1
|
Dan Y, Luo H, Gong P, Yan D, Niu Y, Li G. Structural, energetic and dynamic investigation of poly(ethylene oxide) in imidazolium-based ionic liquids with different cationic structures. Phys Chem Chem Phys 2023; 25:29783-29796. [PMID: 37886855 DOI: 10.1039/d3cp01946b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
In this work, two imidazolium-based ionic liquids (ILs) with different cations including dications (DIL) and monocations (MIL) were blended with poly(ethylene oxide) (PEO). The influence of ILs' structure on the structural and dynamic properties of a PEO/IL system was investigated by molecular dynamics (MD) simulation and density functional theory (DFT) methods. The simulation results show that DIL exhibits weaker interaction with PEO than MIL due to a stronger IL aggregation effect. The intermolecular interaction also makes the PEO chain tend to organize around the imidazolium ring of ILs, which causes the conformational entropy loss. Compared with PEO/MIL, this phenomenon is more significant in PEO/DIL because of the double positive centers of the dication and a longer hydrogen bond lifetime. MD simulation also demonstrates that DIL could act as a "crosslinker" to promote the formation of a physical crosslinking network which has strong dependence on the concentration of IL. The competition between physical crosslinking and plasticizing effects induces non-monotonic variations of relaxation time in PEO/DIL, which is consistent with its unusual change of the glass transition temperature (Tg). Despite stronger hydrogen bonding interactions between PEO and MIL demonstrated by atom-in-molecules (AIM) and reduced density gradient (RDG) analysis, the segmental mobility is slower in PEO/DIL according to the MSD curve. These differences in multiple structural or energetic factors finally lead to different conductive mechanisms and hence obtain different ionic conductivities.
Collapse
Affiliation(s)
- Yongjie Dan
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering of China, Sichuan University, Chengdu 610065, China.
| | - Huan Luo
- School of Automation, Chengdu University of Information Technology, Chengdu, China
| | - Pengjian Gong
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering of China, Sichuan University, Chengdu 610065, China.
| | - Dadong Yan
- Department of Physics, Beijing Normal University, Beijing 100875, China
| | - Yanhua Niu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering of China, Sichuan University, Chengdu 610065, China.
| | - Guangxian Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering of China, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
2
|
Asha AS, Iroegbu JN, Visayas BRB, Mayes M, Shen C. Molecular Insights into the Electric Double-Layer Structure at a Polymer Electrolyte-Electrode Interface. Electrochim Acta 2023. [DOI: 10.1016/j.electacta.2023.142131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
|
3
|
Zhang S, Li W, Luan J, Srivastava A, Carnevale V, Klein ML, Sun J, Wang D, Teora SP, Rijpkema SJ, Meeldijk JD, Wilson DA. Adaptive insertion of a hydrophobic anchor into a poly(ethylene glycol) host for programmable surface functionalization. Nat Chem 2023; 15:240-247. [PMID: 36411361 PMCID: PMC9899690 DOI: 10.1038/s41557-022-01090-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 10/17/2022] [Indexed: 11/22/2022]
Abstract
Covalent and non-covalent molecular binding are two strategies to tailor surface properties and functions. However, the lack of responsiveness and requirement for specific binding groups makes spatiotemporal control challenging. Here, we report the adaptive insertion of a hydrophobic anchor into a poly(ethylene glycol) (PEG) host as a non-covalent binding strategy for surface functionalization. By using polycyclic aromatic hydrocarbons as the hydrophobic anchor, hydrophilic charged and non-charged functional modules were spontaneously loaded onto PEG corona in 2 min without the assistance of any catalysts and binding groups. The thermodynamically favourable insertion of the hydrophobic anchor can be reversed by pulling the functional module, enabling programmable surface functionalization. We anticipate that the adaptive molecular recognition between the hydrophobic anchor and the PEG host will challenge the hydrophilic understanding of PEG and enhance the progress in nanomedicine, advanced materials and nanotechnology.
