Proton Coupled Electron Transfer Reactions: The Effect of Hydrogen Bond Bending Motion. J Phys Chem B 2015; 119:8104-14. [DOI: 10.1021/acs.jpcb.5b02927] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yang Liu
- Beijing
National Laboratory
for Molecular Sciences, State Key Laboratory for Structural Chemistry
of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun, Beijing 100190, China
| | - Hao Liu
- Beijing
National Laboratory
for Molecular Sciences, State Key Laboratory for Structural Chemistry
of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun, Beijing 100190, China
| | - Kai Song
- Beijing
National Laboratory
for Molecular Sciences, State Key Laboratory for Structural Chemistry
of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun, Beijing 100190, China
| | - Yang Xu
- Beijing
National Laboratory
for Molecular Sciences, State Key Laboratory for Structural Chemistry
of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun, Beijing 100190, China
| | - Qiang Shi
- Beijing
National Laboratory
for Molecular Sciences, State Key Laboratory for Structural Chemistry
of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun, Beijing 100190, China
| |
Collapse
|
19
|
Sherman MC, Corcelli SA. Thermal equilibrium properties of surface hopping with an implicit Langevin bath. J Chem Phys 2015; 142:024110. [DOI: 10.1063/1.4905253] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
- M. C. Sherman
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - S. A. Corcelli
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, USA
| |
Collapse
|
20
|
Shakib FA, Hanna G. An analysis of model proton-coupled electron transfer reactions via the mixed quantum-classical Liouville approach. J Chem Phys 2014; 141:044122. [DOI: 10.1063/1.4890915] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
21
|
Migliore A, Polizzi NF, Therien M, Beratan DN. Biochemistry and theory of proton-coupled electron transfer. Chem Rev 2014; 114:3381-465. [PMID: 24684625 PMCID: PMC4317057 DOI: 10.1021/cr4006654] [Citation(s) in RCA: 354] [Impact Index Per Article: 35.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Indexed: 02/01/2023]
Affiliation(s)
- Agostino Migliore
- Department
of Chemistry, Department of Biochemistry, and Department of Physics, Duke University, Durham, North Carolina 27708, United States
| | - Nicholas F. Polizzi
- Department
of Chemistry, Department of Biochemistry, and Department of Physics, Duke University, Durham, North Carolina 27708, United States
| | - Michael
J. Therien
- Department
of Chemistry, Department of Biochemistry, and Department of Physics, Duke University, Durham, North Carolina 27708, United States
| | - David N. Beratan
- Department
of Chemistry, Department of Biochemistry, and Department of Physics, Duke University, Durham, North Carolina 27708, United States
| |
Collapse
|
22
|
Gruebele M, Thirumalai D. Perspective: Reaches of chemical physics in biology. J Chem Phys 2013; 139:121701. [PMID: 24089712 PMCID: PMC5942441 DOI: 10.1063/1.4820139] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2013] [Accepted: 08/20/2013] [Indexed: 01/09/2023] Open
Abstract
Chemical physics as a discipline contributes many experimental tools, algorithms, and fundamental theoretical models that can be applied to biological problems. This is especially true now as the molecular level and the systems level descriptions begin to connect, and multi-scale approaches are being developed to solve cutting edge problems in biology. In some cases, the concepts and tools got their start in non-biological fields, and migrated over, such as the idea of glassy landscapes, fluorescence spectroscopy, or master equation approaches. In other cases, the tools were specifically developed with biological physics applications in mind, such as modeling of single molecule trajectories or super-resolution laser techniques. In this introduction to the special topic section on chemical physics of biological systems, we consider a wide range of contributions, all the way from the molecular level, to molecular assemblies, chemical physics of the cell, and finally systems-level approaches, based on the contributions to this special issue. Chemical physicists can look forward to an exciting future where computational tools, analytical models, and new instrumentation will push the boundaries of biological inquiry.
