1
|
Tóbiás R, Simkó I, Császár AG. Unusual Dynamics and Vibrational Fingerprints of van der Waals Dimers Formed by Linear Molecules and Rare-Gas Atoms. J Chem Theory Comput 2023. [PMID: 38032107 DOI: 10.1021/acs.jctc.3c00914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2023]
Abstract
Detailed structural, dynamical, and vibrational analyses have been performed for systems composed of linear triatomic molecules solvated by a single rare-gas atom, He, Ne, or Ar. Among the chromophores of these van der Waals (vdW) dimers, there are four neutral molecules (CO2, CS2, N2O, and OCS) and six molecular cations (HHe2+, HNe2+, HAr2+, HHeNe+, HHeAr+, and HNeAr+), both of apolar and polar nature. Following the exploration of bonding preferences, high-level four-dimensional (4D) potential energy surfaces (PESs) have been developed for 24 vdW dimers, keeping the two intramonomer bond lengths fixed. For these 24 complexes, over 1500 bound vibrational states have been obtained via quasi-variational nuclear-motion computations, employing exact kinetic-energy operators together with the accurate 4D PESs and their 2D/3D cuts. The reduced-dimensional (2D to 4D) dimer models have been compared with full-dimensional (6D) ones in the cases of the neutral CO2·Ar and charged HHe2+·He dimers, corroborating the high accuracy of the 2D to 4D vibrational energies. The reduced-dimensional models suggest that (a) while the equilibrium structures are T-shaped and planar, the effective ground-state structures are nonplanar, (b) certain bound states belong to collinear molecular structures, even when they are not minima, (c) the vdW vibrations are heavily mixed and many states have amplitudes corresponding to both the T-shaped and collinear structures, (d) there are a few dimers, for which even some of the vdW fundamentals lie above the first dissociation limit, and (e) the vdW vibrations are almost fully decoupled from the intramonomer bending motion.
Collapse
Affiliation(s)
- Roland Tóbiás
- HUN-REN-ELTE Complex Chemical Systems Research Group, P.O. Box 32, H-1518 Budapest 112, Hungary
| | - Irén Simkó
- Hevesy György PhD School of Chemistry, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/A, H-1117 Budapest, Hungary
- Institute of Chemistry, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/A, H-1117 Budapest, Hungary
| | - Attila G Császár
- HUN-REN-ELTE Complex Chemical Systems Research Group, P.O. Box 32, H-1518 Budapest 112, Hungary
- Institute of Chemistry, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/A, H-1117 Budapest, Hungary
| |
Collapse
|
2
|
Zhang XL, Yang SB, Hou D, Li H. An intramolecular vibrationally excited intermolecular potential energy surface and predicted 2OH overtone spectroscopy of H 2O-Kr. Phys Chem Chem Phys 2023; 25:29940-29950. [PMID: 37902029 DOI: 10.1039/d3cp04126c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2023]
Abstract
A new five-dimensional potential energy surface (PES) for H2O-Kr which explicitly includes the intramolecular 2OH overtone state of the H2O monomer is presented. The intermolecular potential energies were evaluated using explicitly correlated coupled cluster theory [CCSD(T)-F12] with a large basis set. Four vibrationally averaged analytical intermolecular PESs for H2O-Kr with H2O molecules in its |00+〉, |02+〉, |02-〉, and |11+〉 states are obtained by fitting to the multi-dimensional Morse/Long-Range potential function form. Each vibrationally averaged PES fitted to 578 points has root-mean-square (RMS) deviations smaller than 0.14 cm-1 and requires only 58 parameters. The combined radial discrete variable representation/angular finite basis representation method and the Lanczos algorithm were employed to calculate the rovibrational energy levels for |00+〉, |02+〉, |02-〉, and |11+〉 states of the H2O-Kr complexes. The calculated |02-〉Πf/e(101) ← |00+〉Σe(000) and |02+〉Πf/e(110) ← |00+〉Σe(101) infrared transitions are in excellent agreement with the experimental values with RMS discrepancies being only 0.007 and 0.016 cm-1, respectively. These analytical PESs can be used to provide reliable theoretical guidance for future infrared overtone spectroscopy of H2O-Kr.
