1
|
Lai YF, Leung L, Timm MJ, Walker GC, Polanyi JC. Abortive reaction leads to selective adsorbate rotation. Faraday Discuss 2024; 251:448-456. [PMID: 38808590 DOI: 10.1039/d3fd00167a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
Electron-induced dissociation of a fluorocarbon adsorbate CF3 (ad) at 4.6 K is shown by Scanning Tunnelling Microscopy (STM) to form directed energetic F-atom 'projectiles' on Cu(110). The outcome of a collision between these directed projectiles and stationary co-adsorbed allyl 'target' molecules was found through STM to give rotational excitation of the target allyl, clockwise or anti-clockwise, depending on the chosen collision geometry. Molecular dynamics computation linked the collisional excitation of the allyl target to an 'abortive chemical reaction', in which the approach of the F-projectile stretched an H-C bond lifting the allyl above the surface, facilitating isomerization from 'Across' to 'Along' a Cu row.
Collapse
Affiliation(s)
- Yi-Fang Lai
- Lash Miller Chemical Laboratories, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario, M5S 3H6, Canada.
| | - Lydie Leung
- Lash Miller Chemical Laboratories, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario, M5S 3H6, Canada.
| | - Matthew J Timm
- Department of Physical Chemistry, University of Graz, Heinrichstrasse 28, 8010 Graz, Austria
| | - Gilbert C Walker
- Lash Miller Chemical Laboratories, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario, M5S 3H6, Canada.
| | - John C Polanyi
- Lash Miller Chemical Laboratories, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario, M5S 3H6, Canada.
| |
Collapse
|
2
|
Lipton-Duffin J, MacLeod J. Innovations in nanosynthesis: emerging techniques for precision, scalability, and spatial control in reactions of organic molecules on solid surfaces. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2023; 35:183001. [PMID: 36876935 DOI: 10.1088/1361-648x/acbc01] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 02/13/2023] [Indexed: 06/18/2023]
Abstract
The surface science-based approach to synthesising new organic materials on surfaces has gained considerable attention in recent years, owing to its success in facilitating the formation of novel 0D, 1D and 2D architectures. The primary mechanism used to date has been the catalytic transformation of small organic molecules through substrate-enabled reactions. In this Topical Review, we provide an overview of alternate approaches to controlling molecular reactions on surfaces. These approaches include light, electron and ion-initiated reactions, electrospray ionisation deposition-based techniques, collisions of neutral atoms and molecules, and superhydrogenation. We focus on the opportunities afforded by these alternative approaches, in particular where they may offer advantages in terms of selectivity, spatial control or scalability.
Collapse
Affiliation(s)
- Josh Lipton-Duffin
- School of Chemistry and Physics and Centre for Materials Science, Queensland University of Technology (QUT), Brisbane, Australia
- Central Analytical Research Facility, Queensland University of Technology (QUT), Brisbane, Australia
| | - Jennifer MacLeod
- School of Chemistry and Physics and Centre for Materials Science, Queensland University of Technology (QUT), Brisbane, Australia
| |
Collapse
|
3
|
Pathan MAK, Gupta A, Vaida ME. Understanding the Effect of an Amorphous Surface on the Ultrafast Dynamics of a Heterogeneous Photoinduced Reaction: CD 3I Photoinduced Reaction on Amorphous Cerium Oxide Films. J Phys Chem Lett 2022; 13:9759-9765. [PMID: 36226789 DOI: 10.1021/acs.jpclett.2c02294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
In this work, to understand how an amorphous surface influences the dynamics of surface photoinduced reactions, pump-probe spectroscopy in conjunction with mass spectrometry is employed to track the ultrafast evolution of intermediates and final products with time, mass, and energy resolution. As a model system, the photoinduced reaction of CD3I adsorbed on amorphous cerium oxide films is investigated. A fraction of the first intermediates produced on a freshly prepared surface is trapped to passivate the surface. After the A-band excitation, the minimum dissociation time of CD3I indicates that CD3I adsorption geometries with either CD3 or I facing the gas phase exist; however, the transient data suggest that most molecules are adsorbed with the I atom facing the surface. CD3 and I are consumed to form I2 and reform CD3I, which are produced at a steady rate only after the intermediates have lost the excess translational energy released from photodissociation.
