1
|
Braver Y, Valkunas L, Gelzinis A. Stark absorption and Stark fluorescence spectroscopies: Theory and simulations. J Chem Phys 2021; 155:244101. [PMID: 34972359 DOI: 10.1063/5.0073962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Stark spectroscopy experiments are widely used to study the properties of molecular systems, particularly those containing charge-transfer (CT) states. However, due to the small transition dipole moments and large static dipole moments of the CT states, the standard interpretation of the Stark absorption and Stark fluorescence spectra in terms of the Liptay model may be inadequate. In this work, we provide a theoretical framework for calculations of Stark absorption and Stark fluorescence spectra and propose new methods of simulations that are based on the quantum-classical theory. In particular, we use the forward-backward trajectory solution and a variant of the Poisson bracket mapping equation, which have been recently adapted for the calculation of conventional (field-free) absorption and fluorescence spectra. For comparison, we also apply the recently proposed complex time-dependent Redfield theory, while exact results are obtained using the hierarchical equations of motion approach. We show that the quantum-classical methods produce accurate results for a wide range of systems, including those containing CT states. The CT states contribute significantly to the Stark spectra, and the standard Liptay formalism is shown to be inapplicable for the analysis of spectroscopic data in those cases. We demonstrate that states with large static dipole moments may cause a pronounced change in the total fluorescence yield of the system in the presence of an external electric field. This effect is correctly captured by the quantum-classical methods, which should therefore prove useful for further studies of Stark spectra of real molecular systems. As an example, we calculate the Stark spectra for the Fenna-Matthews-Olson complex of green sulfur bacteria.
Collapse
Affiliation(s)
- Yakov Braver
- Faculty of Physics, Institute of Chemical Physics, Vilnius University, Saulėtekio Ave. 9-III, LT-10222 Vilnius, Lithuania and Department of Molecular Compound Physics, Center for Physical Sciences and Technology, Saulėtekio Ave. 3, LT-10257 Vilnius, Lithuania
| | - Leonas Valkunas
- Faculty of Physics, Institute of Chemical Physics, Vilnius University, Saulėtekio Ave. 9-III, LT-10222 Vilnius, Lithuania and Department of Molecular Compound Physics, Center for Physical Sciences and Technology, Saulėtekio Ave. 3, LT-10257 Vilnius, Lithuania
| | - Andrius Gelzinis
- Faculty of Physics, Institute of Chemical Physics, Vilnius University, Saulėtekio Ave. 9-III, LT-10222 Vilnius, Lithuania and Department of Molecular Compound Physics, Center for Physical Sciences and Technology, Saulėtekio Ave. 3, LT-10257 Vilnius, Lithuania
| |
Collapse
|
2
|
Cho KH, Rhee YM. Computational elucidations on the role of vibrations in energy transfer processes of photosynthetic complexes. Phys Chem Chem Phys 2021; 23:26623-26639. [PMID: 34842245 DOI: 10.1039/d1cp04615b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Coupling between pigment excitations and nuclear movements in photosynthetic complexes is known to modulate the excitation energy transfer (EET) efficiencies. Toward providing microscopic information, researchers often apply simulation techniques and investigate how vibrations are involved in EET processes. Here, reports on such roles of nuclear movements are discussed from a theory perspective. While vibrations naturally present random thermal fluctuations that can affect energy transferring characteristics, they can also be intertwined with exciton structures and create more specific non-adiabatic energy transfer pathways. For reliable simulations, a bath model that accurately mimics a given molecular system is required. Methods for obtaining such a model in combination with quantum chemical electronic structure calculations and molecular dynamics trajectory simulations are discussed. Various quantum dynamics simulation tools that can handle pigment-to-pigment energy transfers together with their vibrational characters are also touched on. Behaviors of molecular vibrations often deviate from ideality, especially when all-atom details are included, which practically forces us to treat them classically. We conclude this perspective by considering some recent reports that suggest that classical descriptions of bath effects with all-atom details may still produce valuable information for analyzing sophisticated contributions by vibrations to EET processes.
Collapse
Affiliation(s)
- Kwang Hyun Cho
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea.
| | - Young Min Rhee
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea.
