1
|
Kunze T, Dreßler C, Lauer C, Paul W, Sebastiani D. Reverse Mapping of Coarse Grained Polyglutamine Conformations from PRIME20 Sampling. Chemphyschem 2024; 25:e202300521. [PMID: 38314956 DOI: 10.1002/cphc.202300521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 02/01/2024] [Accepted: 02/02/2024] [Indexed: 02/07/2024]
Abstract
An inverse coarse-graining protocol is presented for generating and validating atomistic structures of large (bio-) molecules from conformations obtained via a coarse-grained sampling method. Specifically, the protocol is implemented and tested based on the (coarse-grained) PRIME20 protein model (P20/SAMC), and the resulting all-atom conformations are simulated using conventional biomolecular force fields. The phase space sampling at the coarse-grained level is performed with a stochastical approximation Monte Carlo approach. The method is applied to a series of polypeptides, specifically dimers of polyglutamine with varying chain length in aqueous solution. The majority (>70 %) of the conformations obtained from the coarse-grained peptide model can successfully be mapped back to atomistic structures that remain conformationally stable during 10 ns of molecular dynamics simulations. This work can be seen as the first step towards the overarching goal of improving our understanding of protein aggregation phenomena through simulation methods.
Collapse
Affiliation(s)
- Thomas Kunze
- Faculty of Natural Sciences II, Martin-Luther University Halle-Wittenberg, Von-Danckelmann-Platz 4, 06120, Halle, Germany
| | - Christian Dreßler
- Institut für Physik, Ilmenau University of Technology, Weimarer Straße 32, 98693, Ilmenau, Germany
| | - Christian Lauer
- Faculty of Natural Sciences II, Martin-Luther University Halle-Wittenberg, Von-Danckelmann-Platz 4, 06120, Halle, Germany
| | - Wolfgang Paul
- Faculty of Natural Sciences II, Martin-Luther University Halle-Wittenberg, Von-Danckelmann-Platz 4, 06120, Halle, Germany
| | - Daniel Sebastiani
- Faculty of Natural Sciences II, Martin-Luther University Halle-Wittenberg, Von-Danckelmann-Platz 4, 06120, Halle, Germany
| |
Collapse
|
2
|
Zhang XZ, Shi R, Lu ZY, Qian HJ. Chemically Specific Systematic Coarse-Grained Polymer Model with Both Consistently Structural and Dynamical Properties. JACS AU 2024; 4:1018-1030. [PMID: 38559727 PMCID: PMC10976574 DOI: 10.1021/jacsau.3c00756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/23/2024] [Accepted: 02/28/2024] [Indexed: 04/04/2024]
Abstract
The coarse-grained (CG) model serves as a powerful tool for the simulation of polymer systems; its reliability depends on the accurate representation of both structural and dynamical properties. However, strong correlations between structural and dynamical properties on different scales and also a strong memory effect, enforced by chain connectivity between monomers in polymer systems, render developing a chemically specific systematic CG model a formidable task. In this study, we report a systematic CG approach that combines the iterative Boltzmann inversion (IBI) method and the generalized Langevin equation (GLE) dynamics. Structural properties are ensured by using conservative CG potentials derived from the IBI method. To retrieve the correct dynamical properties in the system, we demonstrate that using a combination of a Rouse-type delta function and a time-dependent short-time kernel in the GLE simulation is practically efficient. The former can be used to adjust the long-time diffusion dynamics, and the latter can be reconstructed from an iterative procedure according to the velocity autocorrelation function (ACF) from all-atomistic (AA) simulations. Taking the polystyrene as an example, we show that not only structural properties of radial distribution function, intramolecular bond, and angle distributions can be reproduced but also dynamical properties of mean-square displacement, velocity ACF, and force ACF resulted from our CG model have quantitative agreement with the reference AA model. In addition, reasonable agreements are observed in other collective properties between our GLE-CG model and the AA simulations as well.
Collapse
Affiliation(s)
| | | | - Zhong-Yuan Lu
- State Key Laboratory of Supramolecular
Structure and Materials, Institute of Theoretical Chemistry, College
of Chemistry, Jilin University, Changchun 130021, China
| | - Hu-Jun Qian
- State Key Laboratory of Supramolecular
Structure and Materials, Institute of Theoretical Chemistry, College
of Chemistry, Jilin University, Changchun 130021, China
| |
Collapse
|
3
|
Jin J, Hwang J, Voth GA. Gaussian representation of coarse-grained interactions of liquids: Theory, parametrization, and transferability. J Chem Phys 2023; 159:184105. [PMID: 37942867 DOI: 10.1063/5.0160567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 10/06/2023] [Indexed: 11/10/2023] Open
Abstract
Coarse-grained (CG) interactions determined via bottom-up methodologies can faithfully reproduce the structural correlations observed in fine-grained (atomistic resolution) systems, yet they can suffer from limited extensibility due to complex many-body correlations. As part of an ongoing effort to understand and improve the applicability of bottom-up CG models, we propose an alternative approach to address both accuracy and transferability. Our main idea draws from classical perturbation theory to partition the hard sphere repulsive term from effective CG interactions. We then introduce Gaussian basis functions corresponding to the system's characteristic length by linking these Gaussian sub-interactions to the local particle densities at each coordination shell. The remaining perturbative long-range interaction can be treated as a collective solvation interaction, which we show exhibits a Gaussian form derived from integral equation theories. By applying this numerical parametrization protocol to CG liquid systems, our microscopic theory elucidates the emergence of Gaussian interactions in common phenomenological CG models. To facilitate transferability for these reduced descriptions, we further infer equations of state to determine the sub-interaction parameter as a function of the system variables. The reduced models exhibit excellent transferability across the thermodynamic state points. Furthermore, we propose a new strategy to design the cross-interactions between distinct CG sites in liquid mixtures. This involves combining each Gaussian in the proper radial domain, yielding accurate CG potentials of mean force and structural correlations for multi-component systems. Overall, our findings establish a solid foundation for constructing transferable bottom-up CG models of liquids with enhanced extensibility.
Collapse
Affiliation(s)
- Jaehyeok Jin
- Department of Chemistry, Chicago Center for Theoretical Chemistry, James Franck Institute, and Institute for Biophysical Dynamics, The University of Chicago, 5735 S. Ellis Ave., Chicago, Illinois 60637, USA
- Department of Chemistry, Columbia University, 3000 Broadway, New York, New York 10027, USA
| | - Jisung Hwang
- Department of Statistics, The University of Chicago, 5747 S. Ellis Ave., Chicago, Illinois 60637, USA
| | - Gregory A Voth
- Department of Chemistry, Chicago Center for Theoretical Chemistry, James Franck Institute, and Institute for Biophysical Dynamics, The University of Chicago, 5735 S. Ellis Ave., Chicago, Illinois 60637, USA
| |
Collapse
|
4
|
Jin J, Pak AJ, Durumeric AEP, Loose TD, Voth GA. Bottom-up Coarse-Graining: Principles and Perspectives. J Chem Theory Comput 2022; 18:5759-5791. [PMID: 36070494 PMCID: PMC9558379 DOI: 10.1021/acs.jctc.2c00643] [Citation(s) in RCA: 84] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Indexed: 01/14/2023]
Abstract
Large-scale computational molecular models provide scientists a means to investigate the effect of microscopic details on emergent mesoscopic behavior. Elucidating the relationship between variations on the molecular scale and macroscopic observable properties facilitates an understanding of the molecular interactions driving the properties of real world materials and complex systems (e.g., those found in biology, chemistry, and materials science). As a result, discovering an explicit, systematic connection between microscopic nature and emergent mesoscopic behavior is a fundamental goal for this type of investigation. The molecular forces critical to driving the behavior of complex heterogeneous systems are often unclear. More problematically, simulations of representative model systems are often prohibitively expensive from both spatial and temporal perspectives, impeding straightforward investigations over possible hypotheses characterizing molecular behavior. While the reduction in resolution of a study, such as moving from an atomistic simulation to that of the resolution of large coarse-grained (CG) groups of atoms, can partially ameliorate the cost of individual simulations, the relationship between the proposed microscopic details and this intermediate resolution is nontrivial and presents new obstacles to study. Small portions of these complex systems can be realistically simulated. Alone, these smaller simulations likely do not provide insight into collectively emergent behavior. However, by proposing that the driving forces in both smaller and larger systems (containing many related copies of the smaller system) have an explicit connection, systematic bottom-up CG techniques can be used to transfer CG hypotheses discovered using a smaller scale system to a larger system of primary interest. The proposed connection between different CG systems is prescribed by (i) the CG representation (mapping) and (ii) the functional form and parameters used to represent the CG energetics, which approximate potentials of mean force (PMFs). As a result, the design of CG methods that facilitate a variety of physically relevant representations, approximations, and force fields is critical to moving the frontier of systematic CG forward. Crucially, the proposed connection between the system used for parametrization and the system of interest is orthogonal to the optimization used to approximate the potential of mean force present in all systematic CG methods. The empirical efficacy of machine learning techniques on a variety of tasks provides strong motivation to consider these approaches for approximating the PMF and analyzing these approximations.
