1
|
Požar M, Lovrinčević B. Structure and dynamics in aqueous mixtures of glycerol: insights from molecular dynamics simulations. SOFT MATTER 2024; 20:8061-8067. [PMID: 39351764 DOI: 10.1039/d4sm00741g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2024]
Abstract
Aqueous glycerol mixtures are investigated over the whole concentration range of glycerol xGLY = 0.1-0.9 via molecular dynamics (MD) simulations at ambient pressure and temperature. Two glycerol force fields are used: an all-atom (AA) and a united-atom (UA) model. Structural changes upon different mixing ratios are discussed through the site-site radial distribution functions (RDFs), coordination numbers and cluster analysis. As both species are hydrogen bonded, they form an almost perfect H-bonded network, with no observed clusters. There are, however, noticeable changes in the RDFs. Glycerol correlations grow stronger with increasing glycerol content, as do water correlations. There is significant transformation in dynamics as well, as evidenced by the self-diffusion coefficients, the velocity autocorrelation functions and the rotational autocorrelation functions. Diffusion of both species slows down with increasing glycerol content. Rotational relaxation is also altered depending on the mixture composition and there is a slow-down at the lower end of glycerol content.
Collapse
Affiliation(s)
- Martina Požar
- University of Split, Faculty of Science, Ru era Boškovića 33, 21000 Split, Croatia.
| | - Bernarda Lovrinčević
- University of Split, Faculty of Science, Ru era Boškovića 33, 21000 Split, Croatia.
| |
Collapse
|
2
|
Kolaříková A, Perera A. Concentration Fluctuation/Microheterogeneity Duality Illustrated with Aqueous 1,4-Dioxane Mixtures. J Chem Theory Comput 2024; 20:3473-3483. [PMID: 38687823 DOI: 10.1021/acs.jctc.4c00151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
The structural properties of aqueous 1-4 dioxane mixtures are studied by computer simulations of different water and dioxane force field models, from the perspective of illustrating the link between structural properties at the molecular level and measurable properties such as radiation scattering intensities and Kirkwood-Buff integrals (KBIs). A strategy to consistently correct the KBI obtained from simulations is proposed, which allows us to obtain the genuine KBI corresponding to a given pair of molecular species, in the entire concentration range, and without necessitating excessively large system sizes. The application of this method to the aqueous dioxane mixtures, with an all-atom CHARMM dioxane model and 2 water models, namely, SPC/E and TIP3P, allows one to understand the differences in the structure of the corresponding mixtures at the molecular level, particularly concerning the role of the water aggregates and its model dependence. This study allows us to characterize the dual role played by the concentration fluctuations and the domain segregation, particularly in what concerns the calculated X-ray spectra.
Collapse
Affiliation(s)
- Alena Kolaříková
- Sorbonne Université, Laboratoire de Physique Théorique de la Matière Condensée (UMR CNRS 7600), 4 Place Jussieu, F75252 Paris cedex 05, France
- Faculty of Technology, Department of Physics and Materials Engineering, Tomas Bata University in Zlín, Nám. T.G. Masaryka 5555, 76001 Zlín, Czech Republic
| | - Aurélien Perera
- Sorbonne Université, Laboratoire de Physique Théorique de la Matière Condensée (UMR CNRS 7600), 4 Place Jussieu, F75252 Paris cedex 05, France
| |
Collapse
|
3
|
Požar M, Bolle J, Dogan-Surmeier S, Schneider E, Paulus M, Sternemann C, Perera A. On the dual behaviour of water in octanol-rich aqueous n-octanol mixtures: an X-ray scattering and computer simulation study. Phys Chem Chem Phys 2024; 26:4099-4110. [PMID: 38226462 DOI: 10.1039/d3cp04651f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2024]
Abstract
Aqueous n-octanol (n = 1, 2, 3, and 4) mixtures from the octanol rich side are studied by X-ray scattering and computer simulation, with a focus on structural changes, particularly in what concerns the hydration of the hydroxyl-group aggregated chain-like structures, under the influence of various branching of the alkyl tails. Previous studies have indicated that hydroxyl-group chain-cluster formation is hindered in proportion to the branching number. Here, water mole fractions up to x = 0.2 are examined, i.e. up to the miscibility limit. It is found that water molecules within the hydroxyl-chain domains participate in the chain formations in a different manner for 1-octanol and the branched octanols. The hydration of the octanol hydroxyl chains is confirmed by the shifting of the scattering pre-peak position kPP to smaller values, both from measured and simulated X-ray scattering intensities, which corresponds to an increased size of the clusters. Experimental pre-peak amplitudes are seen to increase with increasing water content for 1-octanol, while this trend is reversed in all branched octanols, with the amplitudes decreasing with the increase of the branching number. Conjecturing that the amplitudes of pre-peaks are related to the density of the corresponding aggregates, these results are interpreted as water breaking large OH hydroxyl chains in 1-octanol, hence increasing the density of aggregates, while enhancing hydroxyl aggregates in branched alcohols by inserting itself into the OH chains. The analysis of the cluster distributions from computer simulations provide more details on the role of water. For cluster sizes smaller than dc = 2π/kPP, water is found to always play the role of a structure enforcer for all n-octanols, while for clusters of size dc water is always a destructor. For cluster sizes larger than dc, the role of water differs from 1-octanol and the branched ones: it acts as a structure maker or breaker in inverse proportion to the hindering of OH hydroxyl chain structures arising from the topology of the alkyl tails (branched or not).