| |
Collapse
|
3
|
Braver Y, Valkunas L, Gelzinis A. Quantum-Classical Approach for Calculations of Absorption and Fluorescence: Principles and Applications. J Chem Theory Comput 2021; 17:7157-7168. [PMID: 34618457 PMCID: PMC8719324 DOI: 10.1021/acs.jctc.1c00777] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Indexed: 01/20/2023]
Abstract
Absorption and fluorescence spectroscopy techniques provide a wealth of information on molecular systems. The simulations of such experiments remain challenging, however, despite the efforts put into developing the underlying theory. An attractive method of simulating the behavior of molecular systems is provided by the quantum-classical theory─it enables one to keep track of the state of the bath explicitly, which is needed for accurate calculations of fluorescence spectra. Unfortunately, until now there have been relatively few works that apply quantum-classical methods for modeling spectroscopic data. In this work, we seek to provide a framework for the calculations of absorption and fluorescence lineshapes of molecular systems using the methods based on the quantum-classical Liouville equation, namely, the forward-backward trajectory solution (FBTS) and the non-Hamiltonian variant of the Poisson bracket mapping equation (PBME-nH). We perform calculations on a molecular dimer and the photosynthetic Fenna-Matthews-Olson complex. We find that in the case of absorption, the FBTS outperforms PBME-nH, consistently yielding highly accurate results. We next demonstrate that for fluorescence calculations, the method of choice is a hybrid approach, which we call PBME-nH-Jeff, that utilizes the effective coupling theory [Gelzinis, A.; J. Chem. Phys. 2020, 152, 051103] to estimate the excited state equilibrium density operator. Thus, we find that FBTS and PBME-nH-Jeff are excellent candidates for simulating, respectively, absorption and fluorescence spectra of real molecular systems.
Collapse
Affiliation(s)
- Yakov Braver
- Institute
of Chemical Physics, Faculty of Physics, Vilnius University, Saulėtekio Avenue 9-III, LT-10222 Vilnius, Lithuania
- Department
of Molecular Compound Physics, Center for
Physical Sciences and Technology, Saulėtekio Avenue 3, LT-10257 Vilnius, Lithuania
| | - Leonas Valkunas
- Institute
of Chemical Physics, Faculty of Physics, Vilnius University, Saulėtekio Avenue 9-III, LT-10222 Vilnius, Lithuania
- Department
of Molecular Compound Physics, Center for
Physical Sciences and Technology, Saulėtekio Avenue 3, LT-10257 Vilnius, Lithuania
| | - Andrius Gelzinis
- Institute
of Chemical Physics, Faculty of Physics, Vilnius University, Saulėtekio Avenue 9-III, LT-10222 Vilnius, Lithuania
- Department
of Molecular Compound Physics, Center for
Physical Sciences and Technology, Saulėtekio Avenue 3, LT-10257 Vilnius, Lithuania
| |
Collapse
|
4
|
Gelzinis A, Valkunas L. Analytical derivation of equilibrium state for open quantum system. J Chem Phys 2020; 152:051103. [PMID: 32035455 DOI: 10.1063/1.5141519] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Calculation of the equilibrium state of an open quantum system interacting with a bath remains a challenge to this day, mostly due to a huge number of bath degrees of freedom. Here, we present an analytical expression for the reduced density operator in terms of an effective Hamiltonian for a high temperature case. Comparing with numerically exact results, we show that our theory is accurate for slow baths and up to intermediate system-bath coupling strengths. Our results demonstrate that the equilibrium state does not depend on the shape of spectral density in the slow bath regime. The key quantity in our theory is the effective coupling between the states, which depends exponentially on the ratio of the reorganization energy to temperature and, thus, has opposite temperature dependence than could be expected from the small polaron transformation.
Collapse
Affiliation(s)
- Andrius Gelzinis
- Institute of Chemical Physics, Faculty of Physics, Vilnius University, Sauletekio 9-III, 10222 Vilnius, Lithuania
| | - Leonas Valkunas
- Institute of Chemical Physics, Faculty of Physics, Vilnius University, Sauletekio 9-III, 10222 Vilnius, Lithuania
| |
Collapse
|
5
|
Jang SJ. Fourth order expressions for the electronic absorption lineshape of molecular excitons. J Chem Phys 2019; 151:044110. [DOI: 10.1063/1.5100986] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Seogjoo J. Jang
- Department of Chemistry and Biochemistry, Queens College, City University of New York, 65-30 Kissena Boulevard, Queens, New York 11367, USA and Ph.D. Programs in Chemistry and Physics, and Initiative for Theoretical Sciences, Graduate Center, City University of New York, 365 Fifth Avenue, New York, New York 10016, USA
| |
Collapse
|
6
|
Montemayor D, Rivera E, Jang SJ. Computational Modeling of Exciton-Bath Hamiltonians for Light Harvesting 2 and Light Harvesting 3 Complexes of Purple Photosynthetic Bacteria at Room Temperature. J Phys Chem B 2018. [PMID: 29533664 DOI: 10.1021/acs.jpcb.8b00358] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Light harvesting 2 (LH2) complex is the primary component of the photosynthetic unit of purple bacteria that is responsible for harvesting and relaying excitons. The electronic absorption line shape of LH2 contains two major bands at 800 and 850 nm wavelength regions. Under low light conditions, some species of purple bacteria replace LH2 with light harvesting 3 (LH3), a variant form with almost the same structure as the former but with distinctively different spectral features. The major difference between the absorption line shapes of LH2 and LH3 is the shift of the 850 nm band of the former to a new 820 nm region. The microscopic origin of this difference has been the subject of some theoretical/computational investigations. However, the genuine molecular level source of such a difference is not clearly understood yet. This work reports a comprehensive computational study of LH2 and LH3 complexes so as to clarify different molecular level features of LH2 and LH3 complexes and to construct simple exciton-bath models with a common form. All-atomistic molecular dynamics simulations of both LH2 and LH3 complexes provide detailed molecular level structural differences of bacteriochlorophylls (BChls) in the two complexes, in particular, in their patterns of hydrogen bonding (HB) and torsional angles of the acetyl group. Time-dependent density functional theory calculation of the excitation energies of BChls for structures sampled from the MD simulations suggests that the observed differences in the HB and torsional angles cannot fully account for the experimentally observed spectral shift of LH3. Potential sources that can explain the actual spectral shift of LH3 are discussed, and their magnitudes are assessed through fitting of experimental line shapes. These results demonstrate the feasibility of developing simple exciton-bath models for both LH2 and LH3, which can be employed for large-scale exciton quantum dynamics in their aggregates.
