1
|
Bai S, Zhang S, Huang C, Shi Q. Hierarchical Equations of Motion for Quantum Chemical Dynamics: Recent Methodology Developments and Applications. Acc Chem Res 2024; 57:3151-3160. [PMID: 39381954 DOI: 10.1021/acs.accounts.4c00492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
ConspectusQuantum effects are critical to understanding many chemical dynamical processes in condensed phases, where interactions between molecules and their environment are usually strong and non-Markovian. In this Account, we review recent progress from our group in development and application of the hierarchical equations of motion (HEOM) method, highlighting its ability to address some challenging problems in quantum chemical dynamics.In the HEOM method, the bath degrees of freedom are represented using effective modes from exponential decomposition of the bath correlation function. Complex spectral densities and low temperature simulations often require a larger number of modes, making the simulations very expensive. Recent advances, such as the barycentric spectral decomposition (BSD) technique, can significantly reduce the number of effective modes, allowing to handle complex spectral densities and enabling simulations at very low temperatures, including near-zero temperature dynamics.Another key improvement in the computational efficiency is the use of tensor network methods like matrix product states and hierarchical tensor networks. These techniques allow for efficient HEOM propagation with thousands of effective modes, crucial for simulating large molecular systems interacting with multiple baths. This combination enables simulations of excitation energy transfer (EET) in systems like the Fenna-Matthews-Olson (FMO) complex and even larger systems with experimentally determined spectral densities.The versatility of the HEOM method is demonstrated through applications to a wide range of chemical dynamics problems. Simulations of EET and related ultrafast spectroscopy are first briefly covered. Applications of the HEOM to quantum tunneling effects in proton transfer reactions are then presented. Early works have studied the non-Kramers dependence of the rate constant as a function of bath friction due to deep tunneling and revealed vibrationally nonadiabatic dynamics within the so-called nontraditional view of proton transfer reactions. A recent work on the large kinetic isotope effects in soybean lipoxygenase also indicated that many quantum correction approximations to classical transition-state theory may fall short in describing deep tunneling effects.Charge transport and separation dynamics in organic semiconductors are another area where the HEOM method has been instrumental. We first demonstrate that the HEOM provides a unified description of both band-like and thermally assisted charge carrier transport in organic materials. The effect of non-nearest neighbor transitions is then investigated by combining generalized master equations with exact memory kernels. The HEOM method also enables simulation of charge separation in organic photovoltaics (OPVs) and reveals how factors such as external electric fields, entropy, and charge delocalization influence the charge separation barrier and dynamics.Moreover, HEOM has been applied to investigate hydrogen atom scattering on the Au(111) surface and vibrational energy relaxation at molecule-metal interfaces. These studies provide deeper insights into how electron-hole pair excitations and temporary charge transfer states influence the nuclear motion, offering a new framework for simulating nonadiabatic dynamics on metal surfaces.In summary, the HEOM method has developed into a robust tool for simulating quantum effects in condensed phases. Future developments in algorithm efficiency and computational power will likely expand its applicability to even more complex systems.
Collapse
Affiliation(s)
- Shuming Bai
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuocang Zhang
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chenghong Huang
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qiang Shi
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
2
|
Humphries BS, Kinslow JC, Green D, Jones GA. Role of Quantum Information in HEOM Trajectories. J Chem Theory Comput 2024; 20:5383-5395. [PMID: 38889316 PMCID: PMC11238535 DOI: 10.1021/acs.jctc.4c00144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 06/04/2024] [Accepted: 06/04/2024] [Indexed: 06/20/2024]
Abstract
Open quantum systems often operate in the non-Markovian regime where a finite history of a trajectory is intrinsic to its evolution. The degree of non-Markovianity for a trajectory may be measured in terms of the amount of information flowing from the bath back into the system. In this study, we consider how information flows through the auxiliary density operators (ADOs) in the hierarchical equations of motion. We consider three cases for a range of baths, underdamped, intermediate, and overdamped. By understanding how information flows, we are able to determine the relative importance of different ADOs within the hierarchy. We show that ADOs sharing a common Matsubara axis behave similarly, while ADOs on different Matsubara axes behave differently. Using this knowledge, we are able to truncate hierarchies significantly, thus reducing the computation time, while obtaining qualitatively similar results. This is illustrated by comparing 2D electronic spectra for a molecule with an underdamped vibration subsumed into the bath spectral density.