Collapse
Affiliation(s)
- Martina Požar
- Faculty of Science, University of Split, Ru era Boškovic'a 33, 21000 Split, Croatia.
| | - Jennifer Bolle
- Fakultät Physik/DELTA, Technische Universität Dortmund, D-44221 Dortmund, Germany
| | | | - Eric Schneider
- Fakultät Physik/DELTA, Technische Universität Dortmund, D-44221 Dortmund, Germany
| | - Michael Paulus
- Fakultät Physik/DELTA, Technische Universität Dortmund, D-44221 Dortmund, Germany
| | - Christian Sternemann
- Fakultät Physik/DELTA, Technische Universität Dortmund, D-44221 Dortmund, Germany
| | - Aurélien Perera
- Laboratoire de Physique Théorique de la Matière Condensée (UMR CNRS 7600), Sorbonne Université, 4 Place Jussieu, F75252, Paris cedex 05, France.
| |
Collapse
|
4
|
Jukić I, Požar M, Lovrinčević B, Perera A. Lifetime distribution of clusters in binary mixtures involving hydrogen bonding liquids. Sci Rep 2022; 12:9120. [PMID: 35650231 PMCID: PMC9160284 DOI: 10.1038/s41598-022-12779-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 05/13/2022] [Indexed: 11/10/2022] Open
Abstract
Hydrogen bonded liquids are associated liquids and tend to exhibit local inhomogeneity in the form of clusters and segregated sub-nano domains. It is an open question as to whether Hbonded clusters in pure water have common features with the water segregated pockets observed in various aqueous binary mixtures, such as water–alcohol mixtures, for example. In the present study, we demonstrate through classical molecular dynamics studies of the lifetime distributions of the hydrogen bonds in different types of binary mixtures, that these lifetimes exhibit the same universal features in the case of the pure liquids, independently of the species concentrations. The same types of three distinct lifetimes are observed, all of them in the sub picosecond regime. The primary lifetime concerns that of Hbonded dimers, and strongly depends on Hbonding criteria such as the bonding distance. The two others are independent of bonding criteria and appear as universal accross many liquids and mixtures. The secondary lifetime (\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\tau _1 \approx 20$$\end{document}τ1≈20 fs) concerns Hbonded cluster lifetimes, while the tertiary lifetime (\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\tau _2 \approx 50$$\end{document}τ2≈50 fs) concerns the topology of these clusters, such as chains or globules, for example. This surprizing separation in three distinct lifetimes suggests the existence of associated three distinct kinetic mechanisms in the very short sub-picosecond time scales, with, in addition, an appealing connection to the concepts of local energy and entropy.