Collapse
Affiliation(s)
- Jaehyeok Jin
- Department of Chemistry,
Chicago Center for Theoretical Chemistry, Institute for Biophysical
Dynamics, and James Franck Institute, The
University of Chicago, Chicago, Illinois 60637, United States
| | - Alexander J. Pak
- Department of Chemistry,
Chicago Center for Theoretical Chemistry, Institute for Biophysical
Dynamics, and James Franck Institute, The
University of Chicago, Chicago, Illinois 60637, United States
| | - Aleksander E. P. Durumeric
- Department of Chemistry,
Chicago Center for Theoretical Chemistry, Institute for Biophysical
Dynamics, and James Franck Institute, The
University of Chicago, Chicago, Illinois 60637, United States
| | - Timothy D. Loose
- Department of Chemistry,
Chicago Center for Theoretical Chemistry, Institute for Biophysical
Dynamics, and James Franck Institute, The
University of Chicago, Chicago, Illinois 60637, United States
| | - Gregory A. Voth
- Department of Chemistry,
Chicago Center for Theoretical Chemistry, Institute for Biophysical
Dynamics, and James Franck Institute, The
University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
5
|
Kanekal KH, Rudzinski JF, Bereau T. Broad chemical transferability in structure-based coarse-graining. J Chem Phys 2022; 157:104102. [DOI: 10.1063/5.0104914] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Compared to top-down coarse-grained (CG) models, bottom-up approaches are capable of offering higher structural fidelity. This fidelity results from the tight link to a higher-resolution reference, making the CG model chemically specific. Unfortunately, chemical specificity can be at odds with compound-screening strategies, which call for transferable parametrizations. Here we present an approach to reconcile bottom-up, structure-preserving CG models with chemical transferability. We consider the bottom-up CG parametrization of 3,441 C7O2 small-molecule isomers. Our approach combines atomic representations, unsupervised learning, and a large-scale extended-ensemble force-matching parametrization. We first identify a subset of 19 representative molecules, which maximally encode the local environment of all gas-phase conformers. Reference interactions between the 19 representative molecules were obtained from both homogeneous bulk liquids and various binary mixtures. An extended-ensemble parametrization over all 703 state points leads to a CG model that is both structure-based and chemically transferable. Remarkably, the resulting force field is on average more structurally accurate than single-state-point equivalents. Averaging over the extended ensemble acts as a mean-force regularizer, smoothing out both force and structural correlations that are overly specific to a single state point. Our approach aims at transferability through a set of CG bead types that can be used to easily construct new molecules, while retaining the benefits of a structure-based parametrization.
Collapse
Affiliation(s)
- Kiran H. Kanekal
- AK Kremer - Theory Group, Max Planck Institute for Polymer Research, Germany
| | | | - Tristan Bereau
- Van 't Hoff Institute for Molecular Sciences and Informatics Institute, University of Amsterdam, Netherlands
| |
Collapse
|
6
|
Dai L, Chakraborty S, Wu G, Ye J, Lau YH, Ramanarayan H, Wu DT. Molecular simulation of linear octacosane via a CG10 coarse grain scheme. Phys Chem Chem Phys 2022; 24:5351-5359. [PMID: 35169819 DOI: 10.1039/d1cp05143a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Following our previous work on the united-atom simulation on octacosane (C28H58) (Dai et al., Phys. Chem. Chem. Phys., 2021, 23, 21262-21271), we developed a coarse grain scheme (CG10), which is able to reproduce the pivotal phase characteristics of octacosane with highly improved computational efficiency. The CG10 octacosane chain was composed of 10 consecutive beads, maintaining the fundamental zigzag chain morphology. When the potential functions were set up and the coefficients were parameterized, our CG10 models yielded solid phase diagrams and transitions during an annealing process. We also detected the melting point by various means: direct observation, bond order, density tracking, and an enthalpy plot. Furthermore, our CG10 successfully reproduced the liquid density with only 2% underestimation, indicating its applicability across the solid and liquid phases. Therefore, with the ability to reproduce critical structure and property characteristics, our CG10 scheme provides an effective means of numerically modelling octacosane with highly improved computational efficiency.
Collapse
Affiliation(s)
- L Dai
- Institute of High Performance Computing, Agency for Science, Technology and Research (A*STAR), Singapore.
| | - S Chakraborty
- Institute of High Performance Computing, Agency for Science, Technology and Research (A*STAR), Singapore.
| | - G Wu
- Institute of High Performance Computing, Agency for Science, Technology and Research (A*STAR), Singapore.
| | - J Ye
- Institute of High Performance Computing, Agency for Science, Technology and Research (A*STAR), Singapore.
| | - Y H Lau
- Institute of High Performance Computing, Agency for Science, Technology and Research (A*STAR), Singapore.
| | - H Ramanarayan
- Institute of High Performance Computing, Agency for Science, Technology and Research (A*STAR), Singapore.
| | - D T Wu
- Institute of High Performance Computing, Agency for Science, Technology and Research (A*STAR), Singapore.
| |
Collapse
|
7
|
Wu C, Li K, Ning X, Zhang L. An Enhanced Scheme for Multiscale Modeling of Thermomechanical Properties of Polymer Bulks. J Phys Chem B 2021; 125:8612-8626. [PMID: 34291641 DOI: 10.1021/acs.jpcb.1c02663] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
While multiscale modeling significantly enhances the capability of molecular simulations of polymer systems, it is well realized that the systematically derived coarse-grained (CG) models generally underestimate the thermomechanical properties. In this work, a charge-based mapping scheme has been adopted to include explicit electrostatic interactions and benchmarked against two typical polymers, atactic poly(methyl methacrylate) (PMMA) and polystyrene (PS). The CG potentials are parameterized against the oligomer bulks of nine monomers per chain to match the essential structural features and the two basic pressure-volume-temperature (PVT) properties, which are obtained from the all-atomistic (AA) molecular dynamics (MD) simulations at a single elevated temperature. The so-parameterized CG potentials are extended with the MD method to simulate the two polymer bulks of one hundred monomers per chain over a wide temperature range. Without any scaling, all the simulated results, including mass densities and bulk moduli at room temperature, thermal expansion coefficients at rubbery and glassy states, and glass transition temperatures (Tg), compare well with the corresponding experimental data. The proposed scheme not only contributes to realistically simulating various thermomechanical properties of both apolar and polar polymers but also allows for directly simulating their electrical properties.