Collapse
Affiliation(s)
- Md Afjal Khan Pathan
- Department of Physics, University of Central Florida, Orlando, Florida32816, United States
| | - Aakash Gupta
- Department of Physics, University of Central Florida, Orlando, Florida32816, United States
| | - Mihai E Vaida
- Department of Physics, University of Central Florida, Orlando, Florida32816, United States
- Renewable Energy and Chemical Transformations Cluster, University of Central Florida, Orlando, Florida32816, United States
| |
Collapse
|
4
|
Timm MJ, Leung L, Polanyi JC. Direct Observation of Knock-on in Surface Reactions at Zero Impact Parameter. J Am Chem Soc 2021; 143:12644-12649. [PMID: 34370480 DOI: 10.1021/jacs.1c05186] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Reaction dynamics examines molecular motions in reactive collisions. The aiming of reagents at one another has been achieved at selected miss distances (impact parameters, b) by using the corrugations on crystalline surfaces as collimator. Prior experimental work and ab initio calculation showed single atoms aimed at chemisorbed molecules with b = 0 gave knock-on of atomic reaction products through a linear transition state. Here we report a study of b = 0 collision between directed CF2 and stationary chemisorbed CF3. Experiments and ab initio calculations again show linear reaction with a linear transition state, despite the additional degrees of freedom for CF2. The directed motion of CF2 is conserved through this linear transition state. Conservation of directionality is evidenced experimentally by the observation of a knock-on chain reaction along a line of chemisorbed CF3.
Collapse
Affiliation(s)
- Matthew J Timm
- Lash Miller Chemical Laboratories, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - Lydie Leung
- Lash Miller Chemical Laboratories, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - John C Polanyi
- Lash Miller Chemical Laboratories, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| |
Collapse
|
5
|
Timm MJ, Leung L, Anggara K, Polanyi JC. Direct observation of knock-on reaction with umbrella inversion arising from zero-impact-parameter collision at a surface. Commun Chem 2021; 4:14. [PMID: 36697691 PMCID: PMC9814886 DOI: 10.1038/s42004-021-00453-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 01/18/2021] [Indexed: 02/07/2023] Open
Abstract
In Surface-Aligned-Reactions (SAR), the degrees of freedom of chemical reactions are restricted and therefore the reaction outcome is selected. Using the inherent corrugation of a Cu(110) substrate the adsorbate molecules can be positioned and aligned and the impact parameter, the collision miss-distance, can be chosen. Here, substitution reaction for a zero impact parameter collision gives an outcome which resembles the classic Newton's cradle in which an incident mass 'knocks-on' the same mass in the collision partner, here F + CF3 → (CF3)' + (F)' at a copper surface. The mechanism of knock-on was shown by Scanning Tunnelling Microscopy to involve reversal of the CF3 umbrella as in Walden inversion, with ejection of (F)' product along the continuation of the F-reagent direction of motion, in collinear reaction.
Collapse
Affiliation(s)
- Matthew J. Timm
- grid.17063.330000 0001 2157 2938Lash Miller Chemical Laboratories, Department of Chemistry, University of Toronto, Toronto, ON Canada
| | - Lydie Leung
- grid.17063.330000 0001 2157 2938Lash Miller Chemical Laboratories, Department of Chemistry, University of Toronto, Toronto, ON Canada
| | - Kelvin Anggara
- grid.17063.330000 0001 2157 2938Lash Miller Chemical Laboratories, Department of Chemistry, University of Toronto, Toronto, ON Canada
| | - John C. Polanyi
- grid.17063.330000 0001 2157 2938Lash Miller Chemical Laboratories, Department of Chemistry, University of Toronto, Toronto, ON Canada
| |
Collapse
|
6
|
Anggara K, Leung L, Timm MJ, Hu Z, Polanyi JC. Electron-induced molecular dissociation at a surface leads to reactive collisions at selected impact parameters. Faraday Discuss 2019; 214:89-103. [DOI: 10.1039/c8fd00137e] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A collimated beam of ‘projectiles’ strikes a chemisorbed ‘target’ thereby selecting the impact parameter, achieving an elusive goal of reaction dynamics.