Collapse
Affiliation(s)
- Martin Gruebele
- Departments of Chemistry and Physics, and Center for Biophysics and Computational Biology, University of Illinois, Urbana, Illinois 61801, USA
| | | |
Collapse
|
23
|
Kretchmer JS, Miller TF. Direct simulation of proton-coupled electron transfer across multiple regimes. J Chem Phys 2013; 138:134109. [DOI: 10.1063/1.4797462] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
24
|
Shenvi N, Yang W. Achieving partial decoherence in surface hopping through phase correction. J Chem Phys 2012; 137:22A528. [DOI: 10.1063/1.4746407] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
25
|
Shushkov P, Li R, Tully JC. Ring polymer molecular dynamics with surface hopping. J Chem Phys 2012; 137:22A549. [DOI: 10.1063/1.4766449] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
26
|
Ananth N, Miller TF. Flux-correlation approach to characterizing reaction pathways in quantum systems: a study of condensed-phase proton-coupled electron transfer. Mol Phys 2012. [DOI: 10.1080/00268976.2012.686641] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
27
|
Nelson T, Fernandez-Alberti S, Chernyak V, Roitberg AE, Tretiak S. Nonadiabatic excited-state molecular dynamics: Numerical tests of convergence and parameters. J Chem Phys 2012; 136:054108. [DOI: 10.1063/1.3680565] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
28
|
Soudackov AV, Hazra A, Hammes-Schiffer S. Multidimensional treatment of stochastic solvent dynamics in photoinduced proton-coupled electron transfer processes: Sequential, concerted, and complex branching mechanisms. J Chem Phys 2011; 135:144115. [DOI: 10.1063/1.3651083] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
29
|
Shenvi N, Subotnik JE, Yang W. Phase-corrected surface hopping: Correcting the phase evolution of the electronic wavefunction. J Chem Phys 2011; 135:024101. [DOI: 10.1063/1.3603447] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
30
|
Shenvi N, Subotnik JE, Yang W. Simultaneous-trajectory surface hopping: A parameter-free algorithm for implementing decoherence in nonadiabatic dynamics. J Chem Phys 2011; 134:144102. [DOI: 10.1063/1.3575588] [Citation(s) in RCA: 110] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
31
|
Hazra A, Soudackov AV, Hammes-Schiffer S. Role of Solvent Dynamics in Ultrafast Photoinduced Proton-Coupled Electron Transfer Reactions in Solution. J Phys Chem B 2010; 114:12319-32. [DOI: 10.1021/jp1051547] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Anirban Hazra
- Department of Chemistry, Pennsylvania State University, University Park, Pennsylvania 16802
| | - Alexander V. Soudackov
- Department of Chemistry, Pennsylvania State University, University Park, Pennsylvania 16802
| | - Sharon Hammes-Schiffer
- Department of Chemistry, Pennsylvania State University, University Park, Pennsylvania 16802
| |
Collapse
|
32
|
Jahjah R, Gassama A, Bulach V, Suzuki C, Abe M, Hoffmann N, Martinez A, Nuzillard JM. Stereoselective Triplet-Sensitised Radical Reactions of Furanone Derivatives. Chemistry 2010; 16:3341-54. [DOI: 10.1002/chem.200903045] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
33
|
Applications of Mixed-Quantum/Classical Trajectories to the Study of Nuclear Quantum Effects in Chemical Reactions and Vibrational Relaxation Processes. ADVANCES IN QUANTUM CHEMISTRY 2010. [DOI: 10.1016/s0065-3276(10)59008-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
|
34
|
Reece SY, Nocera DG. Proton-coupled electron transfer in biology: results from synergistic studies in natural and model systems. Annu Rev Biochem 2009; 78:673-99. [PMID: 19344235 DOI: 10.1146/annurev.biochem.78.080207.092132] [Citation(s) in RCA: 361] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Proton-coupled electron transfer (PCET) underpins energy conversion in biology. PCET may occur with the unidirectional or bidirectional transfer of a proton and electron and may proceed synchronously or asynchronously. To illustrate the role of PCET in biology, this review presents complementary biological and model systems that explore PCET in electron transfer (ET) through hydrogen bonds [azurin as compared to donor-acceptor (D-A) hydrogen-bonded networks], the activation of C-H bonds [alcohol dehydrogenase and soybean lipoxygenase (SLO) as compared to Fe(III) metal complexes], and the generation and transport of amino acid radicals [photosystem II (PSII) and ribonucleotide reductase (RNR) as compared to tyrosine-modified photoactive Re(I) and Ru(II) complexes]. In providing these comparisons, the fundamental principles of PCET in biology are illustrated in a tangible way.