Collapse
Affiliation(s)
- Ivo Jukić
- Laboratoire de Physique Théorique de la Matière Condensée (UMR CNRS 7600), Sorbonne Université, 4 Place Jussieu, 75252, Paris Cedex 05, France.,Department of Physics, Faculty of Science, University of Split, Ruđera Boškovića 33, 21000, Split, Croatia.,Doctoral School of Biophysics, Faculty of Science, University of Split, Split, Croatia
| | - Martina Požar
- Department of Physics, Faculty of Science, University of Split, Ruđera Boškovića 33, 21000, Split, Croatia
| | - Bernarda Lovrinčević
- Department of Physics, Faculty of Science, University of Split, Ruđera Boškovića 33, 21000, Split, Croatia.
| | - Aurélien Perera
- Laboratoire de Physique Théorique de la Matière Condensée (UMR CNRS 7600), Sorbonne Université, 4 Place Jussieu, 75252, Paris Cedex 05, France.
| |
Collapse
|
5
|
Ploetz EA, Karunaweera S, Bentenitis N, Chen F, Dai S, Gee MB, Jiao Y, Kang M, Kariyawasam NL, Naleem N, Weerasinghe S, Smith PE. Kirkwood-Buff-Derived Force Field for Peptides and Proteins: Philosophy and Development of KBFF20. J Chem Theory Comput 2021; 17:2964-2990. [PMID: 33878263 DOI: 10.1021/acs.jctc.1c00075] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A new classical nonpolarizable force field, KBFF20, for the simulation of peptides and proteins is presented. The force field relies heavily on the use of Kirkwood-Buff theory to provide a comparison of simulated and experimental Kirkwood-Buff integrals for solutes containing the functional groups common in proteins, thus ensuring intermolecular interactions that provide a good balance between the peptide-peptide, peptide-solvent, and solvent-solvent distributions observed in solution mixtures. In this way, it differs significantly from other biomolecular force fields. Further development and testing of the intermolecular potentials are presented here. Subsequently, rotational potentials for the ϕ/ψ and χ dihedral degrees of freedom are obtained by analysis of the Protein Data Bank, followed by small modifications to provide a reasonable balance between simulated and observed α and β percentages for small peptides. This, the first of two articles, describes in detail the philosophy and development behind KBFF20.
Collapse
Affiliation(s)
- Elizabeth A Ploetz
- Department of Chemistry, Kansas State University, 213 CBC Building, 1212 Mid-Campus Drive North, Manhattan, Kansas 66506, United States
| | - Sadish Karunaweera
- Department of Chemistry, Kansas State University, 213 CBC Building, 1212 Mid-Campus Drive North, Manhattan, Kansas 66506, United States
| | - Nikolaos Bentenitis
- Department of Chemistry, Kansas State University, 213 CBC Building, 1212 Mid-Campus Drive North, Manhattan, Kansas 66506, United States
| | - Feng Chen
- Department of Chemistry, Kansas State University, 213 CBC Building, 1212 Mid-Campus Drive North, Manhattan, Kansas 66506, United States
| | - Shu Dai
- Department of Chemistry, Kansas State University, 213 CBC Building, 1212 Mid-Campus Drive North, Manhattan, Kansas 66506, United States
| | - Moon B Gee
- Department of Chemistry, Kansas State University, 213 CBC Building, 1212 Mid-Campus Drive North, Manhattan, Kansas 66506, United States
| | - Yuanfang Jiao
- Department of Chemistry, Kansas State University, 213 CBC Building, 1212 Mid-Campus Drive North, Manhattan, Kansas 66506, United States
| | - Myungshim Kang
- Department of Chemistry, Kansas State University, 213 CBC Building, 1212 Mid-Campus Drive North, Manhattan, Kansas 66506, United States
| | - Nilusha L Kariyawasam
- Department of Chemistry, Kansas State University, 213 CBC Building, 1212 Mid-Campus Drive North, Manhattan, Kansas 66506, United States
| | - Nawavi Naleem
- Department of Chemistry, Kansas State University, 213 CBC Building, 1212 Mid-Campus Drive North, Manhattan, Kansas 66506, United States
| | | | - Paul E Smith
- Department of Chemistry, Kansas State University, 213 CBC Building, 1212 Mid-Campus Drive North, Manhattan, Kansas 66506, United States
| |
Collapse
|
6
|
Servis MJ, Piechowicz M, Skanthakumar S, Soderholm L. Molecular-scale origins of solution nanostructure and excess thermodynamic properties in a water/amphiphile mixture. Phys Chem Chem Phys 2021; 23:8880-8890. [PMID: 33876047 DOI: 10.1039/d1cp00082a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The molecular and nanoscale origins of nonideality in excess thermodynamic properties are essential to understanding cosolvent mixtures, yet they remain challenging to determine. Here, we consider a binary mixture of water and an amphiphile, N,N,N',N'-tetramethylmalonamide (TMMA), which is characterized by strong hydrogen bonding between the two components and no hydrogen bonding between amphiphiles. Using molecular dynamics simulation, validated with excess volume measurements and X-ray scattering, we identify three distinct solution regimes across the composition range of the binary mixture and find that the transition between two of these regimes, marked by the water percolation threshold, is closely correlated with minima in the excess volume and excess enthalpy. Structural analysis of the simulations reveals an interplay between local interactions and solution nanostructure, determined by the relative strength of the water-water and water-amphiphile hydrogen bonding interactions. By comparison with other amphiphiles, such as linear alcohols, the relative strength of like and unlike interactions between water and amphiphile affects the relationship between thermodynamics and structural regimes. This provides insight into how molecular forces of mutual solvation interact across length scales and how they manifest in excess thermodynamic properties.
