1
|
Bui AT, Cox SJ. A classical density functional theory for solvation across length scales. J Chem Phys 2024; 161:104103. [PMID: 39248237 DOI: 10.1063/5.0223750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 08/14/2024] [Indexed: 09/10/2024] Open
Abstract
A central aim of multiscale modeling is to use results from the Schrödinger equation to predict phenomenology on length scales that far exceed those of typical molecular correlations. In this work, we present a new approach rooted in classical density functional theory (cDFT) that allows us to accurately describe the solvation of apolar solutes across length scales. Our approach builds on the Lum-Chandler-Weeks (LCW) theory of hydrophobicity [K. Lum et al., J. Phys. Chem. B 103, 4570 (1999)] by constructing a free energy functional that uses a slowly varying component of the density field as a reference. From a practical viewpoint, the theory we present is numerically simpler and generalizes to solutes with soft-core repulsion more easily than LCW theory. Furthermore, by assessing the local compressibility and its critical scaling behavior, we demonstrate that our LCW-style cDFT approach contains the physics of critical drying, which has been emphasized as an essential aspect of hydrophobicity by recent theories. As our approach is parameterized on the two-body direct correlation function of the uniform fluid and the liquid-vapor surface tension, it straightforwardly captures the temperature dependence of solvation. Moreover, we use our theory to describe solvation at a first-principles level on length scales that vastly exceed what is accessible to molecular simulations.
Collapse
Affiliation(s)
- Anna T Bui
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Stephen J Cox
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| |
Collapse
|
2
|
Escañuela-Copado A, López-Molina J, Kanduč M, Jódar-Reyes AB, Tirado-Miranda M, Bastos-González D, Peula-García JM, Adroher-Benítez I, Moncho-Jordá A. Diffusion and Interaction Effects On Molecular Release Kinetics From Collapsed Microgels. ACS APPLIED POLYMER MATERIALS 2024; 6:8905-8917. [PMID: 39144277 PMCID: PMC11320387 DOI: 10.1021/acsapm.4c01150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/19/2024] [Accepted: 06/21/2024] [Indexed: 08/16/2024]
Abstract
The efficient transport of small molecules through dense hydrogel networks is crucial for various applications, including drug delivery, biosensing, catalysis, nanofiltration, water purification, and desalination. In dense polymer matrices, such as collapsed microgels, molecular transport follows the solution-diffusion principle: Molecules dissolve in the polymeric matrix and subsequently diffuse due to a concentration gradient. Employing dynamical density functional theory (DDFT), we investigate the nonequilibrium release kinetics of nonionic subnanometer-sized molecules from a microgel particle, using parameters derived from prior molecular simulations of a thermoresponsive hydrogel. The kinetics is primarily governed by the microgel radius and two intensive parameters: the diffusion coefficient and solvation free energy of the molecule. Our results reveal two limiting regimes: a diffusion-limited regime for large, slowly diffusing, and poorly soluble molecules within the hydrogel; and a reaction-limited regime for small, rapidly diffusing, and highly soluble molecules. These principles allow us to derive an analytical equation for release time, demonstrating excellent quantitative agreement with the DDFT results-a valuable and straightforward tool for predicting release kinetics from microgels.