Collapse
Affiliation(s)
- Chaofu Wu
- Hunan Provincial Key Laboratory of Fine Ceramics and Powder Materials, School of Materials and Environmental Engineering, Hunan University of Humanities, Science and Technology, Loudi, Hunan 417000, P. R. China
| | - Kewen Li
- Hunan Provincial Key Laboratory of Fine Ceramics and Powder Materials, School of Materials and Environmental Engineering, Hunan University of Humanities, Science and Technology, Loudi, Hunan 417000, P. R. China
| | - Xutao Ning
- Hunan Provincial Key Laboratory of Fine Ceramics and Powder Materials, School of Materials and Environmental Engineering, Hunan University of Humanities, Science and Technology, Loudi, Hunan 417000, P. R. China
| | - Lei Zhang
- Hunan Provincial Key Laboratory of Fine Ceramics and Powder Materials, School of Materials and Environmental Engineering, Hunan University of Humanities, Science and Technology, Loudi, Hunan 417000, P. R. China
| |
Collapse
|
8
|
Klippenstein V, Tripathy M, Jung G, Schmid F, van der Vegt NFA. Introducing Memory in Coarse-Grained Molecular Simulations. J Phys Chem B 2021; 125:4931-4954. [PMID: 33982567 PMCID: PMC8154603 DOI: 10.1021/acs.jpcb.1c01120] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Preserving the correct dynamics at the coarse-grained (CG) level is a pressing problem in the development of systematic CG models in soft matter simulation. Starting from the seminal idea of simple time-scale mapping, there have been many efforts over the years toward establishing a meticulous connection between the CG and fine-grained (FG) dynamics based on fundamental statistical mechanics approaches. One of the most successful attempts in this context has been the development of CG models based on the Mori-Zwanzig (MZ) theory, where the resulting equation of motion has the form of a generalized Langevin equation (GLE) and closely preserves the underlying FG dynamics. In this Review, we describe some of the recent studies in this regard. We focus on the construction and simulation of dynamically consistent systematic CG models based on the GLE, both in the simple Markovian limit and the non-Markovian case. Some recent studies of physical effects of memory are also discussed. The Review is aimed at summarizing recent developments in the field while highlighting the major challenges and possible future directions.
Collapse
Affiliation(s)
- Viktor Klippenstein
- Eduard-Zintl-Institut für Anorganische und Physikalische Chemie, Technische Universität Darmstadt, 64287 Darmstadt, Germany
| | - Madhusmita Tripathy
- Eduard-Zintl-Institut für Anorganische und Physikalische Chemie, Technische Universität Darmstadt, 64287 Darmstadt, Germany
| | - Gerhard Jung
- Institut für Theoretische Physik, Universität Innsbruck, Technikerstraße 21 A, A-6020 Innsbruck, Austria
| | - Friederike Schmid
- Institut für Physik, Johannes Gutenberg-Universität Mainz, Staudingerweg 9, 55128 Mainz, Germany
| | - Nico F A van der Vegt
- Eduard-Zintl-Institut für Anorganische und Physikalische Chemie, Technische Universität Darmstadt, 64287 Darmstadt, Germany
| |
Collapse
|
9
|
DeLyser M, Noid WG. Bottom-up coarse-grained models for external fields and interfaces. J Chem Phys 2020; 153:224103. [PMID: 33317310 DOI: 10.1063/5.0030103] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Bottom-up coarse-grained (CG) models accurately describe the structure of homogeneous systems but sometimes provide limited transferability and a poor description of thermodynamic properties. Consequently, inhomogeneous systems present a severe challenge for bottom-up models. In this work, we examine bottom-up CG models for interfaces and inhomogeneous systems. We first analyze the effect of external fields upon the many-body potential of mean force. We also demonstrate that the multiscale CG (MS-CG) variational principle for modeling the external field corresponds to a generalization of the first Yvon-Born-Green equation. This provides an important connection with liquid state theory, as well as physical insight into the structure of interfaces and the resulting MS-CG models. We then develop and assess MS-CG models for a film of liquid methanol that is adsorbed on an attractive wall and in coexistence with its vapor phase. While pair-additive potentials provide unsatisfactory accuracy and transferability, the inclusion of local-density (LD) potentials dramatically improves the accuracy and transferability of the MS-CG model. The MS-CG model with LD potentials quite accurately describes the wall-liquid interface, the bulk liquid density, and the liquid-vapor interface while simultaneously providing a much improved description of the vapor phase. This model also provides an excellent description of the pair structure and pressure-density equation of state for the bulk liquid. Thus, LD potentials hold considerable promise for transferable bottom-up models that accurately describe the structure and thermodynamic properties of both bulk and interfacial systems.
Collapse
Affiliation(s)
- Michael DeLyser
- Department of Chemistry, Penn State University, University Park, Pennsylvania 16802, USA
| | - W G Noid
- Department of Chemistry, Penn State University, University Park, Pennsylvania 16802, USA
| |
Collapse
|
10
|
Rudzinski JF, Bereau T. Coarse-grained conformational surface hopping: Methodology and transferability. J Chem Phys 2020; 153:214110. [DOI: 10.1063/5.0031249] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Affiliation(s)
| | - Tristan Bereau
- Max Planck Institute for Polymer Research, 55128 Mainz, Germany
- Van ’t Hoff Institute for Molecular Sciences and Informatics Institute, University of Amsterdam, Amsterdam 1098 XH, The Netherlands
| |
Collapse
|
11
|
Shen K, Sherck N, Nguyen M, Yoo B, Köhler S, Speros J, Delaney KT, Fredrickson GH, Shell MS. Learning composition-transferable coarse-grained models: Designing external potential ensembles to maximize thermodynamic information. J Chem Phys 2020; 153:154116. [DOI: 10.1063/5.0022808] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Affiliation(s)
- Kevin Shen
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106, USA
- Materials Research Laboratory, University of California, Santa Barbara, California 93106, USA
| | - Nicholas Sherck
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106, USA
| | - My Nguyen
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106, USA
| | - Brian Yoo
- BASF Corporation, Tarrytown, New York 10591, USA
| | | | - Joshua Speros
- California Research Alliance (CARA) by BASF, Berkeley, California 94720, USA
| | - Kris T. Delaney
- Materials Research Laboratory, University of California, Santa Barbara, California 93106, USA
| | - Glenn H. Fredrickson
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106, USA
- Materials Research Laboratory, University of California, Santa Barbara, California 93106, USA
- Department of Materials Engineering, University of California, Santa Barbara, California 93106, USA
| | - M. Scott Shell
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106, USA
| |
Collapse
|
12
|
Jin J, Yu A, Voth GA. Temperature and Phase Transferable Bottom-up Coarse-Grained Models. J Chem Theory Comput 2020; 16:6823-6842. [PMID: 32975948 DOI: 10.1021/acs.jctc.0c00832] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Despite the high fidelity of bottom-up coarse-grained (CG) approaches to recapitulate the structural correlations in atomistic simulations, the general use of bottom-up CG methods is limited because of the nontransferable nature of these CG models under different thermodynamic conditions. Because bottom-up CG potentials usually correspond to configuration-dependent free energies of the system, recent studies have focused on adjusting enthalpic or entropic contributions to account for issues with transferability. However, these approaches can require a manual adjustment of the CG interaction a priori and are usually limited to constant volume ensembles. To overcome these limitations, we construct temperature and phase transferable CG models under constant pressure by developing the ultra-coarse-graining (UCG) methodology in the mean-field limit. In the mean-field ansatz, an embedded semi-global order parameter recapitulates global changes to the system by automatically adjusting the effective CG interactions, thus bridging free energy decompositions with UCG theory. The method presented is designed to faithfully capture structural correlations under different thermodynamic conditions, using a single UCG model. Specifically, we test the applicability of the developed theory in three distinct cases: (1) different temperatures at constant pressure in liquids, (2) different temperatures across thermodynamic phases, and (3) liquid/vapor interfaces. We demonstrate that the systematic construction of both temperature and phase transferable bottom-up CG models is possible using this generalized UCG theory. Based on our findings, this approach significantly extends the transferability and applicability of the bottom-up CG theory and method.