Collapse
Affiliation(s)
- Michael J Servis
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL, 60439, USA.
| | | | | | | |
Collapse
|
7
|
Abstract
Aqueous cosolvent systems (ACoSs) are mixtures of small polar molecules such as amides, alcohols, dimethyl sulfoxide, or ions in water. These liquids have been the focus of fundamental studies due to their complex intermolecular interactions as well as their broad applications in chemistry, medicine, and materials science. ACoSs are fully miscible at the macroscopic level but exhibit nanometer-scale spatial heterogeneity. ACoSs have recently received renewed attention within the chemical physics community as model systems to explore the relationship between intermolecular interactions and microscopic liquid-liquid phase separation. In this perspective, we provide an overview of ACoS spatial segregation, dynamic heterogeneity, and multiscale relaxation dynamics. We describe emerging approaches to characterize liquid microstructure, H-bond networks, and dynamics using modern experimental tools combined with molecular dynamics simulations and network-based analysis techniques.
Collapse
Affiliation(s)
- Kwang-Im Oh
- Department of Chemistry, University of Texas at Austin, Austin, Texas 19104, USA
| | - Carlos R Baiz
- Department of Chemistry, University of Texas at Austin, Austin, Texas 19104, USA
| |
Collapse
|
8
|
Servis MJ, Piechowicz M, Shkrob IA, Soderholm L, Clark AE. Amphiphile Organization in Organic Solutions: An Alternative Explanation for Small-Angle X-ray Scattering Features in Malonamide/Alkane Mixtures. J Phys Chem B 2020; 124:10822-10831. [DOI: 10.1021/acs.jpcb.0c07080] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Michael J. Servis
- Department of Chemistry, Washington State University, Pullman, Washington 99164, United States
| | - Marek Piechowicz
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - Ilya A. Shkrob
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - L. Soderholm
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - Aurora E. Clark
- Department of Chemistry, Washington State University, Pullman, Washington 99164, United States
- Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, Washington 99164, United States
- Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| |
Collapse
|
9
|
Servis MJ, Martinez-Baez E, Clark AE. Hierarchical phenomena in multicomponent liquids: simulation methods, analysis, chemistry. Phys Chem Chem Phys 2020; 22:9850-9874. [PMID: 32154813 DOI: 10.1039/d0cp00164c] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Complex, multicomponent, solutions have often been studied solely through the lens of specific applications of interest. Yet advances to both simulation methodologies (enhanced sampling, etc.) and analysis techniques (network analysis algorithms and others), are creating a trove of data that reveal transcending characteristics across vast compositional phase space. This perspective discusses technical considerations of the reliable and accurate simulations of complex solutions, followed by the advances to analysis algorithms that elucidate coupling of different length and timescale behavior (hierarchical phenomena). The different manifestations of hierarchical phenomena are presented across an array of solution environments, emphasizing fundamental and ongoing science questions. With a more advanced molecular understanding in hand, a quintessential application (solvent extraction) is discussed, where significant opportunities exist to re-imagine the technical scope of an established technology.