Collapse
Affiliation(s)
- Xiao-Long Zhang
- The Laboratory of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, P. R. China
| | - Shu-Bin Yang
- The Laboratory of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, P. R. China
| | - Dan Hou
- Key Laboratory of Chemical Utilization of Plant Resources of Nanchang, College of Chemistry and Materials, Jiangxi Agricultural University, Nanchang 330045, P. R. China.
| | - Hui Li
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, 2519 Jiefang Road, Changchun 130023, P. R. China.
| |
Collapse
|
3
|
Li Y, Zhai Y, Li H. MLRNet: Combining the Physics-Motivated Potential Models with Neural Networks for Intermolecular Potential Energy Surface Construction. J Chem Theory Comput 2023; 19:1421-1431. [PMID: 36826225 DOI: 10.1021/acs.jctc.2c01049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
A physics-based machine learning model called MLRNet has been developed to construct the high-accuracy two-body intermolecular potential energy surface (IPES). The outputs of the neural network are integrated into the physically realistic Morse/long-range (MLR) function, which ensures that the MLRNet has meaningful extrapolation at both short and long ranges and solves the asymptotic problem in common neural network potential (NNP) models. The neural network representation of the MLR parameters is more flexible and more efficient than the polynomial expansion in the conventional mdMLR model, especially for systems containing nonrigid monomer(s). The present work illustrates the basic framework of the current MLRNet model, including (i) how to combine the physically meaningful MLR function with different possible NN structures, (ii) the preservation of permutation symmetry, and (iii) the predetermination of the long-range function uLR. We choose two realistic systems to demonstrate the performance of MLRNet: the three-dimensional IPES of CO2-He including the CO2 antisymmetric vibration Q3 and the six-dimensional IPES of the H2O-Ar system. In both cases, the fitting errors of the MLRNet are several times smaller than those of the conventional mdMLR model. Both short-range and long-range extrapolation tests were performed to illustrate the extrapolation ability of the MLRNet and its damping function version. Moreover, for the 6-D H2O-Ar system, the MLRNet only needs 1596 trainable parameters, which is almost equal to the number needed for the 5-D mdMLR model (1509) and half that needed for the PIP-NN model (3501) within similar accuracy, which illustrates the model efficiency in high-dimensional IPES fitting.
Collapse
Affiliation(s)
- You Li
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, 2519 Jiefang Road, Changchun 130023, P. R. China
| | - Yu Zhai
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, 2519 Jiefang Road, Changchun 130023, P. R. China
| | - Hui Li
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, 2519 Jiefang Road, Changchun 130023, P. R. China
| |
Collapse
|
4
|
Schmidt M, Roy PN. On the accuracy and efficiency of different methods to calculate Raman vibrational shifts of parahydrogen clusters. J Chem Phys 2022; 156:084102. [DOI: 10.1063/5.0076403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The Raman vibrational frequency shifts of pure parahydrogen and orthodeuterium clusters of sizes N = 4–9 are calculated using the Langevin equation path integral ground state method. The shifts are calculated using three different methods; the results obtained from each are compared to experiment and variance properties are assessed. The first method requires the direct calculation of energies from two simulations: one when the cluster is in the v = 0 vibrational state and one when the cluster has v = 1 total quantum of vibration. The shift is directly calculated from the difference in those two energies. The second method requires only a v = 0 simulation to be performed. The ground state energy is calculated as usual and the excited state energy is calculated by using the distribution of the v = 0 simulation and the ratio of the density matrices between the v = 1 state and the v = 0 state. The shift is calculated from the difference in those two energies. These first two are both exact methods. The final method is based on perturbation theory where the shift is calculated by averaging the pairwise difference potential over the pair distribution function. However, this is an approximate approach. It is found that for large enough system sizes, despite the approximations, the perturbation theory method has the strongest balance between accuracy and precision when weighing against computational cost.
Collapse
Affiliation(s)
- Matthew Schmidt
- Department of Chemistry, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Pierre-Nicholas Roy
- Department of Chemistry, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| |
Collapse
|
5
|
Zhou B, Yang D, Xie D. Quantum dynamics of the energy transfer for vibrationally excited HF (v = 7) colliding with D 2 (v = 0): Theory assessing experiment. J Chem Phys 2021; 154:114303. [PMID: 33752381 DOI: 10.1063/5.0046452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
It is still challenging to accurately qualify the rate coefficients for vibrationally excited molecules in experiment. In particular, for the energy transfer between HF (v = 7) and D2 (v = 0), which is a prototype for near resonant collisional transfer of vibrational excitation from one molecule to the other, the two available experimental results of rate coefficients contradict each other by a factor of nearly 20. In order to benchmark these data, in this work, the rate coefficients of vibration-vibration energy transfer processes of this system at temperatures ranging from 100 to 1500 K were calculated by employing the coupled-states approximation based on our recently developed full-dimensional ab initio intermolecular potential energy surface. The state-to-state rate coefficients were found to follow the general energy gap law. The calculated total vibration-vibration energy transfer rate coefficients decrease with the increase in the angular momentum of HF at most temperatures. The vibrational relaxation rate coefficient decreases monotonously with the temperature, and the calculated result of 8.1 × 10-11 cm3 mol-1 s-1 at room temperature is in very good agreement with the experimental value reported by Dzelzkalns and Kaufman [J. Chem. Phys. 77, 3508 (1982)].