Collapse
Affiliation(s)
- Kelvin Anggara
- Lash Miller Chemical Laboratories
- Department of Chemistry and Institute of Optical Sciences
- University of Toronto
- Toronto
- Canada
| | - Lydie Leung
- Lash Miller Chemical Laboratories
- Department of Chemistry and Institute of Optical Sciences
- University of Toronto
- Toronto
- Canada
| | - Matthew J. Timm
- Lash Miller Chemical Laboratories
- Department of Chemistry and Institute of Optical Sciences
- University of Toronto
- Toronto
- Canada
| | - Zhixin Hu
- Center for Joint Quantum Studies and Department of Physics
- Tianjin University
- Tianjin
- China
| | - John C. Polanyi
- Lash Miller Chemical Laboratories
- Department of Chemistry and Institute of Optical Sciences
- University of Toronto
- Toronto
- Canada
| |
Collapse
|
7
|
Anggara K, Leung L, Timm MJ, Hu Z, Polanyi JC. Approaching the forbidden fruit of reaction dynamics: Aiming reagent at selected impact parameters. SCIENCE ADVANCES 2018; 4:eaau2821. [PMID: 30310869 PMCID: PMC6173530 DOI: 10.1126/sciadv.aau2821] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 08/30/2018] [Indexed: 06/08/2023]
Abstract
Collision geometry is central to reaction dynamics. An important variable in collision geometry is the miss-distance between molecules, known as the "impact parameter." This is averaged in gas-phase molecular beam studies. By aligning molecules on a surface prior to electron-induced dissociation, we select impact parameters in subsequent inelastic collisions. Surface-collimated "projectile" molecules, difluorocarbene (CF2), were aimed at stationary "target" molecules characterized by scanning tunneling microscopy (STM), with the observed scattering interpreted by computational molecular dynamics. Selection of impact parameters showed that head-on collisions favored bimolecular reaction, whereas glancing collisions led only to momentum transfer. These collimated projectiles could be aimed at the wide variety of adsorbed targets identifiable by STM, with the selected impact parameter assisting in the identification of the collision geometry required for reaction.
Collapse
|
8
|
Cheng F, Leung L, Wang CG, Ji W, Polanyi JC. Retention of chirality in electron-induced reactions. Chem Commun (Camb) 2016; 52:6115-8. [PMID: 27073075 DOI: 10.1039/c6cc00849f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two enantiomers were observed by Scanning Tunneling Microscopy (STM) when meta-iodopyridine was physisorbed on a 4.6 K Cu(110) surface. The chirality of the reagent was retained in the products of the electron-induced reaction. Dynamical calculations showed this to be a consequence of the reaction occurring on one side of the mirror plane.
Collapse
Affiliation(s)
- Fang Cheng
- Lash Miller Chemical Laboratories, Department of Chemistry and Institute of Optical Sciences, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada.
| | | | | | | | | |
Collapse
|
9
|
Guo SY, Jenkins SJ, Ji W, Ning Z, Polanyi JC, Sacchi M, Wang CG. Repulsion-Induced Surface-Migration by Ballistics and Bounce. J Phys Chem Lett 2015; 6:4093-4098. [PMID: 26722783 DOI: 10.1021/acs.jpclett.5b01829] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The motion of adsorbate molecules across surfaces is fundamental to self-assembly, material growth, and heterogeneous catalysis. Recent Scanning Tunneling Microscopy studies have demonstrated the electron-induced long-range surface-migration of ethylene, benzene, and related molecules, moving tens of Angstroms across Si(100). We present a model of the previously unexplained long-range recoil of chemisorbed ethylene across the surface of silicon. The molecular dynamics reveal two key elements for directed long-range migration: first 'ballistic' motion that causes the molecule to leave the ab initio slab of the surface traveling 3-8 Å above it out of range of its roughness, and thereafter skipping-stone 'bounces' that transport it further to the observed long distances. Using a previously tested Impulsive Two-State model, we predict comparable long-range recoil of atomic chlorine following electron-induced dissociation of chlorophenyl chemisorbed at Cu(110).