Collapse
Affiliation(s)
- Michael J Servis
- Department of Chemistry, Washington State University, Pullman, WA 99164, USA.
| | | | | |
Collapse
|
10
|
Zhang X, Wang Z, Chen Z, Li H, Zhang L, Ye J, Zhang Q, Zhuang W. Molecular Mechanism of Water Reorientation Dynamics in Dimethyl Sulfoxide Aqueous Mixtures. J Phys Chem B 2020; 124:1806-1816. [PMID: 32022564 DOI: 10.1021/acs.jpcb.0c00717] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Nonmonotonic composition dependence is often observed for numerous properties in the aqueous mixtures of small amphiphilic molecules. The molecular picture underlying this structure-activity relationship, however, remains largely elusive. We herein studied water reorientation dynamics in the aqueous mixture of dimethyl sulfoxide (DMSO), which has a significant nonmonotonic composition dependence, using molecular dynamic simulation and an extended molecular jump model. The analysis indicates that this nonideal behavior is driven by the collective frame diffusion component of water reorientation, which decelerates in the water-rich regime because of the strengthened hydrogen bonds and accelerates in the water-poor regime as the hydrogen bonding network is broken into smaller aggregates. The current work therefore connects the microheterogeneity in the solvation structure of DMSO-water with its nonmonotonic hydration dynamics and sheds new light on how microsegregation leads to the multiscale hydration nonideality in general.
Collapse
Affiliation(s)
- Xia Zhang
- College of Chemistry and Materials Science, Inner Mongolia University for Nationlities, Tongliao Inner Mongolia 028043, China
| | - Zhangtao Wang
- College of Chemistry and Chemical Engineering, Bohai University, Jinzhou, Liaoning 121013, China
| | - Zhening Chen
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 35000, China
| | - Hui Li
- College of Chemistry and Chemical Engineering, Bohai University, Jinzhou, Liaoning 121013, China
| | - Lu Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 35000, China
| | - Jinting Ye
- College of Chemistry and Materials Science, Inner Mongolia University for Nationlities, Tongliao Inner Mongolia 028043, China
| | - Qiang Zhang
- College of Chemistry and Materials Science, Inner Mongolia University for Nationlities, Tongliao Inner Mongolia 028043, China
| | - Wei Zhuang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 35000, China
| |
Collapse
|
11
|
Lovrinčević B, Bella A, Le Tenoux-Rachidi I, Požar M, Sokolić F, Perera A. Methanol-ethanol “ideal” mixtures as a test ground for the computation of Kirkwood-Buff integrals. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.111447] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
12
|
Perera A, Lovrinčević B. A comparative study of aqueous DMSO mixtures by computer simulations and integral equation theories. Mol Phys 2018. [DOI: 10.1080/00268976.2018.1483040] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Affiliation(s)
- Aurélien Perera
- Laboratoire de Physique Théorique de la Matiére Condensée (UMR CNRS 7600), Université Pierre et Marie Curie, Paris, France
| | | |
Collapse
|
13
|
Nayar D, van der Vegt NFA. Cosolvent Effects on Polymer Hydration Drive Hydrophobic Collapse. J Phys Chem B 2018; 122:3587-3595. [PMID: 29443520 DOI: 10.1021/acs.jpcb.7b10780] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Water-mediated hydrophobic interactions play an important role in self-assembly processes, aqueous polymer solubility, and protein folding, to name a few. Cosolvents affect these interactions; however, the implications for hydrophobic polymer collapse and protein folding equilibria are not well-understood. This study examines cosolvent effects on the hydrophobic collapse equilibrium of a generic 32-mer hydrophobic polymer in urea, trimethylamine- N-oxide (TMAO), and acetone aqueous solutions using molecular dynamics simulations. Our results unveil a remarkable cosolvent-concentration-dependent behavior. Urea, TMAO, and acetone all shift the equilibrium toward collapsed structures below 2 M cosolvent concentration and, in turn, to unfolded structures at higher cosolvent concentrations, irrespective of the differences in cosolvent chemistry and the nature of cosolvent-water interactions. We find that weakly attractive polymer-water van der Waals interactions oppose polymer collapse in pure water, corroborating related observations reviewed by Ben-Amotz ( Annu. Rev. Phys. Chem. 2016, 67, 617-638). The cosolvents studied in the present work adsorb at the polymer/water interface and expel water molecules into the bulk, thereby effectively removing the dehydration energy penalty that opposes polymer collapse in pure water. At low cosolvent concentrations, this leads to cosolvent-induced stabilization of collapsed polymer structures. Only at sufficiently high cosolvent concentrations, polymer-cosolvent interactions favor polymer unfolding.
