1
|
Safari AA, Anderson RJ, Manni GL. Toward a Stochastic Complete Active Space Second-Order Perturbation Theory. J Phys Chem A 2024; 128:281-291. [PMID: 38154124 PMCID: PMC10788896 DOI: 10.1021/acs.jpca.3c05109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 11/14/2023] [Accepted: 11/14/2023] [Indexed: 12/30/2023]
Abstract
In this work, an internally contracted stochastic complete active space second-order perturbation theory, stochastic-CASPT2, is reported. The method relies on stochastically sampled reduced density matrices (RDMs) up to rank four and contractions thereof with the generalized Fock matrix. A new protocol for calculating higher-order RDMs in full configuration interaction quantum Monte Carlo (FCIQMC) has been designed based on (1) restricting sampling of the corresponding excitations to a deterministic subspace, (2) averaging the RDMs from independent dynamics and (3) projecting them onto the closest positive semi-definite matrix. Our protocol avoids previously encountered numerical conditioning problems in the orthogonalization of the perturber overlap matrix stemming from numerical noise. The chromium dimer CASSCF(12,12)/CASPT2 binding curve is computed as a proof of concept.
Collapse
Affiliation(s)
- Arta A. Safari
- Max-Planck-Institute for Solid State
Research, 70569 Stuttgart, Germany
| | | | - Giovanni Li Manni
- Max-Planck-Institute for Solid State
Research, 70569 Stuttgart, Germany
| |
Collapse
|
2
|
Ten-No SL. Nonunitary projective transcorrelation theory inspired by the F12 ansatz. J Chem Phys 2023; 159:171103. [PMID: 37921247 DOI: 10.1063/5.0175337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 10/16/2023] [Indexed: 11/04/2023] Open
Abstract
An alternative nonunitary transcorrelation, inspired by the F12 ansatz, is investigated. In contrast to the Jastrow transcorrelation of Boys-Handy, the effective Hamiltonian of this projective transcorrelation features: 1. a series terminating formally at four-body interactions. 2. no spin-contamination within the non-relativistic framework. 3. simultaneous satisfaction of the singlet and triplet first-order cusp conditions. 4. arbitrary choices of pairs for correlation including frozen-core approximations. We discuss the connection between the projective transcorrelation and F12 theory with applications to small molecules, to show that the cusp conditions play an important role to reduce the uncertainty arising from the nonunitary transformation.
Collapse
Affiliation(s)
- Seiichiro L Ten-No
- Graduate School of System Informatics, Kobe University, Nada-ku, Kobe 657-8501, Japan
| |
Collapse
|
3
|
Kulahlioglu AH, Dreuw A. The Multistate Quantum Monte Carlo Algebraic Diagrammatic Construction Method. J Phys Chem A 2023; 127:2161-2175. [PMID: 36847774 DOI: 10.1021/acs.jpca.2c08391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Abstract
A multistate formulation of the recently developed quantum Monte Carlo (QMC) algebraic diagrammatic construction (ADC) method, QMCADC, is presented. QMCADC solves the Hermitian eigenvalue problem of the second-order ADC scheme for the polarization propagator stochastically by combining ADC schemes with projector quantum Monte Carlo (PQMC). It allows for massively parallel distributed computing and exploits the sparsity of the effective ADC matrix, thereby relaxing memory and processing requirements of ADC methods significantly. Here, the theory and implementation of the multistate variant of QMCADC are described, and our first proof-of-principle calculations for various molecular systems are shown. Indeed, multistate QMCADC enables sampling of an arbitrary number of low-lying excited states and can reproduce their vertical excitation energies with a marginal controllable error. The performance of multistate QMCADC is examined in terms of state-wise and overall accuracy as well as with respect to the balance in the treatments of excited states relatively to each other. The results are very promising as they show bias and imbalances among excited states to diminish as the number of sampling points increases. Furthermore, the impact of the quality of trial wave functions on the vertical excitation energies is investigated. A black-box approach for the generation of high quality trial wave functions internally is given.
Collapse
Affiliation(s)
- Adem Halil Kulahlioglu
- Interdisciplinary Center for Scientific Computing, Ruprecht-Karls University, Im Neuenheimer Feld 205, 69120 Heidelberg, Germany
| | - Andreas Dreuw
- Interdisciplinary Center for Scientific Computing, Ruprecht-Karls University, Im Neuenheimer Feld 205, 69120 Heidelberg, Germany
| |
Collapse
|
4
|
Hou X, Chen F. Block Effective Hamiltonian Theory and Its Application. J Chem Theory Comput 2023; 19:61-70. [PMID: 36516513 DOI: 10.1021/acs.jctc.2c00820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Block effective Hamiltonian theory (BEHT) is presented in this work. Configuration interaction functions are divided into P, Q, and R spaces. Effective Hamiltonian is constructed with the partitioning technique within the P space. The eigenvalue problem of the effective Hamiltonian is then solved iteratively. It is demonstrated that the ground-state energies of N2, HF, and F2 calculated with BEHT converge to the multireference configuration interaction energies from below and the iteration number becomes smaller as BEHT energy becomes closer to the exact energy. The accuracy of BEHT is better than that of the second-order multireference perturbation theory, although the matrix elements in both methods are the same. The ionization potentials of the singlet state of HF, the doublet state of F, and the triplet state of NH and the potential energy curves of CH4, C2, and N2 are calculated with BEHT and compared with experiments and results of CASSCF, CCSD, and CCSD(T) and the results of the full configuration interaction if available. The iteration numbers are all less than 10 in this study. These calculations show the good performances of BEHT in comparison with other theoretical approximation methods.