Collapse
Affiliation(s)
- Ben S. Humphries
- School
of Chemistry, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, U.K.
| | - Joshua C. Kinslow
- School
of Chemistry, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, U.K.
| | - Dale Green
- Physics,
Faculty of Science, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, U.K.
| | - Garth A. Jones
- School
of Chemistry, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, U.K.
| |
Collapse
|
3
|
Le Dé B, Jaouadi A, Mangaud E, Chin AW, Desouter-Lecomte M. Managing temperature in open quantum systems strongly coupled with structured environments. J Chem Phys 2024; 160:244102. [PMID: 38913841 DOI: 10.1063/5.0214051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 06/06/2024] [Indexed: 06/26/2024] Open
Abstract
In non-perturbative non-Markovian open quantum systems, reaching either low temperatures with the hierarchical equations of motion (HEOM) or high temperatures with the Thermalized Time Evolving Density Operator with Orthogonal Polynomials Algorithm (T-TEDOPA) formalism in Hilbert space remains challenging. We compare different ways of modeling the environment. Sampling the Fourier transform of the bath correlation function, also called temperature dependent spectral density, proves to be very effective. T-TEDOPA [Tamascelli et al., Phys. Rev. Lett. 123, 090402 (2019)] uses a linear chain of oscillators with positive and negative frequencies, while HEOM is based on the complex poles of an optimized rational decomposition of the temperature dependent spectral density [Xu et al., Phys. Rev. Lett. 129, 230601 (2022)]. Resorting to the poles of the temperature independent spectral density and of the Bose function separately is an alternative when the problem due to the huge number of Bose poles at low temperatures is circumvented. Two examples illustrate the effectiveness of the HEOM and T-TEDOPA approaches: a benchmark pure dephasing case and a two-bath model simulating the dynamics of excited electronic states coupled through a conical intersection. We show the efficiency of T-TEDOPA to simulate dynamics at a finite temperature by using either continuous spectral densities or only all the intramolecular oscillators of a linear vibronic model calibrated from ab initio data of a phenylene ethynylene dimer.
Collapse
Affiliation(s)
- Brieuc Le Dé
- Institut des Nanosciences de Paris, Sorbonne Université, CNRS, F-75005 Paris, France
| | - Amine Jaouadi
- LyRIDS, ECE Paris, Graduate School of Engineering, Paris F-75015, France
| | - Etienne Mangaud
- MSME, Université Gustave Eiffel, UPEC, CNRS, F-77454 Marne-La-Vallée, France
| | - Alex W Chin
- Institut des Nanosciences de Paris, Sorbonne Université, CNRS, F-75005 Paris, France
| | | |
Collapse
|
4
|
Kim CW, Franco I. General framework for quantifying dissipation pathways in open quantum systems. II. Numerical validation and the role of non-Markovianity. J Chem Phys 2024; 160:214112. [PMID: 38833365 DOI: 10.1063/5.0202862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 05/13/2024] [Indexed: 06/06/2024] Open
Abstract
In the previous paper [C. W. Kim and I. Franco, J. Chem. Phys. 160, 214111-1-214111-13 (2024)], we developed a theory called MQME-D, which allows us to decompose the overall energy dissipation process in open quantum system dynamics into contributions by individual components of the bath when the subsystem dynamics is governed by a Markovian quantum master equation (MQME). Here, we contrast the predictions of MQME-D against the numerically exact results obtained by combining hierarchical equations of motion (HEOM) with a recently reported protocol for monitoring the statistics of the bath. Overall, MQME-D accurately captures the contributions of specific bath components to the overall dissipation while greatly reducing the computational cost compared to exact computations using HEOM. The computations show that MQME-D exhibits errors originating from its inherent Markov approximation. We demonstrate that its accuracy can be significantly increased by incorporating non-Markovianity by exploiting time scale separations (TSS) in different components of the bath. Our work demonstrates that MQME-D combined with TSS can be reliably used to understand how energy is dissipated in realistic open quantum system dynamics.