Collapse
Affiliation(s)
- Boyi Zhou
- Institute of Theoretical and Computational Chemistry, Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Dongzheng Yang
- Institute of Theoretical and Computational Chemistry, Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Daiqian Xie
- Institute of Theoretical and Computational Chemistry, Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
6
|
Hou D, Yang JT, Zhai Y, Zhang XL, Liu JM, Li H. Analytic intermolecular potential energy surface and first-principles prediction of the rotational profiles for a symmetric top ion-atom complex: A case study of H 3O +-Ar. J Chem Phys 2020; 152:214302. [PMID: 32505168 DOI: 10.1063/5.0007691] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
We presented the first three-dimensional (3D) ab initio intermolecular potential energy surface (PES) for the H3O+-Ar complex. The electronic structure computations were carried out at the explicitly correlated coupled cluster theory-F12 with an augmented correlation-consistent triple zeta basis set. Analytic 3D PES was obtained by least-squares fitting the multi-dimensional Morse/Long-Range (mdMLR) potential model to interaction energies, where the mdMLR function form was applied to the nonlinear ion-atom case for the first time. The 3D PES fitting to 1708 points has root-mean-square deviations of 0.19 cm-1 with only 108 parameters for interaction energies less than 500 cm-1. With the 3D PES of the H3O+-Ar complex, we employed the combined radial discrete variable representation/angular finite basis representation method and Lanczos algorithm to calculate rovibrational energy levels. The rotational profiles of the O-H anti-stretching vibrational bands of v3 +(S)←0+ and v3 -(A)←0- for the H3O+-Ar complex were predicted and were in good agreement with the experimental results.
Collapse
Affiliation(s)
- Dan Hou
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, 2519 Jiefang Road, Changchun 130023, Peoples Republic of China
| | - Ji-Tai Yang
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, 2519 Jiefang Road, Changchun 130023, Peoples Republic of China
| | - Yu Zhai
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, 2519 Jiefang Road, Changchun 130023, Peoples Republic of China
| | - Xiao-Long Zhang
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, 2519 Jiefang Road, Changchun 130023, Peoples Republic of China
| | - Jing-Min Liu
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, 2519 Jiefang Road, Changchun 130023, Peoples Republic of China
| | - Hui Li
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, 2519 Jiefang Road, Changchun 130023, Peoples Republic of China
| |
Collapse
|
7
|
Ibrahim A, Wang L, Halverson T, Le Roy RJ, Roy PN. Equation of state and first principles prediction of the vibrational matrix shift of solid parahydrogen. J Chem Phys 2019; 151:244501. [PMID: 31893865 DOI: 10.1063/1.5131329] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We generate the equation of state (EOS) of solid parahydrogen (para-H2) using a path-integral Monte Carlo (PIMC) simulation based on a highly accurate first-principles adiabatic hindered rotor potential energy curve for the para-H2 dimer. The EOS curves for the fcc and hcp structures of solid para-H2 near the equilibrium density show that the hcp structure is the more stable of the two, in agreement with experiment. To accurately reproduce the structural and energy properties of solid para-H2, we eliminated by extrapolation the systematic errors associated with the choice of simulation parameters used in the PIMC calculation. We also investigate the temperature dependence of the EOS curves, and the invariance of the equilibrium density with temperature is satisfyingly reproduced. The pressure as a function of density and the compressibility as a function of pressure are both calculated using the obtained EOS and are compared with previous simulation results and experiments. We also report the first ever a priori prediction of a vibrational matrix shift from first-principles two-body potential functions, and its result for the equilibrium state agrees well with experiment.