Collapse
Affiliation(s)
- Daniel Montemayor
- Department of Chemistry and Biochemistry, Queens College , City University of New York , 65-30 Kissena Boulevard , Queens , New York 11367 , United States.,PhD Programs in Chemistry and Physics, and Initiative for the Theoretical Sciences, Graduate Center , City University of New York , 365 Fifth Avenue , New York , New York 10016 , United States
| | - Eva Rivera
- Department of Chemistry and Biochemistry, Queens College , City University of New York , 65-30 Kissena Boulevard , Queens , New York 11367 , United States.,PhD Programs in Chemistry and Physics, and Initiative for the Theoretical Sciences, Graduate Center , City University of New York , 365 Fifth Avenue , New York , New York 10016 , United States
| | - Seogjoo J Jang
- Department of Chemistry and Biochemistry, Queens College , City University of New York , 65-30 Kissena Boulevard , Queens , New York 11367 , United States.,PhD Programs in Chemistry and Physics, and Initiative for the Theoretical Sciences, Graduate Center , City University of New York , 365 Fifth Avenue , New York , New York 10016 , United States
| |
Collapse
|
7
|
Nguyen TS, Parkhill J. Nonadiabatic Dynamics for Electrons at Second-Order: Real-Time TDDFT and OSCF2. J Chem Theory Comput 2015; 11:2918-24. [DOI: 10.1021/acs.jctc.5b00262] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Triet S. Nguyen
- 251 Nieuwland Science
Hall, Notre Dame, Indiana 46556, United States
| | - John Parkhill
- 251 Nieuwland Science
Hall, Notre Dame, Indiana 46556, United States
| |
Collapse
|
8
|
|
9
|
Jang S, Hoyer S, Fleming G, Whaley KB. Generalized master equation with non-Markovian multichromophoric Förster resonance energy transfer for modular exciton densities. PHYSICAL REVIEW LETTERS 2014; 113:188102. [PMID: 25396397 DOI: 10.1103/physrevlett.113.188102] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Indexed: 06/04/2023]
Abstract
A generalized master equation (GME) governing quantum evolution of modular exciton density (MED) is derived for large scale light harvesting systems composed of weakly interacting modules of multiple chromophores. The GME-MED offers a practical framework to incorporate real time coherent quantum dynamics calculations of small length scales into dynamics over large length scales, and also provides a non-Markovian generalization and rigorous derivation of the Pauli master equation employing multichromophoric Förster resonance energy transfer rates. A test of the GME-MED for four sites of the Fenna-Matthews-Olson complex demonstrates how coherent dynamics of excitonic populations over coupled chromophores can be accurately described by transitions between subgroups (modules) of delocalized excitons. Application of the GME-MED to the exciton dynamics between a pair of light harvesting complexes in purple bacteria demonstrates its promise as a computationally efficient tool to investigate large scale exciton dynamics in complex environments.
Collapse
Affiliation(s)
- Seogjoo Jang
- Department of Chemistry and Biochemistry, Queens College and the Graduate Center, City University of New York, 65-30 Kissena Boulevard, Flushing, New York 11367, USA
| | - Stephan Hoyer
- Department of Physics, University of California, Berkeley, California 94720, USA
| | - Graham Fleming
- Department of Chemistry, University of California, Berkeley, California 94720, USA and Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - K Birgitta Whaley
- Department of Chemistry, University of California, Berkeley, California 94720, USA
| |
Collapse
|
10
|
Kell A, Feng X, Reppert M, Jankowiak R. On the Shape of the Phonon Spectral Density in Photosynthetic Complexes. J Phys Chem B 2013; 117:7317-23. [DOI: 10.1021/jp405094p] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | | | - Mike Reppert
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts
02139, United States
| | - Ryszard Jankowiak
- Faculty
of Applied Physics and
Mathematics, Gdańsk University of Technology, 80-233 Gdańsk, Poland
| |
Collapse
|