Collapse
Affiliation(s)
- Chang Woo Kim
- Department of Chemistry, Chonnam National University, Gwangju 61186, South Korea
| | - Ignacio Franco
- Department of Chemistry, University of Rochester, Rochester, New York 14627, USA
- Department of Physics, University of Rochester, Rochester, New York 14627, USA
| |
Collapse
|
5
|
Boettcher V, Hartmann R, Beyer K, Strunz WT. Dynamics of a strongly coupled quantum heat engine-Computing bath observables from the hierarchy of pure states. J Chem Phys 2024; 160:094108. [PMID: 38436445 DOI: 10.1063/5.0192075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 02/07/2024] [Indexed: 03/05/2024] Open
Abstract
We present a fully quantum dynamical treatment of a quantum heat engine and its baths based on the Hierarchy of Pure States (HOPS), an exact and general method for open quantum system dynamics. We show how the change of the bath energy and the interaction energy can be determined within HOPS for arbitrary coupling strength and smooth time dependence of the modulation protocol. The dynamics of all energetic contributions during the operation can be carefully examined both in its initial transient phase and, also later, in its periodic steady state. A quantum Otto engine with a qubit as an inherently nonlinear work medium is studied in a regime where the energy associated with the interaction Hamiltonian plays an important role for the global energy balance and, thus, must not be neglected when calculating its power and efficiency. We confirm that the work required to drive the coupling with the baths sensitively depends on the speed of the modulation protocol. Remarkably, departing from the conventional scheme of well-separated phases by allowing for temporal overlap, we discover that one can even gain energy from the modulation of bath interactions. We visualize these various work contributions using the analog of state change diagrams of thermodynamic cycles. We offer a concise, full presentation of HOPS with its extension to bath observables, as it serves as a universal tool for the numerically exact description of general quantum dynamical (thermodynamic) scenarios far from the weak-coupling limit.
Collapse
Affiliation(s)
- Valentin Boettcher
- Institute of Theoretical Physics, TUD Dresden University of Technology, 01062 Dresden, Germany
- Department of Physics, McGill University, Montréal, Québec H3A 2T8, Canada
| | - Richard Hartmann
- Institute of Theoretical Physics, TUD Dresden University of Technology, 01062 Dresden, Germany
| | - Konstantin Beyer
- Institute of Theoretical Physics, TUD Dresden University of Technology, 01062 Dresden, Germany
- Department of Physics, Stevens Institute of Technology, Hoboken, New Jersey 07030, USA
| | - Walter T Strunz
- Institute of Theoretical Physics, TUD Dresden University of Technology, 01062 Dresden, Germany
| |
Collapse
|
6
|
Prada A, Pós ES, Althorpe SC. Comparison of Matsubara dynamics with exact quantum dynamics for an oscillator coupled to a dissipative bath. J Chem Phys 2023; 158:114106. [PMID: 36948794 DOI: 10.1063/5.0138250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023] Open
Abstract
We report the first numerical calculations in which converged Matsubara dynamics is compared directly with exact quantum dynamics with no artificial damping of the time-correlation functions (TCFs). The system treated is a Morse oscillator coupled to a harmonic bath. We show that, when the system-bath coupling is sufficiently strong, the Matsubara calculations can be converged by explicitly including up to M = 200 Matsubara modes, with the remaining modes included as a harmonic "tail" correction. The resulting Matsubara TCFs are in near-perfect agreement with the exact quantum TCFs, for non-linear as well as linear operators, at a temperature at which the TCFs are dominated by quantum thermal fluctuations. These results provide compelling evidence that incoherent classical dynamics can arise in the condensed phase at temperatures at which the statistics are dominated by quantum (Boltzmann) effects, as a result of smoothing of imaginary-time Feynman paths. The techniques developed here may also lead to efficient methods for benchmarking system-bath dynamics in the overdamped regime.
Collapse
Affiliation(s)
- Adam Prada
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Eszter S Pós
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Stuart C Althorpe
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| |
Collapse
|
7
|
Zhang J, Tanimura Y. Imaginary-time hierarchical equations of motion for thermodynamic variables. J Chem Phys 2022; 156:174112. [PMID: 35525645 DOI: 10.1063/5.0091468] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The partition function (PF) plays a key role in the calculation of quantum thermodynamic properties of a system that interacts with a heat bath. The imaginary-time hierarchical equations of motion (imHEOM) approach was developed to evaluate in a rigorous manner the PF of a system strongly coupled to a non-Markovian bath. In this paper, we present a numerically efficient scheme to evaluate the imHEOM utilizing the β-differentiated imHEOM (BD-imHEOM) that are obtained by differentiating the elements of the imHEOM with respect to the inverse temperature. This approach allows us to evaluate the system, system-bath interaction, and heat-bath parts of the PF efficiently. Moreover, we employ a polyharmonic decomposition method to construct a concise hierarchical structure with better convergence, thus reducing the cost of numerical integrations. We demonstrate the proposed approach by compute thermodynamic quantities of a spin-boson system and a 2 × 2 antiferromagnetic triangular spin lattice system with an Ohmic spectral distribution.