Collapse
Affiliation(s)
- Jaehyeok Jin
- Department of Chemistry, Chicago Center for Theoretical Chemistry, James Franck Institute, and Institute for Biophysical Dynamics, The University of Chicago, 5735 S. Ellis Avenue, Chicago, Illinois 60637, United States
| | - Alvin Yu
- Department of Chemistry, Chicago Center for Theoretical Chemistry, James Franck Institute, and Institute for Biophysical Dynamics, The University of Chicago, 5735 S. Ellis Avenue, Chicago, Illinois 60637, United States
| | - Gregory A Voth
- Department of Chemistry, Chicago Center for Theoretical Chemistry, James Franck Institute, and Institute for Biophysical Dynamics, The University of Chicago, 5735 S. Ellis Avenue, Chicago, Illinois 60637, United States
| |
Collapse
|
13
|
Joshi SY, Deshmukh SA. A review of advancements in coarse-grained molecular dynamics simulations. MOLECULAR SIMULATION 2020. [DOI: 10.1080/08927022.2020.1828583] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Soumil Y. Joshi
- Department of Chemical Engineering, Virginia Tech, Blacksburg, VA, USA
| | | |
Collapse
|
14
|
Sevink GJA, Liwo JA, Asinari P, MacKernan D, Milano G, Pagonabarraga I. Unfolding the prospects of computational (bio)materials modeling. J Chem Phys 2020; 153:100901. [PMID: 32933271 DOI: 10.1063/5.0019773] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In this perspective communication, we briefly sketch the current state of computational (bio)material research and discuss possible solutions for the four challenges that have been increasingly identified within this community: (i) the desire to develop a unified framework for testing the consistency of implementation and physical accuracy for newly developed methodologies, (ii) the selection of a standard format that can deal with the diversity of simulation data and at the same time simplifies data storage, data exchange, and data reproduction, (iii) how to deal with the generation, storage, and analysis of massive data, and (iv) the benefits of efficient "core" engines. Expressed viewpoints are the result of discussions between computational stakeholders during a Lorentz center workshop with the prosaic title Workshop on Multi-scale Modeling and are aimed at (i) improving validation, reporting and reproducibility of computational results, (ii) improving data migration between simulation packages and with analysis tools, (iii) popularizing the use of coarse-grained and multi-scale computational tools among non-experts and opening up these modern computational developments to an extended user community.
Collapse
Affiliation(s)
- G J Agur Sevink
- Leiden Institute of Chemistry, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | - Jozef Adam Liwo
- Laboratory of Molecular Modeling, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland
| | - Pietro Asinari
- Department of Energy, Politecnico di Torino, Corso Duca degli Abruzzi, 24, 10129 Turin, Italy
| | - Donal MacKernan
- UCD School of Physics, University College Dublin, Dublin 4, Ireland
| | - Giuseppe Milano
- Theoretical Physical Chemistry, Organic Materials Modeling, Department of Organic Materials Science, Yamagata University, 4-3-16 Jonan Yonezawa, Yamagata-ken 992-8510, Japan
| | - Ignacio Pagonabarraga
- CECAM Centre Européen de Calcul Atomique et Moléculaire, École Polytechnique Fédérale de Lausanne (EPFL), Batochime, Avenue Forel 2, Lausanne CH-1015, Switzerland
| |
Collapse
|
15
|
Lavino AD, Carbone P, Marchisio D. MARTINI
coarse‐grained model for poly‐ε‐caprolactone in acetone‐water mixtures. CAN J CHEM ENG 2020. [DOI: 10.1002/cjce.23761] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Alessio D. Lavino
- Department of Applied Science and TechnologyPolitecnico di Torino Torino Italy
| | - Paola Carbone
- School of Chemical Engineering & Analytical ScienceThe University of Manchester Manchester UK
| | - Daniele Marchisio
- Department of Applied Science and TechnologyPolitecnico di Torino Torino Italy
| |
Collapse
|
16
|
Golmohammadi N, Boland-Hemmat M, Barahmand S, Eslami H. Coarse-grained molecular dynamics simulations of poly(ethylene terephthalate). J Chem Phys 2020; 152:114901. [PMID: 32199431 DOI: 10.1063/1.5145142] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
We have constructed efficient coarse-grained (CG) models of poly(ethylene terephthalate) (PET), using three mapping schemes, in which a repeat unit is lumped into either three or four beads. The CG potentials are parameterized to reproduce target distributions of an underlying accurate atomistic model [H. Eslami and F. Müller-Plathe, Macromolecules 42, 8241-8250 (2009)]. The CG simulations allow equilibration of long PET chains at all length scales. The CG results on the density of PET in melt and glassy states, chain dimension, local packing, and structure factor are in good agreement with experiment. We have established a link between the glass transition temperature and the local movements including conformational transitions and mean-square displacements of chain segments. Temperature transferabilities of the three proposed models were studied by comparing CG results on the static and thermodynamic properties of a polymer with atomistic and experimental findings. One of the three CG models has a good degree of transferability, following all inter- and intra-structural rearrangements of the atomistic model, over a broad range of temperature. Furthermore, as a distinct point of strength of CG, over atomistic, simulations, we have examined the dynamics of PET long chains, consisting of 100 repeat units, over a regime where entanglements dominate the dynamics. Performing long-time (550 ns) CG simulations, we have noticed the signature of a crossover from Rouse to reptation dynamics. However, a clear separation between the Rouse and the reptation dynamics needs much longer time simulations, confirming the experimental findings that the crossover to full reptation dynamics is very protracted.
Collapse
Affiliation(s)
- Nazila Golmohammadi
- Department of Chemistry, College of Sciences, Persian Gulf University, Boushehr 75168, Iran
| | | | - Sanam Barahmand
- Department of Chemistry, College of Sciences, Persian Gulf University, Boushehr 75168, Iran
| | - Hossein Eslami
- Department of Chemistry, College of Sciences, Persian Gulf University, Boushehr 75168, Iran
| |
Collapse
|
17
|
Rondina GG, Böhm MC, Müller-Plathe F. Predicting the Mobility Increase of Coarse-Grained Polymer Models from Excess Entropy Differences. J Chem Theory Comput 2020; 16:1431-1447. [DOI: 10.1021/acs.jctc.9b01088] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Gustavo G. Rondina
- Eduard-Zintl-Institut für Anorganische und Physikalische Chemie, Technische Universität Darmstadt, Alarich-Weiss-Straße 8, 64287 Darmstadt, Germany
| | - Michael C. Böhm
- Eduard-Zintl-Institut für Anorganische und Physikalische Chemie, Technische Universität Darmstadt, Alarich-Weiss-Straße 8, 64287 Darmstadt, Germany
| | - Florian Müller-Plathe
- Eduard-Zintl-Institut für Anorganische und Physikalische Chemie, Technische Universität Darmstadt, Alarich-Weiss-Straße 8, 64287 Darmstadt, Germany
| |
Collapse
|
18
|
Griffiths MZ, Shinoda W. tSPICA: Temperature- and Pressure-Dependent Coarse-Grained Force Field for Organic Molecules. J Chem Inf Model 2019; 59:3829-3838. [DOI: 10.1021/acs.jcim.9b00480] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Mark Z. Griffiths
- Department of Materials Chemistry, Nagoya University, Furo-cho Chikusa-ku, Nagoya 464-8603, Japan
| | - Wataru Shinoda
- Department of Materials Chemistry, Nagoya University, Furo-cho Chikusa-ku, Nagoya 464-8603, Japan
| |
Collapse
|
19
|
Rosenberger D, van der Vegt NFA. Relative entropy indicates an ideal concentration for structure-based coarse graining of binary mixtures. Phys Rev E 2019; 99:053308. [PMID: 31212527 DOI: 10.1103/physreve.99.053308] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Indexed: 06/09/2023]
Abstract
Many methodological approaches have been proposed to improve systematic or bottom-up coarse-graining techniques to enhance the representability and transferability of the derived interaction potentials. Transferability describes the ability of a coarse-grained (CG) model to be predictive, i.e., to describe a system at state points different from those chosen for parametrization. Whereas the representability characterizes the accuracy of a CG model to reproduce target properties of the underlying reference or fine-grained model at a given state point. In this article, we shift the focus away from methodological aspects and rather raise the question whether we can overcome the disadvantages of a given method in terms of representability and transferability by systematically selecting the state point at which the CG model gets parametrized. We answer this question by applying the inverse Monte Carlo (IMC) approach-a structure-based coarse-graining method-to derive effective interactions for binary mixtures of simple Lennard-Jones (LJ) particles, which are different in size. For such simple systems we indeed can identify a concentration where the derived potentials show the best performance in terms of structural representability and transferability. This specific concentration is identified by computing the relative entropy which quantifies the information loss between different IMC models and the reference LJ model at varying mixture compositions. Further, we show that an IMC model for mixtures of n-hexane and n-perfluorohexane shows the same trend in transferability as the IMC models for the LJ system. All derived models are more transferable in the direction of increasing concentration of the larger-sized compound.