Collapse
Affiliation(s)
- Steven Y Reece
- Department of Chemistry, Massachusetts Institutes of Technology, Cambridge, MA 02139-4307, USA
| | | |
Collapse
|
35
|
Schmidt JR, Parandekar PV, Tully JC. Mixed quantum-classical equilibrium: Surface hopping. J Chem Phys 2008; 129:044104. [DOI: 10.1063/1.2955564] [Citation(s) in RCA: 132] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
36
|
Giese TJ, York DM. Charge-dependent model for many-body polarization, exchange, and dispersion interactions in hybrid quantum mechanical/molecular mechanical calculations. J Chem Phys 2008; 127:194101. [PMID: 18035873 DOI: 10.1063/1.2778428] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
This work explores a new charge-dependent energy model consisting of van der Waals and polarization interactions between the quantum mechanical (QM) and molecular mechanical (MM) regions in a combined QMMM calculation. van der Waals interactions are commonly treated using empirical Lennard-Jones potentials, whose parameters are often chosen based on the QM atom type (e.g., based on hybridization or specific covalent bonding environment). This strategy for determination of QMMM nonbonding interactions becomes tedious to parametrize and lacks robust transferability. Problems occur in the study of chemical reactions where the "atom type" is a complex function of the reaction coordinate. This is particularly problematic for reactions, where atoms or localized functional groups undergo changes in charge state and hybridization. In the present work we propose a new model for nonelectrostatic nonbonded interactions in QMMM calculations that overcomes many of these problems. The model is based on a scaled overlap model for repulsive exchange and attractive dispersion interactions that is a function of atomic charge. The model is chemically significant since it properly correlates atomic size, softness, polarizability, and dispersion terms with minimal one-body parameters that are functions of the atomic charge. Tests of the model are examined for rare-gas interactions with neutral and charged atoms in order to demonstrate improved transferability. The present work provides a new framework for modeling QMMM interactions with improved accuracy and transferability.
Collapse
Affiliation(s)
- Timothy J Giese
- Department of Chemistry, University of Minnesota, Minneapolis, MN 55455, USA
| | | |
Collapse
|
37
|
Eustis SN, Radisic D, Bowen KH, Bachorz RA, Haranczyk M, Schenter GK, Gutowski M. Electron-Driven Acid-Base Chemistry: Proton Transfer from Hydrogen Chloride to Ammonia. Science 2008; 319:936-9. [DOI: 10.1126/science.1151614] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
38
|
Cho E, Shin S. Nonadiabatic dynamics of charge transfer in diatomic anion clusters. J Chem Phys 2007; 127:244311. [PMID: 18163679 DOI: 10.1063/1.2812543] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
We have studied the photodissociation and recombination dynamics of the diatomic anions X(2)(-) and XY(-) designed to mimic I(2)(-) and ICl(-), respectively, by using a one-electron model in size-selected N(2)O clusters. The one-electron model is composed of two nuclei and an extra electron moving in a two-dimensional plane including the two nuclei. The main purpose of this study is to explain the salient features of various dynamical processes of molecular ions in clusters using a simple theoretical model. For heteronuclear diatomic anions, a mass disparity and asymmetric electron affinity between the X and Y atoms lead to different phenomena from the homonuclear case. The XY(-) anion shows efficient recombination for a smaller cluster size due to the effect of collision-mediated energy transfer and an inherent potential wall on excited state at asymptotic region, while the recombination for the X(2)(-) anion is due to rearrangement of solvent configuration and faster nonadiabatic transitions. The results of the present study illustrate the microscopic details of the electronically nonadiabatic processes which control the photodissociation dynamics of molecular ions in clusters.