Collapse
Affiliation(s)
- Adri Escañuela-Copado
- Grupo
de Física de Fluidos y Biocoloides, Departamento de Física
Aplicada, Universidad de Granada, 18071 Granada, Spain
| | - José López-Molina
- Grupo
de Física de Fluidos y Biocoloides, Departamento de Física
Aplicada, Universidad de Granada, 18071 Granada, Spain
| | - Matej Kanduč
- Jožef
Stefan Institute, SI-1000 Ljubljana, Slovenia
| | - Ana Belén Jódar-Reyes
- Grupo
de Física de Fluidos y Biocoloides, Departamento de Física
Aplicada, Universidad de Granada, 18071 Granada, Spain
- Excellence
Research Unit Modeling Nature (MNat), University
of Granada, 18071 Granada, Spain
| | - María Tirado-Miranda
- Grupo
de Física de Fluidos y Biocoloides, Departamento de Física
Aplicada, Universidad de Granada, 18071 Granada, Spain
| | - Delfi Bastos-González
- Grupo
de Física de Fluidos y Biocoloides, Departamento de Física
Aplicada, Universidad de Granada, 18071 Granada, Spain
| | - José Manuel Peula-García
- Grupo
de Física de Fluidos y Biocoloides, Departamento de Física
Aplicada, Universidad de Granada, 18071 Granada, Spain
- Departamento
of Física Aplicada II, Universidad
of Málaga, 29071 Málaga, Spain
| | - Irene Adroher-Benítez
- Grupo
de Física de Fluidos y Biocoloides, Departamento de Física
Aplicada, Universidad de Granada, 18071 Granada, Spain
| | - Arturo Moncho-Jordá
- Grupo
de Física de Fluidos y Biocoloides, Departamento de Física
Aplicada, Universidad de Granada, 18071 Granada, Spain
- Instituto
Carlos I de Física Teórica y Computacional, Facultad
de Ciencias, Universidad de Granada, 18071 Granada, Spain
| |
Collapse
|
3
|
de Las Heras D, Zimmermann T, Sammüller F, Hermann S, Schmidt M. Perspective: How to overcome dynamical density functional theory. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2023; 35:271501. [PMID: 37023762 DOI: 10.1088/1361-648x/accb33] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 04/06/2023] [Indexed: 06/19/2023]
Abstract
We argue in favour of developing a comprehensive dynamical theory for rationalizing, predicting, designing, and machine learning nonequilibrium phenomena that occur in soft matter. To give guidance for navigating the theoretical and practical challenges that lie ahead, we discuss and exemplify the limitations of dynamical density functional theory (DDFT). Instead of the implied adiabatic sequence of equilibrium states that this approach provides as a makeshift for the true time evolution, we posit that the pending theoretical tasks lie in developing a systematic understanding of the dynamical functional relationships that govern the genuine nonequilibrium physics. While static density functional theory gives a comprehensive account of the equilibrium properties of many-body systems, we argue that power functional theory is the only present contender to shed similar insights into nonequilibrium dynamics, including the recognition and implementation of exact sum rules that result from the Noether theorem. As a demonstration of the power functional point of view, we consider an idealized steady sedimentation flow of the three-dimensional Lennard-Jones fluid and machine-learn the kinematic map from the mean motion to the internal force field. The trained model is capable of both predicting and designing the steady state dynamics universally for various target density modulations. This demonstrates the significant potential of using such techniques in nonequilibrium many-body physics and overcomes both the conceptual constraints of DDFT as well as the limited availability of its analytical functional approximations.
Collapse
Affiliation(s)
- Daniel de Las Heras
- Theoretische Physik II, Physikalisches Institut, Universität Bayreuth, D-95447 Bayreuth, Germany
| | - Toni Zimmermann
- Theoretische Physik II, Physikalisches Institut, Universität Bayreuth, D-95447 Bayreuth, Germany
| | - Florian Sammüller
- Theoretische Physik II, Physikalisches Institut, Universität Bayreuth, D-95447 Bayreuth, Germany
| | - Sophie Hermann
- Theoretische Physik II, Physikalisches Institut, Universität Bayreuth, D-95447 Bayreuth, Germany
| | - Matthias Schmidt
- Theoretische Physik II, Physikalisches Institut, Universität Bayreuth, D-95447 Bayreuth, Germany
| |
Collapse
|
4
|
Abstract
The dielectric nature of polar liquids underpins much of their ability to act as useful solvents, but its description is complicated by the long-ranged nature of dipolar interactions. This is particularly pronounced under the periodic boundary conditions commonly used in molecular simulations. In this article, the dielectric properties of a water model whose intermolecular electrostatic interactions are entirely short-ranged are investigated. This is done within the framework of local molecular-field theory (LMFT), which provides a well-controlled mean-field treatment of long-ranged electrostatics. This short-ranged model gives a remarkably good performance on a number of counts, and its apparent shortcomings are readily accounted for. These results not only lend support to LMFT as an approach for understanding solvation behavior, but also are relevant to those developing interaction potentials based on local descriptions of liquid structure.
Collapse
|
5
|
Yin H, Sibley DN, Archer AJ. Binding potentials for vapour nanobubbles on surfaces using density functional theory. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2019; 31:315102. [PMID: 30978706 DOI: 10.1088/1361-648x/ab18e8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
We calculate density profiles of a simple model fluid in contact with a planar surface using density functional theory (DFT), in particular for the case where there is a vapour layer intruding between the wall and the bulk liquid. We apply the method of Hughes et al (2015 J. Chem. Phys. 142 074702) to calculate the density profiles for varying (specified) amounts of the vapour adsorbed at the wall. This is equivalent to varying the thickness h of the vapour at the surface. From the resulting sequence of density profiles we calculate the thermodynamic grand potential as h is varied and thereby determine the binding potential as a function of h. The binding potential obtained via this coarse-graining approach allows us to determine the disjoining pressure in the film and also to predict the shape of vapour nano-bubbles on the surface. Our microscopic DFT based approach captures information from length scales much smaller than some commonly used models in continuum mechanics.