Collapse
Affiliation(s)
- Divya Nayar
- Eduard-Zintl-Institut für Anorganische und Physikalische Chemie, Center of Smart Interfaces , Technische Universität Darmstadt , Alarich-Weiss-Strasse 10 , 64287 , Darmstadt , Germany
| | - Nico F A van der Vegt
- Eduard-Zintl-Institut für Anorganische und Physikalische Chemie, Center of Smart Interfaces , Technische Universität Darmstadt , Alarich-Weiss-Strasse 10 , 64287 , Darmstadt , Germany
| |
Collapse
|
14
|
Zhang X, Zhang L, Jin T, Zhang Q, Zhuang W. Cosolvent effect on the dynamics of water in aqueous binary mixtures. Mol Phys 2018. [DOI: 10.1080/00268976.2018.1424958] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Xia Zhang
- Department of Chemistry, Bohai University, Jinzhou, China
| | - Lu Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, China
| | - Tan Jin
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, China
| | - Qiang Zhang
- Department of Chemistry, Bohai University, Jinzhou, China
| | - Wei Zhuang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, China
| |
Collapse
|
15
|
Shimizu S, Matubayasi N. Statistical thermodynamic foundation for mesoscale aggregation in ternary mixtures. Phys Chem Chem Phys 2018; 20:13777-13784. [DOI: 10.1039/c8cp01207e] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The origin of persistent mesoscale aggregation around the plait point has been clarified from statistical thermodynamics and differential geometry.
Collapse
Affiliation(s)
- Seishi Shimizu
- York Structural Biology Laboratory
- Department of Chemistry
- University of York
- York YO10 5DD
- UK
| | - Nobuyuki Matubayasi
- Division of Chemical Engineering, Graduate School of Engineering Science
- Osaka University
- Osaka 560-8531
- Japan
- Elements Strategy Initiative for Catalysts and Batteries
| |
Collapse
|
16
|
Požar M, Perera A. Evolution of the micro-structure of aqueous alcohol mixtures with cooling: A computer simulation study. J Mol Liq 2017. [DOI: 10.1016/j.molliq.2017.10.039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
17
|
On the micro-heterogeneous structure of neat and aqueous propylamine mixtures: A computer simulation study. J Mol Liq 2017. [DOI: 10.1016/j.molliq.2016.12.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
18
|
Abstract
Aqueous mixtures of small molecules, such as lower n-alkanols for example, are known to be micro-segregated, with domains in the nano-meter range.
Collapse
Affiliation(s)
- Aurélien Perera
- Laboratoire de Physique Théorique de la Matière Condensée (UMR CNRS 7600)
- Université Pierre et Marie Curie
- Paris cedex 05
- France
| |
Collapse
|
19
|
Požar M, Kerasidou A, Lovrinčević B, Zoranić L, Mijaković M, Primorac T, Sokolić F, Teboul V, Perera A. The microscopic structure of cold aqueous methanol mixtures. J Chem Phys 2016; 145:144502. [DOI: 10.1063/1.4964487] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
20
|
Požar M, Lovrinčević B, Zoranić L, Mijaković M, Sokolić F, Perera A. A re-appraisal of the concept of ideal mixtures through a computer simulation study of the methanol-ethanol mixtures. J Chem Phys 2016. [DOI: 10.1063/1.4960435] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
|
21
|
Microstructure and concentration fluctuations in alcohol–Toluene and alcohol-Cyclohexane binary liquids: A small angle neutron scattering study. J Mol Liq 2016. [DOI: 10.1016/j.molliq.2016.02.070] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
22
|
Perera A, Mazighi R. On the nature of the molecular ordering of water in aqueous DMSO mixtures. J Chem Phys 2016; 143:154502. [PMID: 26493910 DOI: 10.1063/1.4933204] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Computer simulation studies of aqueous dimethyl sulfoxyde (DMSO) mixtures show micro-heterogeneous structures, just like aqueous alcohol mixtures. However, there is a marked difference in the aggregate structure of water between the two types of systems. While water molecules form multiconnected globular clusters in alcohols, we report herein that the typical water aggregates in aqueous DMSO mixtures are linear, favouring a 2 hydrogen bond structure per