Collapse
Affiliation(s)
- David Rosenberger
- Eduard Zintl Institut für Anorganische und Physikalische Chemie, Technische Universität Darmstadt, Darmstadt, 64287, Germany
| | - Nico F A van der Vegt
- Eduard Zintl Institut für Anorganische und Physikalische Chemie, Technische Universität Darmstadt, Darmstadt, 64287, Germany
| |
Collapse
|
20
|
Rosenberger D, Sanyal T, Shell MS, van der Vegt NFA. Transferability of Local Density-Assisted Implicit Solvation Models for Homogeneous Fluid Mixtures. J Chem Theory Comput 2019; 15:2881-2895. [PMID: 30995034 DOI: 10.1021/acs.jctc.8b01170] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The application of bottom-up coarse grained (CG) models to study the equilibrium mixing behavior of liquids is rather challenging, since these models can be significantly influenced by the density or the concentration of the state chosen during parametrization. This dependency leads to low transferability in density/concentration space and has been one of the major limitations in bottom-up coarse graining. Recent approaches proposed to tackle this shortcoming range from the addition of thermodynamic constraints, to an extended ensemble parametrization, to the addition of supplementary terms to the system's Hamiltonian. To study fluid phase equilibria with bottom-up CG models, the application of local density (LD) potentials appears to be a promising approach, as shown in previous work by Sanyal and Shell [T. Sanyal, M. S. Shell, J. Phys. Chem. B, 2018, 122, 5678]. Here, we want to further explore this method and test its ability to model a system which contains structural inhomogeneities only on the molecular scale, namely, solutions of methanol and water. We find that a water-water LD potential improves the transferability of an implicit-methanol CG model toward high water concentration. Conversely, a methanol-methanol LD potential does not significantly improve the transferability of an implicit-water CG model toward high methanol concentration. These differences appear due to the presence of cooperative interactions in water at high concentrations that the LD potentials can capture. In addition, we compare two different approaches to derive our CG models, namely, relative entropy optimization and the Inverse Monte Carlo method, and formally demonstrate under which analytical and numerical assumptions these two methods yield equivalent results.
Collapse
Affiliation(s)
- David Rosenberger
- Eduard Zintl Institut für Anorganische und Physikalische Chemie , Technische Universität Darmstadt , Darmstadt , Germany
| | - Tanmoy Sanyal
- Department of Chemical Engineering , University of California Santa Barbara , Santa Barbara , California 93106 , United States
| | - M Scott Shell
- Department of Chemical Engineering , University of California Santa Barbara , Santa Barbara , California 93106 , United States
| | - Nico F A van der Vegt
- Eduard Zintl Institut für Anorganische und Physikalische Chemie , Technische Universität Darmstadt , Darmstadt , Germany
| |
Collapse
|
21
|
Deichmann G, van der Vegt NFA. Conditional Reversible Work Coarse-Grained Models with Explicit Electrostatics—An Application to Butylmethylimidazolium Ionic Liquids. J Chem Theory Comput 2019; 15:1187-1198. [DOI: 10.1021/acs.jctc.8b00881] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Gregor Deichmann
- Eduard-Zintl-Institut für Anorganische und Physikalische Chemie, Technische Universität Darmstadt, Alarich-Weiss-Straße 10, 64287 Darmstadt, Germany
| | - Nico F. A. van der Vegt
- Eduard-Zintl-Institut für Anorganische und Physikalische Chemie, Technische Universität Darmstadt, Alarich-Weiss-Straße 10, 64287 Darmstadt, Germany
| |
Collapse
|
22
|
An Y, Bejagam KK, Deshmukh SA. Development of Transferable Nonbonded Interactions between Coarse-Grained Hydrocarbon and Water Models. J Phys Chem B 2019; 123:909-921. [DOI: 10.1021/acs.jpcb.8b07990] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
23
|
Potter TD, Tasche J, Wilson MR. Assessing the transferability of common top-down and bottom-up coarse-grained molecular models for molecular mixtures. Phys Chem Chem Phys 2019; 21:1912-1927. [DOI: 10.1039/c8cp05889j] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Assessing the performance of top-down and bottom-up coarse-graining approaches.
Collapse
Affiliation(s)
| | - Jos Tasche
- Department of Chemistry
- Durham University
- Lower Mountjoy
- Durham
- UK
| | - Mark R. Wilson
- Department of Chemistry
- Durham University
- Lower Mountjoy
- Durham
- UK
| |
Collapse
|
24
|
Deichmann G, Dallavalle M, Rosenberger D, van der Vegt NFA. Phase Equilibria Modeling with Systematically Coarse-Grained Models—A Comparative Study on State Point Transferability. J Phys Chem B 2018; 123:504-515. [DOI: 10.1021/acs.jpcb.8b07320] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Gregor Deichmann
- Eduard-Zintl-Institut für Anorganische und Physikalische Chemie, Technische Universität Darmstadt, Alarich-Weiss-Straße 10, 64287 Darmstadt, Germany
| | - Marco Dallavalle
- Eduard-Zintl-Institut für Anorganische und Physikalische Chemie, Technische Universität Darmstadt, Alarich-Weiss-Straße 10, 64287 Darmstadt, Germany
| | - David Rosenberger
- Eduard-Zintl-Institut für Anorganische und Physikalische Chemie, Technische Universität Darmstadt, Alarich-Weiss-Straße 10, 64287 Darmstadt, Germany
| | - Nico F. A. van der Vegt
- Eduard-Zintl-Institut für Anorganische und Physikalische Chemie, Technische Universität Darmstadt, Alarich-Weiss-Straße 10, 64287 Darmstadt, Germany
| |
Collapse
|
25
|
An Y, Bejagam KK, Deshmukh SA. Development of New Transferable Coarse-Grained Models of Hydrocarbons. J Phys Chem B 2018; 122:7143-7153. [DOI: 10.1021/acs.jpcb.8b03822] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yaxin An
- Department of Chemical Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Karteek K. Bejagam
- Department of Chemical Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Sanket A. Deshmukh
- Department of Chemical Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
| |
Collapse
|
26
|
Ardham VR, Leroy F. Atomistic and Coarse-Grained Modeling of the Adsorption of Graphene Nanoflakes at the Oil-Water Interface. J Phys Chem B 2018; 122:2396-2407. [PMID: 29397726 DOI: 10.1021/acs.jpcb.7b11173] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The high interfacial tension between two immiscible liquids can provide the necessary driving force for the self-assembly of nanoparticles at the interface. Particularly, the interface between water and oily liquids (hydrocarbon chains) has been exploited to prepare networks of highly interconnected graphene sheets of only a few layers thickness, which are well suited for industrial applications. Studying such complex systems through particle-based simulations could greatly enhance the understanding of the various driving forces in action and could possibly give more control over the self-assembly process. However, the interaction potentials used in particle-based simulations are typically derived by reproducing bulk properties and are therefore not suitable for describing systems dominated by interfaces. To address this issue, we introduce a methodology to derive solid-liquid interaction potentials that yield an accurate representation of the balance between interfacial interactions at atomistic and coarse-grained resolutions. Our approach is validated through its ability to lead to the adsorption of graphene nanoflakes at the interface between water and n-hexane. The development of accurate coarse-grained potentials that our approach enables will allow us to perform large-scale simulations to study the assembly of graphene nanoparticles at the interface between immiscible liquids. Our methodology is illustrated through a simulation of many graphene nanoflakes adsorbing at the interface.