Collapse
Affiliation(s)
- Alexander Ibrahim
- Department of Physics and Astronomy, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| | - Lecheng Wang
- Department of Chemistry, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| | - Tom Halverson
- Department of Chemistry, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| | - Robert J Le Roy
- Department of Chemistry, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| | - Pierre-Nicholas Roy
- Department of Chemistry, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| |
Collapse
|
8
|
Observing collisions beyond the secular approximation limit. Nat Commun 2019; 10:5780. [PMID: 31852905 PMCID: PMC6920365 DOI: 10.1038/s41467-019-13706-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 11/21/2019] [Indexed: 11/16/2022] Open
Abstract
Quantum coherence plays an essential role in diverse natural phenomena and technological applications. The unavoidable coupling of the quantum system to an uncontrolled environment incurs dissipation that is often described using the secular approximation. Here we probe the limit of this approximation in the rotational relaxation of molecules due to thermal collisions by using the laser-kicked molecular rotor as a model system. Specifically, rotational coherences in N2O gas (diluted in He) are created by two successive nonresonant short and intense laser pulses and probed by studying the change of amplitude of the rotational alignment echo with the gas density. By interrogating the system at the early stage of its collisional relaxation, we observe a significant variation of the dissipative influence of collisions with the time of appearance of the echo, featuring a decoherence process that is well reproduced by the nonsecular quantum master equation for modeling molecular collisions. Ultrafast molecular relaxation can be probed with short laser pulses. Here the authors study collisional behavior of a N2O and He mixture beyond secular approximation by aligning them using laser pulses and probing their rotational echoes.
Collapse
|
9
|
Zheng R, Zheng L, Yang M. Investigating the influence of intramolecular bond lengths on the intermolecular interaction of H 2-AgCl complex: Binding energy, intermolecular vibrations, and isotope effects. J Chem Phys 2019; 150:164301. [PMID: 31042886 DOI: 10.1063/1.5085751] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In this paper, we performed a theoretical study on the influence of intramolecular bond lengths on the intermolecular interactions between H2 and AgCl molecules. Using four sets of bond lengths for the monomers of H2 and AgCl, four-dimensional intermolecular potential energy surfaces (PESs) were constructed from ab initio data points at the level of single and double excitation coupled cluster method with noniterative perturbation treatment of triple excitations. A T-shaped global minimum was found on the PES. Interestingly, both the binding energies and Ag-H2 distances present a linear relationship with the intramolecular bond lengths of H2-AgCl. The accuracy of these PESs was validated by the available spectroscopic data via the bound state calculations, and the predicted rotational transition frequencies can reproduce the experimental observations with a root-mean-squared error of 0.0003 cm-1 based on the PES constructed with r(H-H) and r(Ag-Cl) fixed at 0.795 and 2.261 Å, respectively. The intermolecular vibrational modes were assigned unambiguously with a simple pattern by analyzing the wave functions. Isotope effects were also investigated by the theoretical calculations, and the results are in excellent agreement with the available spectroscopic data. The transition frequencies for the isotopolog D2-AgCl are predicted with the accuracy of 0.3 MHz.
Collapse
Affiliation(s)
- Rui Zheng
- School of Mathematics and Information Science, North China University of Water Resources and Electric Power, Zhengzhou 450011, China
| | - Limin Zheng
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Center for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, People's Republic of China
| | - Minghui Yang
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Center for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, People's Republic of China
| |
Collapse
|
10
|
Affiliation(s)
- Jian-wei Cao
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Feng-yi Li
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wen-sha Xia
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wen-sheng Bian
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
11
|
Yang D, Huang J, Zuo J, Hu X, Xie D. A full-dimensional potential energy surface and quantum dynamics of inelastic collision process for H 2-HF. J Chem Phys 2018; 148:184301. [PMID: 29764151 DOI: 10.1063/1.5030384] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
A full-dimensional ab initio potential energy surface for the H2-HF van der Waals complex was constructed by employing the coupled-cluster singles and doubles with noniterative inclusion of connected triples with augmented correlation-consistent polarised valence quadruple-zeta basis set plus bond functions. Using the improved coupled-states approximation including the nearest neighbor Coriolis couplings, we calculated the state-to-state scattering dynamics for pure rotational and ro-vibrational energy transfer processes. For pure rotational energy transfer, our results showed a different dynamical behavior for para-H2 and ortho-H2 in collision with hydrogen fluoride (HF), which is consistent with the previous study. Interestingly, some strong resonant peaks were presented in the cross sections for ro-vibrational energy transfer. In addition, the calculated vibrational-resolved rate constant is in agreement with the experimental results reported by Bott et al. These dynamics data can be further applied to the numerical simulation of HF chemical lasers.