Collapse
Affiliation(s)
- Xiangling Hou
- Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing100083, China.,Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Beijing100083, China
| | - Feiwu Chen
- Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing100083, China.,Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Beijing100083, China
| |
Collapse
|
5
|
Li J, Yang J. Downfolded Configuration Interaction for Chemically Accurate Electron Correlation. J Phys Chem Lett 2022; 13:10042-10047. [PMID: 36264261 DOI: 10.1021/acs.jpclett.2c02868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
A model subspace configuration interaction method is developed to obtain chemically accurate electron correlations by diagonalizing a very compact effective Hamiltonian of a realistic molecule. The construction of the effective Hamiltonian is deterministic and implemented by iteratively building a sufficiently small model subspace comprising local clusters of a small number of Slater determinants. Through the low-rank reciprocal of interaction Hamiltonian, important determinants can be incrementally identified to couple with selected local pairwise clusters and then downfolded into the model subspace. This method avoids direct ordering and selection of the configurations in the entire space. We demonstrate the efficiency and accuracy of this theory for obtaining the near-FCI ground- and excited-state potential energies by benchmarking the C2 molecule and illustrate its application potential in computing accurate excitation energies of organometallic [Cu(NHC)2(pyridine)2]x+ complexes and other organic molecules of various excitation character.
Collapse
Affiliation(s)
- Jiasheng Li
- Department of Chemistry, The University of Hong Kong, Hong KongSAR, P.R. China
| | - Jun Yang
- Department of Chemistry, The University of Hong Kong, Hong KongSAR, P.R. China
| |
Collapse
|
6
|
Cruz JC, Garza J, Yanai T, Hirata S. Stochastic evaluation of four-component relativistic second-order many-body perturbation energies: A potentially quadratic-scaling correlation method. J Chem Phys 2022; 156:224102. [DOI: 10.1063/5.0091973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
A second-order many-body perturbation correction to the relativistic Dirac-Hartree-Fock energy is evaluated stochastically by integrating 13-dimensional products of four-component spinors and Coulomb potentials. The integration in the real space of electron coordinates is carried out by the Monte Carlo (MC) method with the Metropolis sampling, whereas the MC integration in the imaginary-time domain is performed by the inverse-CDF (cumulative distribution function) method. The computational cost to reach a given relative statistical error for spatially compact but heavy molecules is observed to be no worse than cubic and possibly quadratic with the number of electrons or basis functions. This is a vast improvement over the quintic scaling of the conventional, deterministic second-order many-body perturbation method. The algorithm is also easily and efficiently parallelized with demonstrated 92% strong scalability going from 64 to 4096 processors for a fixed job size.
Collapse
Affiliation(s)
- J. César Cruz
- Universidad Autónoma Metropolitana-Iztapalapa, Mexico
| | - Jorge Garza
- Departamento de Química, Universidad Autónoma Metropolitana-Iztapalapa, Mexico
| | - Takeshi Yanai
- Institute of Transformative Bio-Molecules, Nagoya University, Japan
| | - So Hirata
- Department of Chemistry, University of Illinois at Urbana-Champaign, United States of America
| |
Collapse
|
7
|
Song Y, Guo Y, Lei Y, Zhang N, Liu W. The Static-Dynamic-Static Family of Methods for Strongly Correlated Electrons: Methodology and Benchmarking. Top Curr Chem (Cham) 2021; 379:43. [PMID: 34724123 DOI: 10.1007/s41061-021-00351-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 09/15/2021] [Indexed: 11/28/2022]
Abstract
A series of methods (SDSCI, SDSPT2, iCI, iCIPT2, iCISCF(2), iVI, and iCAS) is introduced to accurately describe strongly correlated systems of electrons. Born from the (restricted) static-dynamic-static (SDS) framework for designing many-electron wave functions, SDSCI is a minimal multireference (MR) configuration interaction (CI) approach that constructs and diagonalizes a [Formula: see text] matrix for [Formula: see text] states, regardless of the numbers of orbitals and electrons to be correlated. If the full molecular Hamiltonian H in the QHQ block (which describes couplings between functions of the first-order interaction space Q) of the SDSCI CI matrix is replaced with a zeroth-order Hamiltonian [Formula: see text] before the diagonalization is taken, we obtain SDSPT2, a CI-like second-order perturbation theory (PT2). Unlike most variants of MRPT2, SDSPT2 treats single and multiple states in the same way and is particularly advantageous in the presence of near degeneracy. On the other hand, if the SDSCI procedure is repeated until convergence, we will have iterative CI (iCI), which can converge quickly from the above to the exact solutions (full CI) even when starting with a poor guess. When further combined with the selection of important configurations followed by a PT2 treatment of dynamic correlation, iCI becomes iCIPT2, which is a near-exact theory for medium-sized systems. The microiterations of iCI for relaxing the coefficients of contracted many-electron functions can be generalized to an iterative vector interaction (iVI) approach for finding exterior or interior roots of a given matrix, in which the dimension of the search subspace is fixed by either the number of target roots or the user-specified energy window. Naturally, iCIPT2 can be employed as the active space solver of the complete active space (CAS) self-consistent field, leading to iCISCF(2), which can further be combined with iCAS for automated selection of active orbitals and assurance of the same CAS for all states and all geometries. The methods are calibrated by taking the Thiel set of benchmark systems as examples. Results for the corresponding cations, a new set of benchmark systems, are also reported.