Collapse
Affiliation(s)
- Jiaji Zhang
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Yoshitaka Tanimura
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| |
Collapse
|
8
|
Seibt J, Kühn O. Strong Exciton-Vibrational Coupling in Molecular Assemblies. Dynamics Using the Polaron Transformation in HEOM Space. J Phys Chem A 2021; 125:7052-7065. [PMID: 34353023 DOI: 10.1021/acs.jpca.1c02684] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In Frenkel exciton dynamics of aggregated molecules, the polaron transformation (PT) technique leads to decoupling of diagonal elements in the subspace of excited electronic states from vibrations. In this article we describe for the first time how PT becomes applicable in the framework of the "Hierarchical Equations of Motion" (HEOM) approach for treatment of open quantum systems. We extend the concept of formulating operators in HEOM space by deriving hierarchical equations of PT which lead to a shift in the excited state potential energy surface to compensate its displacement. While the assumption of thermal equilibration of the vibrational oscillators, introduced by PT, results in a stationary state in a monomer, in a dimer under the same assumption nonequilibrium dynamics appears because of the interplay of the transfer process and vibrational equilibration. Both vertical transitions generating a vibrationally hot state and initially equilibrated vibrational oscillators evolve toward the same stationary asymptotic state associated with polaron formation. The effect of PT on the dynamics of this process depends on initial excitation and basis representation of the electronic system. The developed approach facilitates a generic formulation of quantum master equations involving perturbative treatment of polaron dynamics.
Collapse
Affiliation(s)
- Joachim Seibt
- Institute of Physics, University of Rostock, Albert-Einstein-Str. 23-24, 18059 Rostock, Germany.,Institute for Theoretical Physics, Johannes Kepler University Linz, Altenberger Str. 69, 4040 Linz, Austria
| | - Oliver Kühn
- Institute of Physics, University of Rostock, Albert-Einstein-Str. 23-24, 18059 Rostock, Germany
| |
Collapse
|
9
|
Breuil G, Mangaud E, Lasorne B, Atabek O, Desouter-Lecomte M. Funneling dynamics in a phenylacetylene trimer: Coherent excitation of donor excitonic states and their superposition. J Chem Phys 2021; 155:034303. [PMID: 34293889 DOI: 10.1063/5.0056351] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Funneling dynamics in conjugated dendrimers has raised great interest in the context of artificial light-harvesting processes. Photoinduced relaxation has been explored by time-resolved spectroscopy and simulations, mainly by semiclassical approaches or referring to open quantum systems methods, within the Redfield approximation. Here, we take the benefit of an ab initio investigation of a phenylacetylene trimer, and in the spirit of a divide-and-conquer approach, we focus on the early dynamics of the hierarchy of interactions. We build a simplified but realistic model by retaining only bright electronic states and selecting the vibrational domain expected to play the dominant role for timescales shorter than 500 fs. We specifically analyze the role of the in-plane high-frequency skeletal vibrational modes involving the triple bonds. Open quantum system non-adiabatic dynamics involving conical intersections is conducted by separating the electronic subsystem from the high-frequency tuning and coupling vibrational baths. This partition is implemented within a robust non-perturbative and non-Markovian method, here the hierarchical equations of motion. We will more precisely analyze the coherent preparation of donor states or of their superposition by short laser pulses with different polarizations. In particular, we extend the π-pulse strategy for the creation of a superposition to a V-type system. We study the relaxation induced by the high-frequency vibrational collective modes and the transitory dissymmetry, which results from the creation of a superposition of electronic donor states.
Collapse
Affiliation(s)
- Gabriel Breuil
- ICGM, Univ Montpellier, CNRS, ENSCM, Montpellier, France
| | - Etienne Mangaud
- MSME, Université Gustave Eiffel, UPEC, CNRS, F-77454 Marne-La-Vallée, France
| | | | - Osman Atabek
- Institut des Sciences Moléculaires, Université Paris-Saclay-CNRS, UMR8214, F-91400 Orsay, France
| | | |
Collapse
|
10
|
Yan Y, Xu M, Li T, Shi Q. Efficient propagation of the hierarchical equations of motion using the Tucker and hierarchical Tucker tensors. J Chem Phys 2021; 154:194104. [PMID: 34240893 DOI: 10.1063/5.0050720] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We develop new methods to efficiently propagate the hierarchical equations of motion (HEOM) by using the Tucker and hierarchical Tucker (HT) tensors to represent the reduced density operator and auxiliary density operators. We first show that by employing the split operator method, the specific structure of the HEOM allows a simple propagation scheme using the Tucker tensor. When the number of effective modes in the HEOM increases and the Tucker representation becomes intractable, the split operator method is extended to the binary tree structure of the HT representation. It is found that to update the binary tree nodes related to a specific effective mode, we only need to propagate a short matrix product state constructed from these nodes. Numerical results show that by further employing the mode combination technique commonly used in the multi-configuration time-dependent Hartree approaches, the binary tree representation can be applied to study excitation energy transfer dynamics in a fairly large system including over 104 effective modes. The new methods may thus provide a promising tool in simulating quantum dynamics in condensed phases.
