1
|
Leibin IV, Bezrukov DS, Buchachenko AA. Trapping and thermal migration of the first- and second-row atoms in Ar, Kr and Xe crystals. Phys Chem Chem Phys 2024; 26:958-973. [PMID: 38088087 DOI: 10.1039/d3cp04178f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
Trapping and temperature-induced migration (TIM) of the first- and second-row atoms A from H to Ne in the face-centered cubic rare gas RG = Ar, Kr and Xe crystals are investigated within the classical crystal model parameterized by the empirically modified pairwise potentials. New ab initio coupled cluster A-RG potentials computed in a uniform way for all the atoms A are used to represent the atom-crystal interactions. Absolute and relative stabilities of the substitutional and interstitial trapping sites, their structures, interstitial migration pathways, related activation energies and rough estimates of the TIM rates are obtained. The isotropic model, which neglects non-zero atomic electronic orbital momentum, reveals that migration of interstitial atoms along the network of conjugated fcc octahedral voids is the generic case for atomic mobility. Anisotropic interactions with a crystal inherent to P-state atoms B, C, O and F are accounted for using the non-relativistic diatomics-in-molecule method. Depending on its sign, interaction anisotropy can alter the structures of interstitial trapping sites and transition states remarkably. This, in turn, can dramatically affect the TIM rates. Comparison with reliable experimental data available for oxygen and hydrogen indicates a systematic overestimation of the measured activation energies, by 30% at worst. A comprehensive literature review accomplished for other atoms reveals a lack of information on the TIM processes and rates, though makes it possible to verify a part of the present results on the trapping site energies and structures.
Collapse
Affiliation(s)
- Iosif V Leibin
- Skolkovo Institute of Science and Technology, Skolkovo Innovation Center, Moscow 121205, Russia.
| | - Dmitry S Bezrukov
- Department of Chemistry, M.V. Lomonosov Moscow State University, Moscow 119991, Russia
| | - Alexei A Buchachenko
- Skolkovo Institute of Science and Technology, Skolkovo Innovation Center, Moscow 121205, Russia
| |
Collapse
|
2
|
Straatsma CJE, Fabrikant MI, Douberly GE, Lewandowski HJ. Production of carbon clusters C3 to C12 with a cryogenic buffer-gas beam source. J Chem Phys 2017; 147:124201. [DOI: 10.1063/1.4995237] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- C. J. E. Straatsma
- JILA and Department of Electrical, Computer, and Energy Engineering, University of Colorado, Boulder, Colorado 80309-0440, USA
| | - M. I. Fabrikant
- JILA and Department of Physics, University of Colorado, Boulder, Colorado 80309-0440, USA
| | - G. E. Douberly
- Department of Chemistry, University of Georgia, Athens, Georgia 30602-2556, USA
| | - H. J. Lewandowski
- JILA and Department of Physics, University of Colorado, Boulder, Colorado 80309-0440, USA
| |
Collapse
|
4
|
Monninger G, Förderer M, Gürtler P, Kalhofer S, Petersen S, Nemes L, Szalay PG, Krätschmer W. Vacuum Ultraviolet Spectroscopy of the Carbon Molecule C3 in Matrix Isolated State: Experiment and Theory. J Phys Chem A 2002. [DOI: 10.1021/jp0142536] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- G. Monninger
- Max-Planck-Institut für Kernphysik, Postfach 103980, D-69029 Heidelberg, Germany, Hasylab at Desy, Notkestrasse 85, D-22603 Hamburg, Germany, Chemical Research Center, Research Laboratory for Materials and Environmental Chemistry, Hungarian Academy of Sciences, Pusztaszeri út 59-67, H-1025 Budapest, Hungary, and Department of Theoretical Chemistry, Eötvös Loránd University, P. O. Box 32, H-1518 Budapest, Hungary
| | - M. Förderer
- Max-Planck-Institut für Kernphysik, Postfach 103980, D-69029 Heidelberg, Germany, Hasylab at Desy, Notkestrasse 85, D-22603 Hamburg, Germany, Chemical Research Center, Research Laboratory for Materials and Environmental Chemistry, Hungarian Academy of Sciences, Pusztaszeri út 59-67, H-1025 Budapest, Hungary, and Department of Theoretical Chemistry, Eötvös Loránd University, P. O. Box 32, H-1518 Budapest, Hungary
| | - P. Gürtler
- Max-Planck-Institut für Kernphysik, Postfach 103980, D-69029 Heidelberg, Germany, Hasylab at Desy, Notkestrasse 85, D-22603 Hamburg, Germany, Chemical Research Center, Research Laboratory for Materials and Environmental Chemistry, Hungarian Academy of Sciences, Pusztaszeri út 59-67, H-1025 Budapest, Hungary, and Department of Theoretical Chemistry, Eötvös Loránd University, P. O. Box 32, H-1518 Budapest, Hungary
| | - S. Kalhofer
- Max-Planck-Institut für Kernphysik, Postfach 103980, D-69029 Heidelberg, Germany, Hasylab at Desy, Notkestrasse 85, D-22603 Hamburg, Germany, Chemical Research Center, Research Laboratory for Materials and Environmental Chemistry, Hungarian Academy of Sciences, Pusztaszeri út 59-67, H-1025 Budapest, Hungary, and Department of Theoretical Chemistry, Eötvös Loránd University, P. O. Box 32, H-1518 Budapest, Hungary
| | - S. Petersen
- Max-Planck-Institut für Kernphysik, Postfach 103980, D-69029 Heidelberg, Germany, Hasylab at Desy, Notkestrasse 85, D-22603 Hamburg, Germany, Chemical Research Center, Research Laboratory for Materials and Environmental Chemistry, Hungarian Academy of Sciences, Pusztaszeri út 59-67, H-1025 Budapest, Hungary, and Department of Theoretical Chemistry, Eötvös Loránd University, P. O. Box 32, H-1518 Budapest, Hungary
| | - L. Nemes
- Max-Planck-Institut für Kernphysik, Postfach 103980, D-69029 Heidelberg, Germany, Hasylab at Desy, Notkestrasse 85, D-22603 Hamburg, Germany, Chemical Research Center, Research Laboratory for Materials and Environmental Chemistry, Hungarian Academy of Sciences, Pusztaszeri út 59-67, H-1025 Budapest, Hungary, and Department of Theoretical Chemistry, Eötvös Loránd University, P. O. Box 32, H-1518 Budapest, Hungary
| | - P. G. Szalay
- Max-Planck-Institut für Kernphysik, Postfach 103980, D-69029 Heidelberg, Germany, Hasylab at Desy, Notkestrasse 85, D-22603 Hamburg, Germany, Chemical Research Center, Research Laboratory for Materials and Environmental Chemistry, Hungarian Academy of Sciences, Pusztaszeri út 59-67, H-1025 Budapest, Hungary, and Department of Theoretical Chemistry, Eötvös Loránd University, P. O. Box 32, H-1518 Budapest, Hungary
| | - W. Krätschmer
- Max-Planck-Institut für Kernphysik, Postfach 103980, D-69029 Heidelberg, Germany, Hasylab at Desy, Notkestrasse 85, D-22603 Hamburg, Germany, Chemical Research Center, Research Laboratory for Materials and Environmental Chemistry, Hungarian Academy of Sciences, Pusztaszeri út 59-67, H-1025 Budapest, Hungary, and Department of Theoretical Chemistry, Eötvös Loránd University, P. O. Box 32, H-1518 Budapest, Hungary
| |
Collapse
|