Collapse
Affiliation(s)
- Vikram Reddy Ardham
- Eduard-Zintl-Institut für Anorganische und Physikalische Chemie, Technische Universität Darmstadt , Alarich-Weiss-Strasse 8, 64287 Darmstadt, Hessen, Germany
| | - Frédéric Leroy
- Eduard-Zintl-Institut für Anorganische und Physikalische Chemie, Technische Universität Darmstadt , Alarich-Weiss-Strasse 8, 64287 Darmstadt, Hessen, Germany
| |
Collapse
|
27
|
Rosenberger D, van der Vegt NFA. Addressing the temperature transferability of structure based coarse graining models. Phys Chem Chem Phys 2018; 20:6617-6628. [DOI: 10.1039/c7cp08246k] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We present a novel idea to improve the temperature transferability of structure based coarse graining models.
Collapse
Affiliation(s)
- David Rosenberger
- Technische Universität Darmstadt, Eduard-Zintl-Institut für Anorganische und Physikalische Chemie
- Darmstadt
- Germany
| | - Nico F. A. van der Vegt
- Technische Universität Darmstadt, Eduard-Zintl-Institut für Anorganische und Physikalische Chemie
- Darmstadt
- Germany
| |
Collapse
|
28
|
Deichmann G, van der Vegt NFA. Conditional Reversible Work Coarse-Grained Models of Molecular Liquids with Coulomb Electrostatics – A Proof of Concept Study on Weakly Polar Organic Molecules. J Chem Theory Comput 2017; 13:6158-6166. [DOI: 10.1021/acs.jctc.7b00611] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Gregor Deichmann
- Eduard-Zintl-Institut für
Anorganische und Physikalische Chemie, Technische Universität Darmstadt, Alarich-Weiss-Straße 10, 64287 Darmstadt, Germany
| | - Nico F. A. van der Vegt
- Eduard-Zintl-Institut für
Anorganische und Physikalische Chemie, Technische Universität Darmstadt, Alarich-Weiss-Straße 10, 64287 Darmstadt, Germany
| |
Collapse
|
29
|
Ramezanghorbani F, Dalgicdir C, Sayar M. A multi-state coarse grained modeling approach for an intrinsically disordered peptide. J Chem Phys 2017; 147:094103. [DOI: 10.1063/1.5001087] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
30
|
Gooneie A, Schuschnigg S, Holzer C. A Review of Multiscale Computational Methods in Polymeric Materials. Polymers (Basel) 2017; 9:E16. [PMID: 30970697 PMCID: PMC6432151 DOI: 10.3390/polym9010016] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Revised: 12/07/2016] [Accepted: 12/22/2016] [Indexed: 11/17/2022] Open
Abstract
Polymeric materials display distinguished characteristics which stem from the interplay of phenomena at various length and time scales. Further development of polymer systems critically relies on a comprehensive understanding of the fundamentals of their hierarchical structure and behaviors. As such, the inherent multiscale nature of polymer systems is only reflected by a multiscale analysis which accounts for all important mechanisms. Since multiscale modelling is a rapidly growing multidisciplinary field, the emerging possibilities and challenges can be of a truly diverse nature. The present review attempts to provide a rather comprehensive overview of the recent developments in the field of multiscale modelling and simulation of polymeric materials. In order to understand the characteristics of the building blocks of multiscale methods, first a brief review of some significant computational methods at individual length and time scales is provided. These methods cover quantum mechanical scale, atomistic domain (Monte Carlo and molecular dynamics), mesoscopic scale (Brownian dynamics, dissipative particle dynamics, and lattice Boltzmann method), and finally macroscopic realm (finite element and volume methods). Afterwards, different prescriptions to envelope these methods in a multiscale strategy are discussed in details. Sequential, concurrent, and adaptive resolution schemes are presented along with the latest updates and ongoing challenges in research. In sequential methods, various systematic coarse-graining and backmapping approaches are addressed. For the concurrent strategy, we aimed to introduce the fundamentals and significant methods including the handshaking concept, energy-based, and force-based coupling approaches. Although such methods are very popular in metals and carbon nanomaterials, their use in polymeric materials is still limited. We have illustrated their applications in polymer science by several examples hoping for raising attention towards the existing possibilities. The relatively new adaptive resolution schemes are then covered including their advantages and shortcomings. Finally, some novel ideas in order to extend the reaches of atomistic techniques are reviewed. We conclude the review by outlining the existing challenges and possibilities for future research.
Collapse
Affiliation(s)
- Ali Gooneie
- Chair of Polymer Processing, Montanuniversitaet Leoben, Otto Gloeckel-Strasse 2, 8700 Leoben, Austria.
| | - Stephan Schuschnigg
- Chair of Polymer Processing, Montanuniversitaet Leoben, Otto Gloeckel-Strasse 2, 8700 Leoben, Austria.
| | - Clemens Holzer
- Chair of Polymer Processing, Montanuniversitaet Leoben, Otto Gloeckel-Strasse 2, 8700 Leoben, Austria.
| |
Collapse
|
31
|
Dallavalle M, van der Vegt NFA. Evaluation of mapping schemes for systematic coarse graining of higher alkanes. Phys Chem Chem Phys 2017; 19:23034-23042. [DOI: 10.1039/c7cp03926c] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Different levels of coarse-graining are introduced to study the thermodynamic and structural properties of higher alkanes.
