1
|
Reyes-Aldrete E, Dill EA, Bussetta C, Szymanski MR, Diemer G, Maindola P, White MA, Bujalowski WM, Choi KH, Morais MC. Biochemical and Biophysical Characterization of the dsDNA Packaging Motor from the Lactococcus lactis Bacteriophage Asccphi28. Viruses 2020; 13:E15. [PMID: 33374840 PMCID: PMC7823558 DOI: 10.3390/v13010015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/16/2020] [Accepted: 12/16/2020] [Indexed: 02/07/2023] Open
Abstract
Double-stranded DNA viruses package their genomes into pre-assembled protein procapsids. This process is driven by macromolecular motors that transiently assemble at a unique vertex of the procapsid and utilize homomeric ring ATPases to couple genome encapsidation to ATP hydrolysis. Here, we describe the biochemical and biophysical characterization of the packaging ATPase from Lactococcus lactis phage asccφ28. Size-exclusion chromatography (SEC), analytical ultracentrifugation (AUC), small angle X-ray scattering (SAXS), and negative stain transmission electron microscopy (TEM) indicate that the ~45 kDa protein formed a 443 kDa cylindrical assembly with a maximum dimension of ~155 Å and radius of gyration of ~54 Å. Together with the dimensions of the crystallographic asymmetric unit from preliminary X-ray diffraction experiments, these results indicate that gp11 forms a decameric D5-symmetric complex consisting of two pentameric rings related by 2-fold symmetry. Additional kinetic analysis shows that recombinantly expressed gp11 has ATPase activity comparable to that of functional ATPase rings assembled on procapsids in other genome packaging systems. Hence, gp11 forms rings in solution that likely reflect the fully assembled ATPases in active virus-bound motor complexes. Whereas ATPase functionality in other double-stranded DNA (dsDNA) phage packaging systems requires assembly on viral capsids, the ability to form functional rings in solution imparts gp11 with significant advantages for high-resolution structural studies and rigorous biophysical/biochemical analysis.
Collapse
Affiliation(s)
- Emilio Reyes-Aldrete
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA; (E.R.-A.); (E.A.D.); (C.B.); (M.R.S.); (G.D.); (P.M.); (M.A.W.); (W.M.B.); (K.H.C.)
| | - Erik A. Dill
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA; (E.R.-A.); (E.A.D.); (C.B.); (M.R.S.); (G.D.); (P.M.); (M.A.W.); (W.M.B.); (K.H.C.)
| | - Cecile Bussetta
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA; (E.R.-A.); (E.A.D.); (C.B.); (M.R.S.); (G.D.); (P.M.); (M.A.W.); (W.M.B.); (K.H.C.)
| | - Michal R. Szymanski
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA; (E.R.-A.); (E.A.D.); (C.B.); (M.R.S.); (G.D.); (P.M.); (M.A.W.); (W.M.B.); (K.H.C.)
| | - Geoffrey Diemer
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA; (E.R.-A.); (E.A.D.); (C.B.); (M.R.S.); (G.D.); (P.M.); (M.A.W.); (W.M.B.); (K.H.C.)
| | - Priyank Maindola
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA; (E.R.-A.); (E.A.D.); (C.B.); (M.R.S.); (G.D.); (P.M.); (M.A.W.); (W.M.B.); (K.H.C.)
| | - Mark A. White
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA; (E.R.-A.); (E.A.D.); (C.B.); (M.R.S.); (G.D.); (P.M.); (M.A.W.); (W.M.B.); (K.H.C.)
- Sealy Center for Structural Biology, The University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
| | - Wlodzimierz M. Bujalowski
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA; (E.R.-A.); (E.A.D.); (C.B.); (M.R.S.); (G.D.); (P.M.); (M.A.W.); (W.M.B.); (K.H.C.)
- Sealy Center for Structural Biology, The University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
| | - Kyung H. Choi
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA; (E.R.-A.); (E.A.D.); (C.B.); (M.R.S.); (G.D.); (P.M.); (M.A.W.); (W.M.B.); (K.H.C.)
- Sealy Center for Structural Biology, The University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
| | - Marc C. Morais
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA; (E.R.-A.); (E.A.D.); (C.B.); (M.R.S.); (G.D.); (P.M.); (M.A.W.); (W.M.B.); (K.H.C.)
- Sealy Center for Structural Biology, The University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
| |
Collapse
|
2
|
Bores C, Woodson M, Morais MC, Pettitt BM. Effects of Model Shape, Volume, and Softness of the Capsid for DNA Packaging of phi29. J Phys Chem B 2020; 124:10337-10344. [PMID: 33151690 PMCID: PMC7903877 DOI: 10.1021/acs.jpcb.0c07478] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Double-stranded DNA is under extreme confinement when packed in phage phi29 with osmotic pressures approaching 60 atm and densities near liquid crystalline. The shape of the capsid determined from experiment is elongated. We consider the effects of the capsid shape and volume on the DNA distribution. We propose simple models for the capsid of phage phi29 to capture volume, shape, and wall flexibility, leading to an accurate DNA density profile. The effect of the packaging motor twisting the DNA on the resulting density distribution has been explored. We find packing motor induced twisting leads to a greater numbers of defects formed. The emergence of defects such as bubbles or large roll angles along the DNA shows a sequence dependence, and the resulting flexibility leads to an inhomogeneous distribution of defects occurring more often at TpA steps and AT-rich regions. In conjunction with capsid elongation, this has effects on the global DNA packing structures.