Collapse
Affiliation(s)
- Hanyu Yin
- Department of Mathematical Sciences, Loughborough University, Loughborough, LE11 3TU, United Kingdom
| | | | | |
Collapse
|
6
|
Wandrei SM, Roth R, Schoen M. Mean-field density functional theory of a nanoconfined classical, three-dimensional Heisenberg fluid. II. The interplay between molecular packing and orientational order. J Chem Phys 2018; 149:054704. [PMID: 30089380 DOI: 10.1063/1.5040934] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
As in Paper I of this series of papers [S. M. Cattes et al., J. Chem. Phys. 144, 194704 (2016)], we study a Heisenberg fluid confined to a nanoscopic slit pore with smooth walls. The pore walls can either energetically discriminate specific orientations of the molecules next to them or are indifferent to molecular orientations. Unlike in Paper I, we employ a version of classical density functional theory that allows us to explicitly account for the stratification of the fluid (i.e., the formation of molecular layers) as a consequence of the symmetry-breaking presence of the pore walls. We treat this stratification within the White Bear version (Mark I) of fundamental measure theory. Thus, in this work, we focus on the interplay between local packing of the molecules and orientational features. In particular, we demonstrate why a critical end point can only exist if the pore walls are not energetically discriminating specific molecular orientations. We analyze in detail the positional and orientational order of the confined fluid and show that reorienting molecules across the pore space can be a two-dimensional process. Last but not least, we propose an algorithm based upon a series expansion of Bessel functions of the first kind with which we can solve certain types of integrals in a very efficient manner.
Collapse
Affiliation(s)
- Stefanie M Wandrei
- Stranski-Laboratorium für Physikalische und Theoretische Chemie, Fakultät für Mathematik und Naturwissenschaften, Technische Universität Berlin, Straße des 17. Juni 115, 10623 Berlin, Germany
| | - Roland Roth
- Institut für Theoretische Physik, Mathematisch-Naturwissenschaftliche Fakultät, Eberhard-Karls-Universität, Auf der Morgenstelle 14, 72076 Tübingen, Germany
| | - Martin Schoen
- Stranski-Laboratorium für Physikalische und Theoretische Chemie, Fakultät für Mathematik und Naturwissenschaften, Technische Universität Berlin, Straße des 17. Juni 115, 10623 Berlin, Germany
| |
Collapse
|
7
|
Archer AJ, Chacko B, Evans R. The standard mean-field treatment of inter-particle attraction in classical DFT is better than one might expect. J Chem Phys 2017; 147:034501. [DOI: 10.1063/1.4993175] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Andrew J. Archer
- Department of Mathematical Sciences, Loughborough University, Loughborough LE11 3TU, United Kingdom
| | - Blesson Chacko
- Department of Mathematical Sciences, Loughborough University, Loughborough LE11 3TU, United Kingdom
| | - Robert Evans
- H. H. Wills Physics Laboratory, University of Bristol, Bristol BS8 1TL, United Kingdom
| |
Collapse
|
8
|
Yi S, Pan C, Hu L, Hu Z. On the connections and differences among three mean-field approximations: a stringent test. Phys Chem Chem Phys 2017; 19:18514-18518. [PMID: 28682374 DOI: 10.1039/c7cp02338c] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This letter attempts to clarify the meaning of three closely related mean-field approximations: random phase approximation (RPA), local molecular field (LMF) approximation, and symmetry-preserving mean-field (SPMF) approximation, and their use of reliability and validity in the field of theory and simulation of liquids when the long-ranged component of the intermolecular interaction plays an important role in determining density fluctuations and correlations. The RPA in the framework of classical density functional theory (DFT) neglects the higher order correlations in the bulk and directly applies the long-ranged part of the potential to correct the pair direct correlation function of the short-ranged system while the LMF approach introduces a nonuniform mimic system under a reconstructed static external potential that accounts for the average effect arising from the long-ranged component of the interaction. Furthermore, the SPMF approximation takes the viewpoint of LMF but instead instantaneously averages the long-ranged component of the potential over the degrees of freedom in the direction with preserved symmetry. The formal connections and the particular differences of the viewpoint among the three approximations are explained and their performances in producing structural properties of liquids are stringently tested using an exactly solvable model. We demonstrate that the RPA treatment often yields uncontrolled poor results for pair distribution functions of the bulk system. On the other hand, the LMF theory produces quite reasonably structural correlations when the pair distribution in the bulk is converted to the singlet particle distribution in the nonuniform system. It turns out that the SPMF approach outperforms the other two at all densities and under extreme conditions where the long-ranged component significantly contributes to the structural correlations.