Collapse
Affiliation(s)
- Eunseog Cho
- School of Chemistry, Seoul National University, Seoul 151-747, Korea
| | | |
Collapse
|
39
|
Ivnitski D, Atanassov P. Electrochemical Studies of Intramolecular Electron Transfer in Laccase fromTrametes versicolor. ELECTROANAL 2007. [DOI: 10.1002/elan.200703983] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
40
|
Affiliation(s)
- My Hang V Huynh
- DE-1: High Explosive Science and Technology Group, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | | |
Collapse
|
41
|
Meyer TJ, Huynh MHV, Thorp HH. The Possible Role of Proton-Coupled Electron Transfer (PCET) in Water Oxidation by Photosystem II. Angew Chem Int Ed Engl 2007; 46:5284-304. [PMID: 17604381 DOI: 10.1002/anie.200600917] [Citation(s) in RCA: 410] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
All higher life forms use oxygen and respiration as their primary energy source. The oxygen comes from water by solar-energy conversion in photosynthetic membranes. In green plants, light absorption in photosystem II (PSII) drives electron-transfer activation of the oxygen-evolving complex (OEC). The mechanism of water oxidation by the OEC has long been a subject of great interest to biologists and chemists. With the availability of new molecular-level protein structures from X-ray crystallography and EXAFS, as well as the accumulated results from numerous experiments and theoretical studies, it is possible to suggest how water may be oxidized at the OEC. An integrated sequence of light-driven reactions that exploit coupled electron-proton transfer (EPT) could be the key to water oxidation. When these reactions are combined with long-range proton transfer (by sequential local proton transfers), it may be possible to view the OEC as an intricate structure that is "wired for protons".
Collapse
Affiliation(s)
- Thomas J Meyer
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | | | | |
Collapse
|
42
|
Abstract
An approach to the quantum-classical mechanics of phase space dependent operators, which has been proposed recently, is remodeled as a formalism for wave fields. Such wave fields obey a system of coupled nonlinear equations that can be written by means of a suitable non-Hamiltonian bracket. As an example, the theory is applied to the relaxation dynamics of the spin-boson model. In the adiabatic limit, a good agreement with calculations performed by the operator approach is obtained. Moreover, the theory proposed in this paper can take nonadiabatic effects into account without resorting to surface-hopping approximations. Hence, the results obtained follow qualitatively those of previous surface-hopping calculations and increase by a factor of (at least) 2, the time length over which nonadiabatic dynamics can be propagated with small statistical errors. Moreover, it is worth to note that the dynamics of quantum-classical wave fields proposed here is a straightforward non-Hamiltonian generalization of the formalism for nonlinear quantum mechanics that Weinberg introduced recently.
Collapse
Affiliation(s)
- Alessandro Sergi
- Dipartimento di Fisica, Universitá degli Studi di Messina, Contrada Papardo 98166 Messina, Italy.
| |
Collapse
|
43
|
Cukier R. A temperature-dependent Hartree approach for excess proton transport in hydrogen-bonded chains. Chem Phys 2004. [DOI: 10.1016/j.chemphys.2004.06.060] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
44
|
|
45
|
Stubbe J, Nocera DG, Yee CS, Chang MCY. Radical initiation in the class I ribonucleotide reductase: long-range proton-coupled electron transfer? Chem Rev 2003; 103:2167-201. [PMID: 12797828 DOI: 10.1021/cr020421u] [Citation(s) in RCA: 667] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- JoAnne Stubbe
- Department of Chemistry, 77 Massachusetts Avenue, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139-4307, USA.
| | | | | | | |
Collapse
|
46
|
Cho E, Shin S. Charge transfer and nonadiabatic dynamics of diatomic anions in clusters. J Chem Phys 2002. [DOI: 10.1063/1.1503338] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
|
47
|
Shigeta Y, Ushiyama H, Takatsuka K. Models for double proton and electron transfer reactions: analyses by means of quantum dynamics. J Mol Struct 2002. [DOI: 10.1016/s0022-2860(02)00228-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
48
|
Cukier RI. A Theory that Connects Proton-Coupled Electron-Transfer and Hydrogen-Atom Transfer Reactions. J Phys Chem B 2002. [DOI: 10.1021/jp012396m] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- R. I. Cukier
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824-1322
| |
Collapse
|
49
|
Kobrak MN, Hammes-Schiffer S. Molecular Dynamics Simulation of Proton-Coupled Electron Transfer in Solution. J Phys Chem B 2001. [DOI: 10.1021/jp012102x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Mark N. Kobrak
- Department of Chemistry, 152 Davey Laboratory, Pennsylvania State University, University Park, Pennsylvania 16802
| | - Sharon Hammes-Schiffer
- Department of Chemistry, 152 Davey Laboratory, Pennsylvania State University, University Park, Pennsylvania 16802
| |
Collapse
|
50
|
|