Collapse
Affiliation(s)
- Cecilia Bores
- University of Texas Medical Branch, 301 University Boulevard, Galveston, Texas 77555, United States
| | - Michael Woodson
- University of Texas Medical Branch, 301 University Boulevard, Galveston, Texas 77555, United States
| | - Marc C Morais
- University of Texas Medical Branch, 301 University Boulevard, Galveston, Texas 77555, United States
| | - B Montgomery Pettitt
- University of Texas Medical Branch, 301 University Boulevard, Galveston, Texas 77555, United States
| |
Collapse
|
3
|
Bores C, Pettitt BM. Structure and the role of filling rate on model dsDNA packed in a phage capsid. Phys Rev E 2020; 101:012406. [PMID: 32069548 DOI: 10.1103/physreve.101.012406] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Indexed: 06/10/2023]
Abstract
The conformation of DNA inside bacteriophages is of paramount importance for understanding packaging and ejection mechanisms. Models describing the structure of the confined macromolecule have depicted highly ordered conformations, such as spooled or toroidal arrangements that focus on reproducing experimental results obtained by averaging over thousands of configurations. However, it has been seen that more disordered states, including DNA kinking and the presence of domains with different DNA orientation can also accurately reproduce many of the structural experiments. In this work we have compared the results obtained through different simulated filling rates. We find a rate dependence for the resulting constrained states showing different anisotropic configurations. We present a quantitative analysis of the density distribution and the DNA orientation across the capsid showing excellent agreement with structural experiments. Second, we have analyzed the correlations within the capsid, finding evidence of the presence of domains characterized by aligned segments of DNA characterized by the structure factor. Finally, we have measured the number and distribution of DNA defects such as the emergence of bubbles and kinks as function of the filling rate. We find the slower the rate the fewer kink defects that appear and they would be unlikely at experimental filling rates with our model parameters. DNA domains of various orientation get larger with slower rates.
Collapse
Affiliation(s)
- Cecilia Bores
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch at Galveston Tx, 77555, USA
| | - B Montgomery Pettitt
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch at Galveston Tx, 77555, USA
| |
Collapse
|
4
|
Myers CG, Pettitt BM. Phage-like packing structures with mean field sequence dependence. J Comput Chem 2017; 38:1191-1197. [PMID: 28349552 PMCID: PMC5403567 DOI: 10.1002/jcc.24727] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 11/30/2016] [Accepted: 12/01/2016] [Indexed: 11/08/2022]
Abstract
Packing of double-stranded DNA in phages must overcome both electrostatic repulsions and the problem of persistence length. We consider coarse-grained models with the ability to kink and with randomly generated disorder. We show that the introduction of kinking into configurations of the DNA polymer packaged within spherical confinement results in significant reductions of the overall energies and pressures. We use a kink model which has the ability to deform every 24 bp, close to the average length predicted from phage sequence. The introduction of such persistence length defects even with highly random packing models increases the local nematic ordering of the packed DNA polymer segments. Such local ordering allowed by kinking not only reduces the total bending energy of confined DNA due to nonlinear elasticity but also reduces the electrostatic component of the energy and pressure. We show that a broad ensemble of polymer configurations is consistent with the structural data. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Christopher G Myers
- Program in Structural and Computational Biology and Molecular Biophysics, Baylor College of Medicine, Houston, Texas, 77030-3411
- Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, Texas, 77555-0144
| | - B Montgomery Pettitt
- Program in Structural and Computational Biology and Molecular Biophysics, Baylor College of Medicine, Houston, Texas, 77030-3411
- Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, Texas, 77555-0144
| |
Collapse
|
6
|
Wang Q, Myers CG, Pettitt BM. Twist-induced defects of the P-SSP7 genome revealed by modeling the cryo-EM density. J Phys Chem B 2015; 119:4937-43. [PMID: 25793549 DOI: 10.1021/acs.jpcb.5b00865] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We consider the consequences of assuming that DNA inside of phages can be approximated as a strongly nonlinear persistence length polymer. Recent cryo-EM experiments find a hole in the density map of P-SSP7 phage, located in the DNA segment filling the portal channel of the phage. We use experimentally derived structural constraints with coarse-grained simulation techniques to consider contrasting model interpretations of reconstructed density in the portal channel. The coarse-grained DNA models used are designed to capture the effects of torsional strain and electrostatic environment. Our simulation results are consistent with the interpretation that the vacancy or hole in the experimental density map is due to DNA strain leading to strand separation. We further demonstrate that a moderate negative twisting strain is able to account for the strand separation. This effect of nonlinear persistence length may be important in other aspects of phage DNA packing.
Collapse
Affiliation(s)
- Qian Wang
- †Department of Biochemistry and Molecular Biology, Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, Texas 77555-0304, United States
| | - Christopher G Myers
- ‡Structural and Computational Biology and Molecular Biophysics Program, Baylor College of Medicine, Houston, Texas 77030, United States
| | - B Montgomery Pettitt
- †Department of Biochemistry and Molecular Biology, Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, Texas 77555-0304, United States.,‡Structural and Computational Biology and Molecular Biophysics Program, Baylor College of Medicine, Houston, Texas 77030, United States
| |
Collapse
|
7
|
Sophisticated Modeling Uncovers Atomic DNA Structure in Bacteriophage Φ29 Cavity. Biophys J 2013; 104:1840-1. [DOI: 10.1016/j.bpj.2013.03.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Accepted: 03/19/2013] [Indexed: 11/20/2022] Open
|