Collapse
Affiliation(s)
- Yaming Yan
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China; and Physical Science Laboratory, Huairou National Comprehensive Science Center, Beijing 101407, China
| | - Meng Xu
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China; and Physical Science Laboratory, Huairou National Comprehensive Science Center, Beijing 101407, China
| | - Tianchu Li
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China; and Physical Science Laboratory, Huairou National Comprehensive Science Center, Beijing 101407, China
| | - Qiang Shi
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China; and Physical Science Laboratory, Huairou National Comprehensive Science Center, Beijing 101407, China
| |
Collapse
|
11
|
Tanimura Y. Numerically "exact" approach to open quantum dynamics: The hierarchical equations of motion (HEOM). J Chem Phys 2021; 153:020901. [PMID: 32668942 DOI: 10.1063/5.0011599] [Citation(s) in RCA: 184] [Impact Index Per Article: 61.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
An open quantum system refers to a system that is further coupled to a bath system consisting of surrounding radiation fields, atoms, molecules, or proteins. The bath system is typically modeled by an infinite number of harmonic oscillators. This system-bath model can describe the time-irreversible dynamics through which the system evolves toward a thermal equilibrium state at finite temperature. In nuclear magnetic resonance and atomic spectroscopy, dynamics can be studied easily by using simple quantum master equations under the assumption that the system-bath interaction is weak (perturbative approximation) and the bath fluctuations are very fast (Markovian approximation). However, such approximations cannot be applied in chemical physics and biochemical physics problems, where environmental materials are complex and strongly coupled with environments. The hierarchical equations of motion (HEOM) can describe the numerically "exact" dynamics of a reduced system under nonperturbative and non-Markovian system-bath interactions, which has been verified on the basis of exact analytical solutions (non-Markovian tests) with any desired numerical accuracy. The HEOM theory has been used to treat systems of practical interest, in particular, to account for various linear and nonlinear spectra in molecular and solid state materials, to evaluate charge and exciton transfer rates in biological systems, to simulate resonant tunneling and quantum ratchet processes in nanodevices, and to explore quantum entanglement states in quantum information theories. This article presents an overview of the HEOM theory, focusing on its theoretical background and applications, to help further the development of the study of open quantum dynamics.
Collapse
Affiliation(s)
- Yoshitaka Tanimura
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| |
Collapse
|
12
|
Janković V, Mančal T. Exact description of excitonic dynamics in molecular aggregates weakly driven by light. J Chem Phys 2020; 153:244122. [PMID: 33380075 DOI: 10.1063/5.0029914] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We present a rigorous theoretical description of excitonic dynamics in molecular light-harvesting aggregates photoexcited by weak-intensity radiation of arbitrary properties. While the interaction with light is included up to the second order, the treatment of the excitation-environment coupling is exact and results in an exact expression for the reduced excitonic density matrix that is manifestly related to the spectroscopic picture of the photoexcitation process. This expression takes fully into account the environmental reorganization processes triggered by the two interactions with light. This is particularly important for slow environments and/or strong excitation-environment coupling. Within the exponential decomposition scheme, we demonstrate how our result can be recast as the hierarchy of equations of motion (HEOM) that explicitly and consistently includes the photoexcitation step. We analytically describe the environmental reorganization dynamics triggered by a delta-like excitation of a single chromophore and demonstrate how our HEOM, in appropriate limits, reduces to the Redfield equations comprising a pulsed photoexcitation and the nonequilibrium Förster theory. We also discuss the relation of our formalism to the combined Born-Markov-HEOM approaches in the case of excitation by thermal light.