Collapse
Affiliation(s)
- Shasha Yi
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China.
| | | | | | | |
Collapse
|
9
|
Helmi A, Esrafili MD. A hard sphere fluid with quantum correction in nanospherical pores: A DFT study. J Mol Liq 2017. [DOI: 10.1016/j.molliq.2017.04.134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
10
|
Remsing RC, Liu S, Weeks JD. Long-ranged contributions to solvation free energies from theory and short-ranged models. Proc Natl Acad Sci U S A 2016; 113:2819-26. [PMID: 26929375 PMCID: PMC4801310 DOI: 10.1073/pnas.1521570113] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Long-standing problems associated with long-ranged electrostatic interactions have plagued theory and simulation alike. Traditional lattice sum (Ewald-like) treatments of Coulomb interactions add significant overhead to computer simulations and can produce artifacts from spurious interactions between simulation cell images. These subtle issues become particularly apparent when estimating thermodynamic quantities, such as free energies of solvation in charged and polar systems, to which long-ranged Coulomb interactions typically make a large contribution. In this paper, we develop a framework for determining very accurate solvation free energies of systems with long-ranged interactions from models that interact with purely short-ranged potentials. Our approach is generally applicable and can be combined with existing computational and theoretical techniques for estimating solvation thermodynamics. We demonstrate the utility of our approach by examining the hydration thermodynamics of hydrophobic and ionic solutes and the solvation of a large, highly charged colloid that exhibits overcharging, a complex nonlinear electrostatic phenomenon whereby counterions from the solvent effectively overscreen and locally invert the integrated charge of the solvated object.
Collapse
Affiliation(s)
- Richard C Remsing
- Institute for Physical Science and Technology and Chemical Physics Program, University of Maryland, College Park, MD 20742; Institute for Computational Molecular Science, Temple University, Philadelphia, PA 19122
| | - Shule Liu
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742; Department of Chemistry, James Franck Institute and Computation Institute, University of Chicago, Chicago, IL 60637
| | - John D Weeks
- Institute for Physical Science and Technology and Chemical Physics Program, University of Maryland, College Park, MD 20742; Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742;
| |
Collapse
|
11
|
Chaudhari MI, Rempe SB, Asthagiri D, Tan L, Pratt LR. Molecular Theory and the Effects of Solute Attractive Forces on Hydrophobic Interactions. J Phys Chem B 2016; 120:1864-70. [DOI: 10.1021/acs.jpcb.5b09552] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Mangesh I. Chaudhari
- Center
for Biological and Material Sciences, Sandia National Laboratories, Albuquerque, New Mexico 87185, United States
| | - Susan B. Rempe
- Center
for Biological and Material Sciences, Sandia National Laboratories, Albuquerque, New Mexico 87185, United States
| | - D. Asthagiri
- Department
of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, United States
| | - L. Tan
- Department
of Chemical and Biomolecular Engineering, Tulane University, New Orleans, Louisiana 70118, United States
| | - L. R. Pratt
- Department
of Chemical and Biomolecular Engineering, Tulane University, New Orleans, Louisiana 70118, United States
| |
Collapse
|
12
|
Hughes AP, Thiele U, Archer AJ. Liquid drops on a surface: Using density functional theory to calculate the binding potential and drop profiles and comparing with results from mesoscopic modelling. J Chem Phys 2015; 142:074702. [DOI: 10.1063/1.4907732] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Affiliation(s)
- Adam P. Hughes
- Department of Mathematical Sciences, Loughborough University, Loughborough LE11 3TU, United Kingdom
| | - Uwe Thiele
- Westfälische Wilhelms-Universität Münster, Institut für Theorestische Physik, Wilhelm-Klemm-Str. 9, 48149 Münster, Germany
- Center of Nonlinear Science (CeNoS), Westfälische Wilhelms Universität Münster, Corrensstr. 2, 48149 Münster, Germany
- Center for Multiscale Theory and Computation (CMTC), University of Münster, Corrensstr. 40, 48149 Münster, Germany
| | - Andrew J. Archer
- Department of Mathematical Sciences, Loughborough University, Loughborough LE11 3TU, United Kingdom
| |
Collapse
|