Collapse
Affiliation(s)
- Si Yue Guo
- Lash Miller Chemical Laboratories, Department of Chemistry and Institute of Optical Sciences, University of Toronto , 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - Stephen J Jenkins
- Department of Chemistry, University of Cambridge , Lensfield Road, Cambridge, CB2 1EW, United Kingdom
| | - Wei Ji
- Department of Physics and Beijing Key Laboratory of Optoelectronic Functional Materials & Micro-nano Devices, Renmin University of China , Beijing 100872, China
| | - Zhanyu Ning
- Lash Miller Chemical Laboratories, Department of Chemistry and Institute of Optical Sciences, University of Toronto , 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - John C Polanyi
- Lash Miller Chemical Laboratories, Department of Chemistry and Institute of Optical Sciences, University of Toronto , 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - Marco Sacchi
- Department of Chemistry, University of Cambridge , Lensfield Road, Cambridge, CB2 1EW, United Kingdom
| | - Chen-Guang Wang
- Lash Miller Chemical Laboratories, Department of Chemistry and Institute of Optical Sciences, University of Toronto , 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
- Department of Physics and Beijing Key Laboratory of Optoelectronic Functional Materials & Micro-nano Devices, Renmin University of China , Beijing 100872, China
| |
Collapse
|
10
|
Yu HG. A complex guided spectral transform Lanczos method for studying quantum resonance states. J Chem Phys 2014; 141:244114. [PMID: 25554140 DOI: 10.1063/1.4905083] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
A complex guided spectral transform Lanczos (cGSTL) algorithm is proposed to compute both bound and resonance states including energies, widths, and wavefunctions. The algorithm comprises of two layers of complex-symmetric Lanczos iterations. A short inner layer iteration produces a set of complex formally orthogonal Lanczos polynomials. They are used to span the guided spectral transform function determined by a retarded Green operator. An outer layer iteration is then carried out with the transform function to compute the eigen-pairs of the system. The guided spectral transform function is designed to have the same wavefunctions as the eigenstates of the original Hamiltonian in the spectral range of interest. Therefore, the energies and/or widths of bound or resonance states can be easily computed with their wavefunctions or by using a root-searching method from the guided spectral transform surface. The new cGSTL algorithm is applied to bound and resonance states of HO2, and compared to previous calculations.
Collapse
Affiliation(s)
- Hua-Gen Yu
- Department of Chemistry, Brookhaven National Laboratory, Upton, New York 11973-5000, USA
| |
Collapse
|
11
|
Deiss M, Drews B, Deissler B, Hecker Denschlag J. Probing the axis alignment of an ultracold spin-polarized Rb(2) molecule. PHYSICAL REVIEW LETTERS 2014; 113:233004. [PMID: 25526128 DOI: 10.1103/physrevlett.113.233004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Indexed: 06/04/2023]
Abstract
We present a novel method for probing the alignment of the molecular axis of an ultracold, nonpolar dimer. These results are obtained using diatomic ^{87}Rb_{2} molecules in the vibrational ground state of the lowest triplet potential a^{3}Σ_{u}^{+} trapped in a 3D optical lattice. We measure the molecular polarizabilities, which are directly linked to the alignment, along each of the x, y, and z directions of the lab coordinate system. By preparing the molecules in various, precisely defined rotational quantum states we can control the degree of alignment of the molecular axis with high precision over a large range. Furthermore, we derive the dynamical polarizabilities for a laser wavelength of 1064.5 nm parallel and orthogonal to the molecular axis of the dimer, α_{∥}=(8.9±0.9)×10^{3} a.u. and α_{⊥}=(0.9±0.4)×10^{3} a.u., respectively. Our findings highlight that the depth of an optical lattice strongly depends on the rotational state of the molecule, which has to be considered in collision experiments. The present work paves the way for reaction studies between aligned molecules in the ultracold temperature regime.