water molecule, and for all DMSO mole fractions ranging from 0.1 to 0.9. This linear-aggregate structure produces a particular signature in the water site-site structure factors, in the form of a pre-peak at k ≈ 0.2-0.8 Å(-1), depending on DMSO concentration. This pre-peak is either absent in other aqueous mixtures, such as aqueous methanol mixtures, or very difficult to see through computer simulations, such as in aqueous-t-butanol mixtures. This difference in the topology of the aggregates explains why the Kirkwood-Buff integrals of aqueous-DMSO mixture look nearly ideal, in contrast with those of aqueous alcohol mixtures, suggesting a connection between the shape of the water aggregates, its fluctuations, and the concentration fluctuations. In order to further study this discrepancy between aqueous DMSO and aqueous alcohol mixture, two models of pseudo-DMSO are introduced, where the size of the sulfur atom is increased by a factor 1.6 and 1.7, respectively, hence increasing the hydrophobicity of the molecule. The study shows that these mixtures become closer to the emulsion type seen in aqueous alcohol mixtures, with more globular clustering of the water molecules, long range domain oscillations in the water-water correlations and increased water-water Kirkwood-Buff integrals. It demonstrates that the local ordering of the water molecules is influenced by the nature of the solute molecules, with very different consequences for structural properties and related thermodynamic quantities. This study illustrates the unique plasticity of water in presence of different types of solutes.
Collapse
Affiliation(s)
- Aurélien Perera
- Laboratoire de Physique Théorique de la Matière Condensée (UMR CNRS 7600), Université Pierre et Marie Curie, 4 Place Jussieu, F75252 Paris Cedex 05, France
| | - Redha Mazighi
- Laboratoire de Physique Théorique de la Matière Condensée (UMR CNRS 7600), Université Pierre et Marie Curie, 4 Place Jussieu, F75252 Paris Cedex 05, France
| |
Collapse
|
23
|
Abstract
AbstractConcentration fluctuations play an important role in the statistical description of the stability of liquids, particularly in the neighborhood of phase transitions. Classical thermodynamics is blind to fluctuations, and statistical thermodynamics is required to fully understand quantities such as the isothermal compressibility or heat capacity, by linking them to fluctuations of appropriate statistical microscopic quantities and showing that they are response functions. This is illustrated by the seminal Kirkwood–Buff theory of solutions. However, the existence of micro-heterogeneous structures, particularly in aqueous mixtures, which leads to large Kirkwood–Buff integrals, suggest that micro-heterogeneity is a form of concentration fluctuation. This interpretation becomes difficult to accept when extrapolated to larger micro-heterogeneous structures such as micellar aggregates in micro-emulsions. By analyzing how different methods, experimental, computer experiments and theoretical approaches deal with the underlying duality behind these two physical manifestations, we put in evidence the need to reconsider the description of liquids by incorporating the description of emergent “objects”, such as the micro-heterogeneous structures from a molecular point of view. On this path, the concept of “molecular emulsion” allows to describe in a unified way all type of disordered liquids, from solutions to the organized liquids of soft matter.
Collapse
Affiliation(s)
- Aurélien Perera
- 1Laboratoire de Physique Théorique de la Matière Condensée (UMR CNRS 7600), Université Pierre et Marie Curie, 4 Place Jussieu, F75252, Paris cedex 05, France
| |
Collapse
|
24
|
Požar M, Lovrinčević B, Zoranić L, Primorać T, Sokolić F, Perera A. Micro-heterogeneity versus clustering in binary mixtures of ethanol with water or alkanes. Phys Chem Chem Phys 2016; 18:23971-9. [DOI: 10.1039/c6cp04676b] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Snapshots of the difference in complex disorder, with analogy with direct (ethanol–water) and inverse (ethanol–alkanes) emulsions.