Collapse
Affiliation(s)
- Shaohua Zhang
- grid.5590.90000000122931605Institute for Molecules and Materials, Radboud University, Nijmegen, the Netherlands
| | - Wei Li
- grid.5590.90000000122931605Institute for Molecules and Materials, Radboud University, Nijmegen, the Netherlands
| | - Jiabin Luan
- grid.5590.90000000122931605Institute for Molecules and Materials, Radboud University, Nijmegen, the Netherlands
| | - Abhinav Srivastava
- grid.264727.20000 0001 2248 3398Institute for Genomics and Evolutionary Medicine (iGEM) and Department of Biology, Temple University, Philadelphia, PA USA ,grid.264727.20000 0001 2248 3398Institute for Computational Molecular Science, Temple University, Philadelphia, PA USA
| | - Vincenzo Carnevale
- grid.264727.20000 0001 2248 3398Institute for Genomics and Evolutionary Medicine (iGEM) and Department of Biology, Temple University, Philadelphia, PA USA ,grid.264727.20000 0001 2248 3398Institute for Computational Molecular Science, Temple University, Philadelphia, PA USA
| | - Michael L. Klein
- grid.264727.20000 0001 2248 3398Institute for Computational Molecular Science, Temple University, Philadelphia, PA USA
| | - Jiawei Sun
- grid.5590.90000000122931605Institute for Molecules and Materials, Radboud University, Nijmegen, the Netherlands
| | - Danni Wang
- grid.5590.90000000122931605Institute for Molecules and Materials, Radboud University, Nijmegen, the Netherlands
| | - Serena P. Teora
- grid.5590.90000000122931605Institute for Molecules and Materials, Radboud University, Nijmegen, the Netherlands
| | - Sjoerd J. Rijpkema
- grid.5590.90000000122931605Institute for Molecules and Materials, Radboud University, Nijmegen, the Netherlands
| | - Johannes D. Meeldijk
- grid.5477.10000000120346234Inorganic Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, Utrecht, the Netherlands
| | - Daniela A. Wilson
- grid.5590.90000000122931605Institute for Molecules and Materials, Radboud University, Nijmegen, the Netherlands
| |
Collapse
|
4
|
Kumar S, Sriramoju KK, Aswal VK, Padmanabhan V, Harikrishnan G. Unraveling the Polymer Chain-Adsorbed Constrained Interfacial Region on an Atomistically Thin Carbon Sheet. J Phys Chem B 2019; 123:2994-3001. [PMID: 30864808 DOI: 10.1021/acs.jpcb.8b12577] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Confinement of graphene and its functional derivatives in synthetic and biomacromolecules has been widely demonstrated recently to manifest in several multiscale phenomena in their mixtures. However, the intricate adsorbed interfacial region formed between polymer chains and a single layer of atomistically thin carbon sheet hitherto evaded an understanding of its nature and characteristics. Here, we reveal the structure of this constrained region and estimate the thickness of the adsorbed polymer layer on a single layer of an atomistically thin graphene oxide sheet using both direct experiments and molecular dynamics simulations. We use small-angle neutron scattering on a model multicomponent mixture formed by an adsorbing polymer, graphene oxide, and solvent for revealing the structure of the constrained interfacial region. We quantify the intricate adsorbed polymer layer thickness on a single layer of atomistically thin graphene oxide sheet by Euclidean approximation of the experimentally observed self-similar interfacial structure. The state of polymer chain random walk and influence of unadsorbed chains under experimental conditions are investigated and juxtaposed against the accuracy of this quantification. For long-chain polymers, the adsorbed layer thickness increases with increasing polymer molecular weight and shows a scaling relationship δ ∼ Rg0.22 with the polymer radius of gyration. For short-chain polymers, the thickness is nearly independent of molecular weight and shows a scaling relationship δ ∼ 0.6 Rg0.22. Coarse-grained molecular dynamics simulations performed on a model system similar to experiments qualitatively ratify the experimentally observed molecular weight-thickness relationship. Simulations show no discernible scaling relationship between radius of gyration and adsorbed layer thickness for low-molecular-weight polymers but show a consistent scaling δ ∼ Rg for high-molecular-weight polymers. A comparison between results from experiments and simulations indicates a discerning pathway in deciphering interface-governed multiscale phenomena in mixtures of adsorbing macromolecules with graphene and its functional derivatives.
Collapse
Affiliation(s)
- Sanjay Kumar
- Polymer Dynamics Laboratory, Department of Chemical Engineering , Indian Institute of Technology Kharagpur , Kharagpur , West Bengal 721302 , India
| | - Kishore Kumar Sriramoju
- Polymer Dynamics Laboratory, Department of Chemical Engineering , Indian Institute of Technology Kharagpur , Kharagpur , West Bengal 721302 , India
| | - Vinod K Aswal
- Solid State Physics Division , Bhabha Atomic Research Centre , Mumbai 400085 , India
| | - Venkat Padmanabhan
- Polymer Dynamics Laboratory, Department of Chemical Engineering , Indian Institute of Technology Kharagpur , Kharagpur , West Bengal 721302 , India.,Department of Chemical Engineering , Tennessee Technological University , Cookeville , Tennessee 38505 , United States
| | - G Harikrishnan
- Polymer Dynamics Laboratory, Department of Chemical Engineering , Indian Institute of Technology Kharagpur , Kharagpur , West Bengal 721302 , India
| |
Collapse
|
5
|
Lu H, Li C, Zhang B, Qiao X, Liu CY. Toward highly compressible graphene aerogels of enhanced mechanical performance with polymer. RSC Adv 2016. [DOI: 10.1039/c6ra04995h] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The highly compressive durable graphene aerogels with enhanced strength was prepared by combining the freeze-casting process with the binding effect of polymer.
Collapse
Affiliation(s)
- Hao Lu
- Beijing National Laboratory for Molecular Sciences
- CAS Key Laboratory of Engineering Plastics
- Institute of Chemistry
- The Chinese Academy of Sciences
- Beijing
| | - Chenwei Li
- Beijing National Laboratory for Molecular Sciences
- CAS Key Laboratory of Engineering Plastics
- Institute of Chemistry
- The Chinese Academy of Sciences
- Beijing
| | - Baoqing Zhang
- Beijing National Laboratory for Molecular Sciences
- CAS Key Laboratory of Engineering Plastics
- Institute of Chemistry
- The Chinese Academy of Sciences
- Beijing
| | - Xin Qiao
- Beijing National Laboratory for Molecular Sciences
- CAS Key Laboratory of Engineering Plastics
- Institute of Chemistry
- The Chinese Academy of Sciences
- Beijing
| | - Chen-Yang Liu
- Beijing National Laboratory for Molecular Sciences
- CAS Key Laboratory of Engineering Plastics
- Institute of Chemistry
- The Chinese Academy of Sciences
- Beijing
| |
Collapse
|