Collapse
Affiliation(s)
- Veljko Janković
- Faculty of Mathematics and Physics, Charles University, Ke Karlovu 5, 121 16 Prague 2, Czech Republic
| | - Tomáš Mančal
- Faculty of Mathematics and Physics, Charles University, Ke Karlovu 5, 121 16 Prague 2, Czech Republic
| |
Collapse
|
13
|
Yan Y, Liu Y, Xing T, Shi Q. Theoretical study of excitation energy transfer and nonlinear spectroscopy of photosynthetic light‐harvesting complexes using the nonperturbative reduced dynamics method. WIRES COMPUTATIONAL MOLECULAR SCIENCE 2020. [DOI: 10.1002/wcms.1498] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Yaming Yan
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species Institute of Chemistry, Chinese Academy of Sciences Beijing China
- University of Chinese Academy of Sciences Beijing China
- Physical Science Laboratory Huairou National Comprehensive Science Center Beijing China
| | - Yanying Liu
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species Institute of Chemistry, Chinese Academy of Sciences Beijing China
- University of Chinese Academy of Sciences Beijing China
- Physical Science Laboratory Huairou National Comprehensive Science Center Beijing China
| | - Tao Xing
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species Institute of Chemistry, Chinese Academy of Sciences Beijing China
- University of Chinese Academy of Sciences Beijing China
- Physical Science Laboratory Huairou National Comprehensive Science Center Beijing China
| | - Qiang Shi
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species Institute of Chemistry, Chinese Academy of Sciences Beijing China
- University of Chinese Academy of Sciences Beijing China
- Physical Science Laboratory Huairou National Comprehensive Science Center Beijing China
| |
Collapse
|
14
|
Mangaud E, Lasorne B, Atabek O, Desouter-Lecomte M. Statistical distributions of the tuning and coupling collective modes at a conical intersection using the hierarchical equations of motion. J Chem Phys 2019; 151:244102. [DOI: 10.1063/1.5128852] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Etienne Mangaud
- Physicochimie des Electrolytes et des Nanosystèmes Interfaciaux-UMR 8234 Sorbonne Université, F-75252 Paris, France and Laboratoire Collisions Agrégats Réactivité (IRSAMC), Université Toulouse III Paul Sabatier, UMR 5589, F-31062 Toulouse, France
| | - Benjamin Lasorne
- Institut Charles Gerhardt Montpellier (ICGM), Université de Montpellier, CNRS, ENSCM, F-34095 Montpellier, France
| | - Osman Atabek
- Institut des Sciences Moléculaires d’Orsay (ISMO), Université Paris-Saclay, CNRS, F-91405 Orsay, France
| | - Michèle Desouter-Lecomte
- Institut de Chimie Physique (ICP), Université Paris-Saclay, CNRS, F-91405 Orsay, France and Département de Chimie, Université de Liège, Sart Tilman, B6, B-4000 Liège, Belgium
| |
Collapse
|
15
|
Lambert N, Ahmed S, Cirio M, Nori F. Modelling the ultra-strongly coupled spin-boson model with unphysical modes. Nat Commun 2019; 10:3721. [PMID: 31427583 PMCID: PMC6700178 DOI: 10.1038/s41467-019-11656-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Accepted: 07/29/2019] [Indexed: 11/23/2022] Open
Abstract
A quantum system weakly coupled to a zero-temperature environment will relax, via spontaneous emission, to its ground-state. However, when the coupling to the environment is ultra-strong the ground-state is expected to become dressed with virtual excitations. This regime is difficult to capture with some traditional methods because of the explosion in the number of Matsubara frequencies, i.e., exponential terms in the free-bath correlation function. To access this regime we generalize both the hierarchical equations of motion and pseudomode methods, taking into account this explosion using only a biexponential fitting function. We compare these methods to the reaction coordinate mapping, which helps show how these sometimes neglected Matsubara terms are important to regulate detailed balance and prevent the unphysical emission of virtual excitations. For the pseudomode method, we present a general proof of validity for the use of superficially unphysical Matsubara-modes, which mirror the mathematical essence of the Matsubara frequencies.
Collapse
Affiliation(s)
- Neill Lambert
- Theoretical Quantum Physics Laboratory, RIKEN Cluster for Pioneering Research, Wako-shi, Saitama, 351-0198, Japan.
| | - Shahnawaz Ahmed
- Theoretical Quantum Physics Laboratory, RIKEN Cluster for Pioneering Research, Wako-shi, Saitama, 351-0198, Japan
- Wallenberg Centre for Quantum Technology, Department of Microtechnology and Nanoscience, Chalmers University of Technology, 412 96, Gothenburg, Sweden
| | - Mauro Cirio
- Graduate School of China Academy of Engineering Physics, Haidian District, Beijing, 100193, China.
| | - Franco Nori
- Theoretical Quantum Physics Laboratory, RIKEN Cluster for Pioneering Research, Wako-shi, Saitama, 351-0198, Japan
- Department of Physics, University of Michigan, Ann Arbor, MI, 48109-1040, USA
| |
Collapse
|
16
|
Šindelka M, Šimsa D. Spontaneous emission from nonhermitian perspective: complex scaling of the photon coordinates. Mol Phys 2019. [DOI: 10.1080/00268976.2019.1570368] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Milan Šindelka
- Institute of Plasma Physics, Czech Academy of Sciences, Prague 8, Czech Republic
| | - Daniel Šimsa
- Institute of Physics, Czech Academy of Sciences, Prague 8, Czech Republic
| |
Collapse
|
17
|
Abstract
A comprehensive approach to modeling open quantum systems consistent with thermodynamics is presented. The theory of open quantum systems is employed to define system bath partitions. The Markovian master equation defines an isothermal partition between the system and bath. Two methods to derive the quantum master equation are described: the weak coupling limit and the repeated collision model. The role of the eigenoperators of the free system dynamics is highlighted, in particular, for driven systems. The thermodynamical relations are pointed out. Models that lead to loss of coherence, i.e., dephasing are described. The implication of the laws of thermodynamics to simulating transport and spectroscopy is described. The indications for self-averaging in large quantum systems and thus its importance in modeling are described. Basic modeling by the surrogate Hamiltonian is described, as well as thermal boundary conditions using the repeated collision model and their use in the stochastic surrogate Hamiltonian. The problem of modeling with explicitly time dependent driving is analyzed. Finally, the use of the stochastic surrogate Hamiltonian for modeling ultrafast spectroscopy and quantum control is reviewed.