Collapse
Affiliation(s)
- Markus Deiss
- Institut für Quantenmaterie and Center for Integrated Quantum Science and Technology IQST, Universität Ulm, 89069 Ulm, Germany
| | - Björn Drews
- Institut für Quantenmaterie and Center for Integrated Quantum Science and Technology IQST, Universität Ulm, 89069 Ulm, Germany
| | - Benjamin Deissler
- Institut für Quantenmaterie and Center for Integrated Quantum Science and Technology IQST, Universität Ulm, 89069 Ulm, Germany
| | - Johannes Hecker Denschlag
- Institut für Quantenmaterie and Center for Integrated Quantum Science and Technology IQST, Universität Ulm, 89069 Ulm, Germany
| |
Collapse
|
12
|
Cheng F, Ji W, Leung L, Ning Z, Polanyi JC, Wang CG. How adsorbate alignment leads to selective reaction. ACS NANO 2014; 8:8669-8675. [PMID: 25102432 DOI: 10.1021/nn503721h] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
There has been much interest in the effect of adsorbate alignment in a surface reaction. Here we show its significance for an electron-induced reaction occurring along preferred axes of the asymmetric Cu(110) surface, characterized by directional copper rows. By scanning tunneling microscopy (STM), we found that the heterocyclic aromatic reagent, physisorbed meta-iodopyridine, lay with its carbon-iodine either along the rows of Cu(110), "A", or perpendicular, "P". Electron-induced dissociative attachment with the C-I bond initially along "A" gave a chemisorbed I atom and chemisorbed vertical pyridyl, singly surface-bound, whereas that with C-I along "P" gave a chemisorbed I atom and a horizontal pyridyl, doubly bound. An impulsive two-state model, involving a short-lived antibonding state of C-I, accounted for the different product surface binding in terms of closer Cu···Cu atomic spacing along "A" accommodating only one binding site of the pyridyl ring recoiling from I and wider spacing along "P" accommodating simultaneously both binding sites, N-Cu and C-Cu, in the meta-position on the recoiling pyridyl ring. STM studies combined with dynamical modeling can be seen as a way to improve understanding of the role of surface alignment in determining reactive outcomes in induced reaction at asymmetric crystalline surfaces.
Collapse
Affiliation(s)
- Fang Cheng
- Lash Miller Chemical Laboratories, Department of Chemistry and Institute of Optical Sciences, University of Toronto , Toronto, Ontario M5S 3H6, Canada
| | | | | | | | | | | |
Collapse
|
13
|
Ning Z, Polanyi JC. Catalyzed Surface-Aligned Reaction, H(ad) + H2(ad) = H2(g) + H(ad) on Coinage Metals. Z PHYS CHEM 2013. [DOI: 10.1524/zpch.2013.0413] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
14
|
Huang K, Leung L, Lim T, Ning Z, Polanyi JC. Single-electron induces double-reaction by charge delocalization. J Am Chem Soc 2013; 135:6220-5. [PMID: 23582020 DOI: 10.1021/ja400612c] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Injecting an electron by scanning tunneling microscope into a molecule physisorbed at a surface can induce dissociative reaction of one adsorbate bond. Here we show experimentally that a single low-energy electron incident on ortho-diiodobenzene physisorbed on Cu(110) preferentially induces reaction of both of the C-I bonds in the adsorbate, with an order-of-magnitude greater efficiency than for comparable cases of single bond breaking. A two-electronic-state model was used to follow the dynamics, first on an anionic potential-energy surface (pes*) and subsequently on the ground state pes. The model led to the conclusion that the two-bond reaction was due to the delocalization of added charge between adjacent halogen-atoms of ortho-diiodobenzene through overlapping antibonding orbitals, in contrast to the cases of para-dihalobenzenes, studied earlier, for which electron-induced reaction severed exclusively a single carbon-halogen bond. The finding that charge delocalization within a single molecule can readily cause concerted two-bond breaking suggests the more general possibility of intra- and also intermolecular charge delocalization resulting in multisite reaction. Intermolecular charge delocalization has recently been proposed by this laboratory to account for reaction in physisorbed molecular chains (Ning, Z.; Polanyi, J. C. Angew. Chem., Int. Ed. 2013, 52, 320-324).
Collapse
Affiliation(s)
- Kai Huang
- Lash Miller Chemical Laboratories, Department of Chemistry and Institute of Optical Sciences, University of Toronto, 80 St. George Street, Toronto, Ontario, M5S 3H6 Canada
| | | | | | | | | |
Collapse
|
15
|
Ning Z, Polanyi JC. Charge Delocalization Induces Reaction in Molecular Chains at a Surface. Angew Chem Int Ed Engl 2012. [DOI: 10.1002/ange.201207819] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
16
|
Ning Z, Polanyi JC. Charge Delocalization Induces Reaction in Molecular Chains at a Surface. Angew Chem Int Ed Engl 2012. [DOI: 10.1002/anie.201207819] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|