Collapse
Affiliation(s)
- Marco Dallavalle
- Eduard-Zintl-Institut für Anorganische und Physikalische Chemie
- Center of Smart Interfaces
- Technische Universität Darmstadt
- Germany
| | - Nico F. A. van der Vegt
- Eduard-Zintl-Institut für Anorganische und Physikalische Chemie
- Center of Smart Interfaces
- Technische Universität Darmstadt
- Germany
| |
Collapse
|
32
|
Affiliation(s)
- M. Scott Shell
- Department of Chemical Engineering; University of California Santa Barbara; Santa Barbara CA USA
| |
Collapse
|
33
|
Kmiecik S, Gront D, Kolinski M, Wieteska L, Dawid AE, Kolinski A. Coarse-Grained Protein Models and Their Applications. Chem Rev 2016; 116:7898-936. [DOI: 10.1021/acs.chemrev.6b00163] [Citation(s) in RCA: 555] [Impact Index Per Article: 69.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Sebastian Kmiecik
- Faculty
of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland
| | - Dominik Gront
- Faculty
of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland
| | - Michal Kolinski
- Bioinformatics
Laboratory, Mossakowski Medical Research Center of the Polish Academy of Sciences, Pawinskiego 5, 02-106 Warsaw, Poland
| | - Lukasz Wieteska
- Faculty
of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland
- Department
of Medical Biochemistry, Medical University of Lodz, Mazowiecka 6/8, 92-215 Lodz, Poland
| | | | - Andrzej Kolinski
- Faculty
of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland
| |
Collapse
|
34
|
Wu C. Phase Morphologies of Binary Polymer Blends Predicted by Systematically Coarse-Grained Models. MACROMOL THEOR SIMUL 2016. [DOI: 10.1002/mats.201500087] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Chaofu Wu
- College of Materials and Environment Engineering; Hunan University of Humanities Science & Technology; Dixing Road 487 Louxing DistrictLoudi 417000 Hunan Province P. R. China
| |
Collapse
|
35
|
Foley TT, Shell MS, Noid WG. The impact of resolution upon entropy and information in coarse-grained models. J Chem Phys 2016; 143:243104. [PMID: 26723589 DOI: 10.1063/1.4929836] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
By eliminating unnecessary degrees of freedom, coarse-grained (CG) models tremendously facilitate numerical calculations and theoretical analyses of complex phenomena. However, their success critically depends upon the representation of the system and the effective potential that governs the CG degrees of freedom. This work investigates the relationship between the CG representation and the many-body potential of mean force (PMF), W, which is the appropriate effective potential for a CG model that exactly preserves the structural and thermodynamic properties of a given high resolution model. In particular, we investigate the entropic component of the PMF and its dependence upon the CG resolution. This entropic component, SW, is a configuration-dependent relative entropy that determines the temperature dependence of W. As a direct consequence of eliminating high resolution details from the CG model, the coarsening process transfers configurational entropy and information from the configuration space into SW. In order to further investigate these general results, we consider the popular Gaussian Network Model (GNM) for protein conformational fluctuations. We analytically derive the exact PMF for the GNM as a function of the CG representation. In the case of the GNM, -TSW is a positive, configuration-independent term that depends upon the temperature, the complexity of the protein interaction network, and the details of the CG representation. This entropic term demonstrates similar behavior for seven model proteins and also suggests, in each case, that certain resolutions provide a more efficient description of protein fluctuations. These results may provide general insight into the role of resolution for determining the information content, thermodynamic properties, and transferability of CG models. Ultimately, they may lead to a rigorous and systematic framework for optimizing the representation of CG models.
Collapse
Affiliation(s)
- Thomas T Foley
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - M Scott Shell
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106, USA
| | - W G Noid
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| |
Collapse
|
36
|
Xiao Q, Guo H. Transferability of a coarse-grained atactic polystyrene model: the non-bonded potential effect. Phys Chem Chem Phys 2016; 18:29808-29824. [DOI: 10.1039/c6cp03753d] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this paper, we construct an efficient and simple coarse grained (CG) model for atactic polystyrene (PS) by using a 1 : 1 mapping scheme at 463 K and 1 atm pressure and derive the corresponding bonded and non-bonded potentials in the CG force field (FF) via a direct Boltzmann inversion approach and a combined structure-based and thermodynamic quantities-based CG method, respectively.
Collapse
Affiliation(s)
- Qiang Xiao
- Beijing National Laboratory for Molecular Sciences
- Joint Laboratory of Polymer Sciences and Materials
- State Key Laboratory of Polymer Physics and Chemistry
- Institute of Chemistry
- Chinese Academy of Sciences
| | - Hongxia Guo
- Beijing National Laboratory for Molecular Sciences
- Joint Laboratory of Polymer Sciences and Materials
- State Key Laboratory of Polymer Physics and Chemistry
- Institute of Chemistry
- Chinese Academy of Sciences
| |
Collapse
|
37
|
Ardham VR, Deichmann G, van der Vegt NFA, Leroy F. Solid-liquid work of adhesion of coarse-grained models of n-hexane on graphene layers derived from the conditional reversible work method. J Chem Phys 2015; 143:243135. [DOI: 10.1063/1.4936253] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Vikram Reddy Ardham
- Eduard-Zintl-Institut für Anorganische und Physikalische Chemie, Technische Universität Darmstadt, Alarich-Weiss-Strasse 4, 64287 Darmstadt, Germany
| | - Gregor Deichmann
- Center of Smart Interfaces, Technische Universität Darmstadt, Alarich-Weiss-Strasse 10, 64287 Darmstadt, Germany
| | - Nico F. A. van der Vegt
- Center of Smart Interfaces, Technische Universität Darmstadt, Alarich-Weiss-Strasse 10, 64287 Darmstadt, Germany
| | - Frédéric Leroy
- Eduard-Zintl-Institut für Anorganische und Physikalische Chemie, Technische Universität Darmstadt, Alarich-Weiss-Strasse 4, 64287 Darmstadt, Germany
| |
Collapse
|
38
|
Cao F, Sun H. Transferability and Nonbond Functional Form of Coarse Grained Force Field – Tested on Linear Alkanes. J Chem Theory Comput 2015; 11:4760-9. [DOI: 10.1021/acs.jctc.5b00573] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Fenglei Cao
- School
of Chemistry and Chemical Engineering and Key Laboratory of Scientific
and Engineering Computing of Ministry of Education, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Huai Sun
- School
of Chemistry and Chemical Engineering and Key Laboratory of Scientific
and Engineering Computing of Ministry of Education, Shanghai Jiao Tong University, Shanghai 200240, China
- State Key Laboratory of Inorganic Synthesis & Preparative Chemistry, College of Chemistry, Jilin University, Changchun, Jilin 130012, China
| |
Collapse
|
39
|
Deichmann G, Marcon V, van der Vegt NFA. Bottom-up derivation of conservative and dissipative interactions for coarse-grained molecular liquids with the conditional reversible work method. J Chem Phys 2014; 141:224109. [DOI: 10.1063/1.4903454] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Affiliation(s)
- Gregor Deichmann
- Center of Smart Interfaces, Technische Universität Darmstadt, Alarich-Weiss-Straße 10, 64287 Darmstadt, Germany
| | - Valentina Marcon
- Center of Smart Interfaces, Technische Universität Darmstadt, Alarich-Weiss-Straße 10, 64287 Darmstadt, Germany
| | - Nico F. A. van der Vegt
- Center of Smart Interfaces, Technische Universität Darmstadt, Alarich-Weiss-Straße 10, 64287 Darmstadt, Germany
| |
Collapse
|
40
|
Wu C. Coarse-grained molecular dynamics simulations of stereoregular poly(methyl methacrylate)/poly(vinyl chloride) blends. ACTA ACUST UNITED AC 2014. [DOI: 10.1002/polb.23608] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Chaofu Wu
- Department of Chemistry and Materials Science; Hunan University of Humanities Science & Technology; Dixing Road 487, Louxing District Loudi 417000 Hunan Province People's Republic of China
| |
Collapse
|
41
|
Kar P, Feig M. Recent advances in transferable coarse-grained modeling of proteins. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2014; 96:143-80. [PMID: 25443957 PMCID: PMC5366245 DOI: 10.1016/bs.apcsb.2014.06.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Computer simulations are indispensable tools for studying the structure and dynamics of biological macromolecules. Biochemical processes occur on different scales of length and time. Atomistic simulations cannot cover the relevant spatiotemporal scales at which the cellular processes occur. To address this challenge, coarse-grained (CG) modeling of the biological systems is employed. Over the last few years, many CG models for proteins continue to be developed. However, many of them are not transferable with respect to different systems and different environments. In this review, we discuss those CG protein models that are transferable and that retain chemical specificity. We restrict ourselves to CG models of soluble proteins only. We also briefly review recent progress made in the multiscale hybrid all-atom/CG simulations of proteins.