Collapse
Affiliation(s)
- Ronnie Kosloff
- The Institute of Chemistry and The Fritz Haber Centre for Theoretical Chemistry, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| |
Collapse
|
18
|
Xu M, Liu Y, Song K, Shi Q. A non-perturbative approach to simulate heterogeneous electron transfer dynamics: Effective mode treatment of the continuum electronic states. J Chem Phys 2019; 150:044109. [PMID: 30709251 DOI: 10.1063/1.5046891] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We propose a non-perturbative method to simulate heterogeneous electron transfer dynamics in systems described by a Newns-Anderson type of model. The coupling between the molecule and the continuum electronic states at the metal or semiconductor surface is represented using a set of effective modes, by employing an exponential expansion of the bath correlation functions. Depending on the nature of the problems, the nuclear degrees of freedom are either treated explicitly using wave functions and density operators or as dissipative modes using the techniques from the hierarchical equations of the motion method. Numerical examples are also presented for applications in problems including (1) photo-induced charge transfer at the molecule-semiconductor interfaces, (2) heterogeneous electron transfer at the molecule-metal interface, and (3) vibrational relaxation on a metal surface.
Collapse
Affiliation(s)
- Meng Xu
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun, Beijing 100190, China, and University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanying Liu
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun, Beijing 100190, China, and University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kai Song
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun, Beijing 100190, China, and University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qiang Shi
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun, Beijing 100190, China, and University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
19
|
|
20
|
|
21
|
Treatment of Herzberg-Teller and non-Condon effects in optical spectra with Hierarchical Equations of Motion. Chem Phys 2018. [DOI: 10.1016/j.chemphys.2018.08.026] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
22
|
Shi Q, Xu Y, Yan Y, Xu M. Efficient propagation of the hierarchical equations of motion using the matrix product state method. J Chem Phys 2018; 148:174102. [DOI: 10.1063/1.5026753] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Qiang Shi
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun, Beijing 100190, China and University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yang Xu
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun, Beijing 100190, China and University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yaming Yan
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun, Beijing 100190, China and University of Chinese Academy of Sciences, Beijing 100049, China
| | - Meng Xu
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun, Beijing 100190, China and University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
23
|
Xu Y, Song K, Shi Q. Mixed quantum-classical simulation of the hydride transfer reaction catalyzed by dihydrofolate reductase based on a mapped system-harmonic bath model. J Chem Phys 2018; 148:102322. [DOI: 10.1063/1.4990515] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Yang Xu
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun, Beijing 100190, China and University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kai Song
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun, Beijing 100190, China and University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qiang Shi
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun, Beijing 100190, China and University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
24
|
Mangaud E, Meier C, Desouter-Lecomte M. Analysis of the non-Markovianity for electron transfer reactions in an oligothiophene-fullerene heterojunction. Chem Phys 2017. [DOI: 10.1016/j.chemphys.2017.07.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
25
|
Ye L, Wang X, Hou D, Xu RX, Zheng X, Yan Y. HEOM-QUICK: a program for accurate, efficient, and universal characterization of strongly correlated quantum impurity systems. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE 2016. [DOI: 10.1002/wcms.1269] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- LvZhou Ye
- Hefei National Laboratory for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information and Quantum Physics; University of Science and Technology of China; Hefei China
| | - Xiaoli Wang
- Hefei National Laboratory for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information and Quantum Physics; University of Science and Technology of China; Hefei China
| | - Dong Hou
- Hefei National Laboratory for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information and Quantum Physics; University of Science and Technology of China; Hefei China
| | - Rui-Xue Xu
- Hefei National Laboratory for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information and Quantum Physics; University of Science and Technology of China; Hefei China
| | - Xiao Zheng
- Hefei National Laboratory for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information and Quantum Physics; University of Science and Technology of China; Hefei China
| | - YiJing Yan