Collapse
Affiliation(s)
- Dongzheng Yang
- Institute of Theoretical and Computational Chemistry, Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Jing Huang
- Institute of Theoretical and Computational Chemistry, Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Junxiang Zuo
- Institute of Theoretical and Computational Chemistry, Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Xixi Hu
- Institute of Theoretical and Computational Chemistry, Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Daiqian Xie
- Institute of Theoretical and Computational Chemistry, Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
12
|
Zhang XL, Ma YT, Zhai Y, Li H. Analytic Morse/long-range potential energy surfaces and "adiabatic-hindered-rotor" treatment for a symmetric top-linear molecule dimer: A case study of CH 3F-H 2. J Chem Phys 2018; 148:124302. [PMID: 29604839 DOI: 10.1063/1.5024451] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
A first effective six-dimensional ab initio potential energy surface (PES) for CH3F-H2 which explicitly includes the intramolecular Q3 stretching normal mode of the CH3F monomer is presented. The electronic structure computations have been carried out at the explicitly correlated coupled cluster level of theory [CCSD(T)-F12a] with an augmented correlation-consistent triple zeta basis set. Five-dimensional analytical intermolecular PESs for ν3(CH3F) = 0 and 1 are then obtained by fitting the vibrationally averaged potentials to the Morse/Long-Range (MLR) potential function form. The MLR function form is applied to the nonlinear molecule-linear molecule case for the first time. These fits to 25 015 points have root-mean-square deviations of 0.74 cm-1 and 0.082 cm-1 for interaction energies less than 0.0 cm-1. Using the adiabatic hindered-rotor approximation, three-dimensional PESs for CH3F-paraH2 are generated from the 5D PESs over all possible orientations of the hydrogen monomer. The infrared and microwave spectra for CH3F-paraH2 dimer are predicted for the first time. These analytic PESs can be used for modeling the dynamical behavior in CH3F-(H2)N clusters, including the possible appearance of microscopic superfluidity.
Collapse
Affiliation(s)
- Xiao-Long Zhang
- Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University, 2519 Jiefang Road, Changchun 130023, People's Republic of China
| | - Yong-Tao Ma
- Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University, 2519 Jiefang Road, Changchun 130023, People's Republic of China
| | - Yu Zhai
- Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University, 2519 Jiefang Road, Changchun 130023, People's Republic of China
| | - Hui Li
- Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University, 2519 Jiefang Road, Changchun 130023, People's Republic of China
| |
Collapse
|
13
|
Zhai Y, Li H, Le Roy RJ. Constructing high-accuracy intermolecular potential energy surface with multi-dimension Morse/Long-Range model. Mol Phys 2018. [DOI: 10.1080/00268976.2018.1429687] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Yu Zhai
- Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University, Changchun, China
| | - Hui Li
- Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University, Changchun, China
| | - Robert J. Le Roy
- Department of Chemistry, University of Waterloo, Waterloo, Canada
| |
Collapse
|
14
|
Liu JM, Zhai Y, Li H. Explicit correlation treatment of the six-dimensional potential energy surface and predicted infrared spectra for OCS–H2. J Chem Phys 2017; 147:044313. [DOI: 10.1063/1.4996086] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Jing-Min Liu
- Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University, 2519 Jiefang Road, Changchun 130023, People’s Republic of China
| | - Yu Zhai
- Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University, 2519 Jiefang Road, Changchun 130023, People’s Republic of China
| | - Hui Li
- Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University, 2519 Jiefang Road, Changchun 130023, People’s Republic of China
| |
Collapse
|
15
|
He S, Chen D, Li Y, Feng E, Huang W. A four-dimensional potential energy surface and predicted infrared spectra for the Ne-D2O van der Waals complex in the ν2 bending region of D2O molecule. Chem Phys Lett 2016. [DOI: 10.1016/j.cplett.2016.10.039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
16
|
Free rotor model or rigid rotor model for CH3F-Ne complex and comparison with other CH3F-rare gas systems. Chem Res Chin Univ 2016. [DOI: 10.1007/s40242-016-6109-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
17
|
An ab initio potential energy surface and infrared spectra for Kr–N2O in the v3 stretching region of N2O. Chem Phys Lett 2015. [DOI: 10.1016/j.cplett.2015.03.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
18
|
Zhang XL, Li H, Le Roy RJ, Roy PN. Microwave and infrared spectra of CO–(pH2)2, CO–(oD2)2, and mixed CO–pH2–He trimers. Theor Chem Acc 2014. [DOI: 10.1007/s00214-014-1568-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