Collapse
Affiliation(s)
- Parimal Kar
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, USA
| | - Michael Feig
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, USA; Department of Chemistry, Michigan State University, East Lansing, Michigan, USA.
| |
Collapse
|
42
|
Wu C. Multiscale simulations of the structure and dynamics of stereoregular poly(methyl methacrylate)s. J Mol Model 2014; 20:2377. [DOI: 10.1007/s00894-014-2377-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Accepted: 07/07/2014] [Indexed: 10/25/2022]
|
43
|
|
44
|
Ingólfsson HI, Lopez CA, Uusitalo JJ, de Jong DH, Gopal SM, Periole X, Marrink SJ. The power of coarse graining in biomolecular simulations. WILEY INTERDISCIPLINARY REVIEWS. COMPUTATIONAL MOLECULAR SCIENCE 2014; 4:225-248. [PMID: 25309628 PMCID: PMC4171755 DOI: 10.1002/wcms.1169] [Citation(s) in RCA: 346] [Impact Index Per Article: 34.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Computational modeling of biological systems is challenging because of the multitude of spatial and temporal scales involved. Replacing atomistic detail with lower resolution, coarse grained (CG), beads has opened the way to simulate large-scale biomolecular processes on time scales inaccessible to all-atom models. We provide an overview of some of the more popular CG models used in biomolecular applications to date, focusing on models that retain chemical specificity. A few state-of-the-art examples of protein folding, membrane protein gating and self-assembly, DNA hybridization, and modeling of carbohydrate fibers are used to illustrate the power and diversity of current CG modeling.
Collapse
Affiliation(s)
- Helgi I Ingólfsson
- Groningen Biomolecular Sciences and Biotechnology Institute & Zernike Institute for Advanced Materials, University of GroningenGroningen, The Netherlands
| | - Cesar A Lopez
- Groningen Biomolecular Sciences and Biotechnology Institute & Zernike Institute for Advanced Materials, University of GroningenGroningen, The Netherlands
| | - Jaakko J Uusitalo
- Groningen Biomolecular Sciences and Biotechnology Institute & Zernike Institute for Advanced Materials, University of GroningenGroningen, The Netherlands
| | - Djurre H de Jong
- Groningen Biomolecular Sciences and Biotechnology Institute & Zernike Institute for Advanced Materials, University of GroningenGroningen, The Netherlands
| | - Srinivasa M Gopal
- Groningen Biomolecular Sciences and Biotechnology Institute & Zernike Institute for Advanced Materials, University of GroningenGroningen, The Netherlands
| | - Xavier Periole
- Groningen Biomolecular Sciences and Biotechnology Institute & Zernike Institute for Advanced Materials, University of GroningenGroningen, The Netherlands
| | - Siewert J Marrink
- Groningen Biomolecular Sciences and Biotechnology Institute & Zernike Institute for Advanced Materials, University of GroningenGroningen, The Netherlands
| |
Collapse
|
45
|
Abstract
By focusing on essential features, while averaging over less important details, coarse-grained (CG) models provide significant computational and conceptual advantages with respect to more detailed models. Consequently, despite dramatic advances in computational methodologies and resources, CG models enjoy surging popularity and are becoming increasingly equal partners to atomically detailed models. This perspective surveys the rapidly developing landscape of CG models for biomolecular systems. In particular, this review seeks to provide a balanced, coherent, and unified presentation of several distinct approaches for developing CG models, including top-down, network-based, native-centric, knowledge-based, and bottom-up modeling strategies. The review summarizes their basic philosophies, theoretical foundations, typical applications, and recent developments. Additionally, the review identifies fundamental inter-relationships among the diverse approaches and discusses outstanding challenges in the field. When carefully applied and assessed, current CG models provide highly efficient means for investigating the biological consequences of basic physicochemical principles. Moreover, rigorous bottom-up approaches hold great promise for further improving the accuracy and scope of CG models for biomolecular systems.
Collapse
Affiliation(s)
- W G Noid
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| |
Collapse
|
46
|
Ganguly P, van der Vegt NFA. Representability and Transferability of Kirkwood-Buff Iterative Boltzmann Inversion Models for Multicomponent Aqueous Systems. J Chem Theory Comput 2013; 9:5247-56. [PMID: 26592264 DOI: 10.1021/ct400242r] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
We discuss the application of the Kirkwood-Buff iterative Boltzmann inversion (KB-IBI) method for molecular coarse-graining (Ganguly et al. J. Chem. Theory Comput. 2012, 8, 1802) to multicomponent aqueous mixtures. Using a fixed set of effective single-site solvent-solvent potentials previously derived for binary urea-water systems, solute-solvent and solute-solute KB-IBI coarse-grained (CG) potentials have been derived for benzene in urea-water mixtures. Preferential solvation and salting-in coefficients of benzene are reproduced in quantitative agreement with the atomistic force field model. The transferability of the CG models is discussed, and it is shown that free energies of formation of hydrophobic benzene clusters obtained from simulations with the CG model are in good agreement with results obtained from all-atom simulations. The state-point representability of the CG models is discussed with respect to reproducing thermodynamic quantities such as pressure, isothermal compressibility, and preferential solvation. Combined use of KB-IBI and pressure corrections in deriving single-site CG models for pure-water, binary mixtures of urea and water, and ternary mixtures of benzene in urea-water at infinite benzene dilution provides an improved scheme to representing the atomistic pressure and the preferential solvation between the solution components. It is also found that the application of KB-IBI leads to a faster and improved convergence of the pressure and potential energy compared to the IBI method.
Collapse
Affiliation(s)
- Pritam Ganguly
- Center of Smart Interfaces, Technische Universität Darmstadt , Alarich-Weiss-Strasse 10, 64287 Darmstadt, Germany
| | - Nico F A van der Vegt
- Center of Smart Interfaces, Technische Universität Darmstadt , Alarich-Weiss-Strasse 10, 64287 Darmstadt, Germany
| |
Collapse
|
47
|
Wu C. A Combined Scheme for Systematically Coarse-Graining of Stereoregular Polymer Blends. Macromolecules 2013. [DOI: 10.1021/ma400572f] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Chaofu Wu
- Department of Chemistry and Materials
Science, Hunan University of Humanities, Science and Technology, Loudi 417000, People’s Republic of
China
| |
Collapse
|
48
|
|
49
|
de Jong DH, Singh G, Bennett WFD, Arnarez C, Wassenaar TA, Schäfer LV, Periole X, Tieleman DP, Marrink SJ. Improved Parameters for the Martini Coarse-Grained Protein Force Field. J Chem Theory Comput 2012; 9:687-97. [DOI: 10.1021/ct300646g] [Citation(s) in RCA: 922] [Impact Index Per Article: 76.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Djurre H. de Jong
- Groningen Biomolecular Sciences
and Biotechnology Institute and Zernike Institute for Advanced Materials,
University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Gurpreet Singh
- Department of Biological Sciences
and Institute for Biocomplexity and Informatics, University of Calgary,
2500 University Dr. NW, Calgary, AB, Canada, T2N 1N4
| | - W. F. Drew Bennett
- Department of Biological Sciences
and Institute for Biocomplexity and Informatics, University of Calgary,
2500 University Dr. NW, Calgary, AB, Canada, T2N 1N4
| | - Clement Arnarez
- Groningen Biomolecular Sciences
and Biotechnology Institute and Zernike Institute for Advanced Materials,
University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Tsjerk A. Wassenaar
- Groningen Biomolecular Sciences
and Biotechnology Institute and Zernike Institute for Advanced Materials,
University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Lars V. Schäfer
- Groningen Biomolecular Sciences
and Biotechnology Institute and Zernike Institute for Advanced Materials,
University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Xavier Periole
- Groningen Biomolecular Sciences
and Biotechnology Institute and Zernike Institute for Advanced Materials,
University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - D. Peter Tieleman
- Department of Biological Sciences
and Institute for Biocomplexity and Informatics, University of Calgary,
2500 University Dr. NW, Calgary, AB, Canada, T2N 1N4
| | - Siewert J. Marrink
- Groningen Biomolecular Sciences
and Biotechnology Institute and Zernike Institute for Advanced Materials,
University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| |
Collapse
|