- Hefei National Laboratory for Physical Sciences at the Microscale and iChEM (Collaborative Innovation Center of Chemistry for Energy Materials); University of Science and Technology of China; Hefei China
| |
Collapse
|
26
|
Holdaway DIH, Collini E, Olaya-Castro A. Coherence specific signal detection via chiral pump-probe spectroscopy. J Chem Phys 2016; 144:194112. [DOI: 10.1063/1.4948943] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- David I. H. Holdaway
- Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT, United Kingdom
| | - Elisabetta Collini
- Department of Chemical Sciences, University of Padova, I-35131 Padova, Italy
| | - Alexandra Olaya-Castro
- Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT, United Kingdom
| |
Collapse
|
27
|
Jain A, Subotnik JE. Surface hopping, transition state theory, and decoherence. II. Thermal rate constants and detailed balance. J Chem Phys 2015; 143:134107. [DOI: 10.1063/1.4930549] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Amber Jain
- Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104, USA
| | - Joseph E. Subotnik
- Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
28
|
Liu H, Zhu L, Bai S, Shi Q. Reduced quantum dynamics with arbitrary bath spectral densities: hierarchical equations of motion based on several different bath decomposition schemes. J Chem Phys 2015; 140:134106. [PMID: 24712779 DOI: 10.1063/1.4870035] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We investigated applications of the hierarchical equation of motion (HEOM) method to perform high order perturbation calculations of reduced quantum dynamics for a harmonic bath with arbitrary spectral densities. Three different schemes are used to decompose the bath spectral density into analytical forms that are suitable to the HEOM treatment: (1) The multiple Lorentzian mode model that can be obtained by numerically fitting the model spectral density. (2) The combined Debye and oscillatory Debye modes model that can be constructed by fitting the corresponding classical bath correlation function. (3) A new method that uses undamped harmonic oscillator modes explicitly in the HEOM formalism. Methods to extract system-bath correlations were investigated for the above bath decomposition schemes. We also show that HEOM in the undamped harmonic oscillator modes can give detailed information on the partial Wigner transform of the total density operator. Theoretical analysis and numerical simulations of the spin-Boson dynamics and the absorption line shape of molecular dimers show that the HEOM formalism for high order perturbations can serve as an important tool in studying the quantum dissipative dynamics in the intermediate coupling regime.
Collapse
Affiliation(s)
- Hao Liu
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun, Beijing 100190, China
| | - Lili Zhu
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun, Beijing 100190, China
| | - Shuming Bai
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun, Beijing 100190, China
| | - Qiang Shi
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun, Beijing 100190, China
| |
Collapse
|
29
|
Ma J, Moix J, Cao J. Förster resonance energy transfer, absorption and emission spectra in multichromophoric systems. II. Hybrid cumulant expansion. J Chem Phys 2015; 142:094107. [PMID: 25747061 DOI: 10.1063/1.4908600] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
We develop a hybrid cumulant expansion method to account for the system-bath entanglement in the emission spectrum in the multi-chromophoric Förster transfer rate. In traditional perturbative treatments, the emission spectrum is usually expanded with respect to the system-bath coupling term in both real and imaginary time. This perturbative treatment gives a reliable absorption spectrum, where the bath is Gaussian and only the real-time expansion is involved. For the emission spectrum, the initial state is an entangled state of the system plus bath. Traditional perturbative methods are problematic when the excitations are delocalized and the energy gap is larger than the thermal energy, since the second-order expansion cannot predict the displacement of the bath. In the present method, the real-time dynamics is carried out by using the 2nd-order cumulant expansion method, while the displacement of the bath is treated more accurately by utilizing the exact reduced density matrix of the system. In a sense, the hybrid cumulant expansion is based on a generalized version of linear response theory with entangled initial states.
Collapse
Affiliation(s)
- Jian Ma
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Jeremy Moix
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Jianshu Cao
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
30
|
Tanimura Y. Reduced hierarchical equations of motion in real and imaginary time: Correlated initial states and thermodynamic quantities. J Chem Phys 2014; 141:044114. [DOI: 10.1063/1.4890441] [Citation(s) in RCA: 121] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
31
|
Xie W, Xu Y, Zhu L, Shi Q. Mixed quantum classical calculation of proton transfer reaction rates: From deep tunneling to over the barrier regimes. J Chem Phys 2014; 140:174105. [DOI: 10.1063/1.4873135] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
32
|
Jing Y, Chen L, Bai S, Shi Q. Equilibrium excited state and emission spectra of molecular aggregates from the hierarchical equations of motion approach. J Chem Phys 2013; 138:045101. [DOI: 10.1063/1.4775843] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|