Sung BJ, Yethiraj A. Molecular-dynamics simulations for nonclassical kinetics of diffusion-controlled bimolecular reactions.
J Chem Phys 2005;
123:114503. [PMID:
16392569 DOI:
10.1063/1.2035081]
[Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Molecular-dynamics simulations are presented for the diffusion-controlled bimolecular reaction A+B<==>C in two and three dimensions. The reactants and solvent molecules are modeled as spheres interacting via continuous potential-energy functions. The interaction potential between two reactants contains a deep well that results in a reaction. When the solvent concentration is low and the reactant dynamics is essentially ballistic, the system reaches equilibrium rapidly, and the reaction follows classical kinetics with exponential decay to the equilibrium. When the solvent concentration is high the particles enter the normal diffusion regime quickly and nonclassical behavior is observed, i.e., the reactant concentrations approach equilibrium as t(-d/2) where d is the dimensionality of space. When the reaction well depth is large, however, the reaction becomes irreversible within the simulation time. In this case the reactant concentrations decay as t(-d/4). Interestingly this behavior is also observed at intermediate times for reversible reactions.
Collapse