19
|
Mateo D, Gonzalez F, Eloranta J. Rotational Superfluidity in Small Helium Droplets. J Phys Chem A 2014; 119:2262-70. [DOI: 10.1021/jp5057286] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- David Mateo
- Department
of Chemistry and
Biochemistry, California State University at Northridge, 18111
Nordhoff Street, Northridge, California 91330, United States
| | - Frisly Gonzalez
- Department
of Chemistry and
Biochemistry, California State University at Northridge, 18111
Nordhoff Street, Northridge, California 91330, United States
| | - Jussi Eloranta
- Department
of Chemistry and
Biochemistry, California State University at Northridge, 18111
Nordhoff Street, Northridge, California 91330, United States
| |
Collapse
|
20
|
Zang L, Dai W, Zheng L, Duan C, Lu Y, Yang M. Theoretical prediction of the linear isomers for rare gas-carbon disulfide complexes: He-CS₂, Ne-CS₂, and Ar-CS₂. J Chem Phys 2014; 140:114310. [PMID: 24655183 DOI: 10.1063/1.4868325] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Theoretical studies of the potential energy surfaces (PESs) and bound states are performed for rare gas-carbon disulfide complexes, He-CS2, Ne-CS2, and Ar-CS2. Three two-dimensional intermolecular PESs are constructed from ab initio data points which are calculated at the CCSD(T) level with aug-cc-pVTZ basis set supplemented with bond functions. We find that the three PESs have very similar features and each PES can be characterized by a global T-shaped minimum, two equivalent local linear minima, and the saddle points between them. The T-shaped isomer is energetically more stable than the linear isomer for each complex. The linear isomers, which have not been observed in experiment so far, are predicted from our PESs and further identified by bound state calculations. Moreover, we assign several intermolecular vibrational states for both the T-shaped and linear isomers of the three complexes via the analysis of wavefunctions. The corresponding vibrational frequencies are calculated from the bound state energies for these assigned states. These frequencies could be helpful for further experimental studies, especially for the linear isomers. We also calculate the rovibrational transition frequencies for the three T-shaped isomers and the pure rotational transition frequencies for the linear isomers, respectively. The accuracy of the PESs is validated by the good agreement between theoretical and experimental results for the rovibrational transition frequencies and spectroscopic parameters.
Collapse
Affiliation(s)
- Limin Zang
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Centre for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, People's Republic of China
| | - Wei Dai
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Centre for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, People's Republic of China
| | - Limin Zheng
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Centre for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, People's Republic of China
| | - Chuanxi Duan
- College of Physical Science and Technology, Central China Normal University, Wuhan 430079, People's Republic of China
| | - Yunpeng Lu
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371
| | - Minghui Yang
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Centre for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, People's Republic of China
| |
Collapse
|
21
|
Li H, Zhang XL, Le Roy RJ, Roy PN. Analytic Morse/long-range potential energy surfaces and predicted infrared spectra for CO–H2 dimer and frequency shifts of CO in (para-H2)N N = 1–20 clusters. J Chem Phys 2013; 139:164315. [DOI: 10.1063/1.4826595] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
22
|
Wang L, Xie D, Le Roy RJ, Roy PN. A new six-dimensional potential energy surface for H2–N2O and its adiabatic-hindered-rotor treatment. J Chem Phys 2013; 139:034312. [DOI: 10.1063/1.4813527] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
23
|
Tritzant-Martinez Y, Zeng T, Broom A, Meiering E, Le Roy RJ, Roy PN. On the analytical representation of free energy profiles with a Morse/long-range model: Application to the water dimer. J Chem Phys 2013; 138:234103. [DOI: 10.1063/1.4810006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
24
|
Li H, Ma YT. An intramolecular vibrationally excited intermolecular potential for He–OCS: Globally tested by simulation of vibrational shifts for OCS in HeN N = 1 − 100 Clusters. J Chem Phys 2012; 137:234310. [PMID: 23267489 DOI: 10.1063/1.4772186] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Affiliation(s)
- Hui Li
- Institute of Theoretical Chemistry, State Key Laboratory of Theoretical and Computational Chemistry, Jilin University, 2519 Jiefang Road, Changchun 130023, People's Republic of China.
| | | |
Collapse
|