Collapse
Affiliation(s)
- Martina Požar
- Laboratoire de Physique Théorique de la Matière Condensée (UMR CNRS 7600)
- Université Pierre et Marie Curie
- Paris cedex 05
- France
- Department of Physics
| | | | - Larisa Zoranić
- Department of Physics
- Faculty of Sciences
- University of Split
- Split
- Croatia
| | - Tomislav Primorać
- Department of Physics
- Faculty of Sciences
- University of Split
- Split
- Croatia
| | - Franjo Sokolić
- Department of Physics
- Faculty of Sciences
- University of Split
- Split
- Croatia
| | - Aurélien Perera
- Laboratoire de Physique Théorique de la Matière Condensée (UMR CNRS 7600)
- Université Pierre et Marie Curie
- Paris cedex 05
- France
| |
Collapse
|
25
|
|
26
|
|
27
|
Požar M, Seguier JB, Guerche J, Mazighi R, Zoranić L, Mijaković M, Kežić-Lovrinčević B, Sokolić F, Perera A. Simple and complex disorder in binary mixtures with benzene as a common solvent. Phys Chem Chem Phys 2015; 17:9885-98. [DOI: 10.1039/c4cp05970k] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Substituting benzene for water in computer simulations of binary mixtures, allows one to study the various forms of disorder, without the complications often encountered in aqueous mixtures.
Collapse
Affiliation(s)
- Martina Požar
- Department of Physics
- Faculty of Sciences
- University of Split
- Split
- Croatia
| | - Jean-Baptiste Seguier
- Laboratoire de Physique Théorique de la Matière Condensée (UMR CNRS 7600)
- Université Pierre et Marie Curie
- Paris cedex 05
- France
| | - Jonas Guerche
- Laboratoire de Physique Théorique de la Matière Condensée (UMR CNRS 7600)
- Université Pierre et Marie Curie
- Paris cedex 05
- France
| | - Redha Mazighi
- Laboratoire de Physique Théorique de la Matière Condensée (UMR CNRS 7600)
- Université Pierre et Marie Curie
- Paris cedex 05
- France
| | - Larisa Zoranić
- Department of Physics
- Faculty of Sciences
- University of Split
- Split
- Croatia
| | | | | | - Franjo Sokolić
- Department of Physics
- Faculty of Sciences
- University of Split
- Split
- Croatia
| | - Aurélien Perera
- Laboratoire de Physique Théorique de la Matière Condensée (UMR CNRS 7600)
- Université Pierre et Marie Curie
- Paris cedex 05
- France
| |
Collapse
|
28
|
Hydrogen-bonded aggregates in the mixtures of piperidine with water: Thermodynamic, SANS and theoretical studies. Chem Phys Lett 2015. [DOI: 10.1016/j.cplett.2014.11.045] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
29
|
Frasch DM, Spiegel DR. Experiments on tracer diffusion in aqueous and non-aqueous solvent combinations. J Chem Phys 2014; 141:124507. [PMID: 25273451 DOI: 10.1063/1.4896303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Forced Rayleigh scattering is used to study the tracer diffusion of an azobenzene in binary combinations of polar solvents, including water. In the absence of water, the tracer diffusion coefficient D in the mixture lies between the diffusion coefficients within the pure solvents, on a curve that is reasonably close to the prediction of free-volume theory. If water is present, on the other hand, the diffusion coefficient displays a minimum that is less than the smaller of the two pure-solvent values. We attempt to understand the different behavior in water by concentrating on the fairly hydrophobic nature of the solute, leading to a first solvent shell that is hydrophobic on the inside and hydrophilic on the outside. We also believe that clusters of amphiphiles explain the observation that, in aqueous combinations, D is nearly constant above a certain amphiphile mole fraction.
Collapse
Affiliation(s)
- Duncan M Frasch
- Department of Physics and Astronomy, Trinity University, San Antonio, Texas 78212, USA
| | - Daniel R Spiegel
- Department of Physics and Astronomy, Trinity University, San Antonio, Texas 78212, USA
| |
Collapse
|
30
|
Mijaković M, Polok KD, Kežić B, Sokolić F, Perera A, Zoranić L. A comparison of force fields for ethanol–water mixtures. MOLECULAR SIMULATION 2014. [DOI: 10.1080/08927022.2014.923567] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
31
|
|
32
|
Perera A, Kežić B. Fluctuations and micro-heterogeneity in mixtures of complex liquids. Faraday Discuss 2013; 167:145-58. [DOI: 10.1039/c3fd00072a] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|