Collapse
Affiliation(s)
- Yangyang Song
- Qingdao Institute for Theoretical and Computational Sciences, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, 266237, Shandong, China
| | - Yang Guo
- Qingdao Institute for Theoretical and Computational Sciences, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, 266237, Shandong, China
| | - Yibo Lei
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Shaanxi key Laboratory of Physico-Inorganic Chemistry, Northwest University, Xi'an, 710127, Shaanxi, China
| | - Ning Zhang
- Beijing National Laboratory for Molecular Sciences, Institute of Theoretical and Computational Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Wenjian Liu
- Qingdao Institute for Theoretical and Computational Sciences, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, 266237, Shandong, China.
| |
Collapse
|
8
|
Blunt NS. Fixed- and Partial-Node Approximations in Slater Determinant Space for Molecules. J Chem Theory Comput 2021; 17:6092-6104. [PMID: 34549947 DOI: 10.1021/acs.jctc.1c00500] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We present a study of fixed- and partial-node approximations in Slater determinant basis sets, using full configuration interaction quantum Monte Carlo (FCIQMC) to perform sampling. Walker annihilation in the FCIQMC method allows partial-node simulations to be performed, relaxing the nodal constraint to converge to the FCI solution. This is applied to ab initio molecular systems, using symmetry-projected Jastrow mean-field wave functions for complete active space (CAS) problems. Convergence and the sign problem within the partial-node approximation are studied, which is shown to eventually be limited in its use due to the large walker populations required. However, the fixed-node approximation results in an accurate and practical method. We apply these approaches to various molecular systems and active spaces, including ferrocene and acenes. This also provides a test of symmetry-projected Jastrow mean-field wave functions in variational Monte Carlo for a new set of problems. For trans-polyacetylene molecules and acenes, we find that the time to perform a constant number of fixed-node FCIQMC iterations scales as O(N1.44) and O(N1.75), respectively, resulting in an efficient method for CAS-based problems that can be applied accurately to large active spaces.
Collapse
Affiliation(s)
- Nick S Blunt
- Yusuf Hamied Department of Chemistry, Lensfield Road, Cambridge CB2 1EW, U.K.,St John's College, St John's Street, Cambridge CB2 1TP, U.K
| |
Collapse
|
9
|
Doran AE, Qiu DL, Hirata S. Monte Carlo MP2-F12 for Noncovalent Interactions: The C 60 Dimer. J Phys Chem A 2021; 125:7344-7351. [PMID: 34433271 DOI: 10.1021/acs.jpca.1c05021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A scalable stochastic algorithm is presented that can evaluate explicitly correlated (F12) second-order many-body perturbation (MP2) energies of weak, noncovalent, intermolecular interactions. It first transforms the formulas of the MP2 and F12 energy differences into a short sum of high-dimensional integrals of Green's functions in real space and imaginary time. These integrals are then evaluated by the Monte Carlo method augmented by parallel execution, redundant-walker convergence acceleration, direct-sampling autocorrelation elimination, and control-variate error reduction. By sharing electron-pair walkers across the supermolecule and its subsystems spanned by the joint basis set, the statistical uncertainty is reduced by one to 2 orders of magnitude in the MP2 binding energy corrected for the basis-set incompleteness and superposition errors. The method predicts the MP2-F12/aug-cc-pVDZ binding energy of 19.1 ± 4.0 kcal mol-1 for the C60 dimer at the center distance of 9.748 Å.
Collapse
Affiliation(s)
- Alexander E Doran
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - David L Qiu
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - So Hirata
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
10
|
Doran AE, Hirata S. Stochastic evaluation of fourth-order many-body perturbation energies. J Chem Phys 2021; 154:134114. [PMID: 33832241 DOI: 10.1063/5.0047798] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
A scalable, stochastic algorithm evaluating the fourth-order many-body perturbation (MP4) correction to energy is proposed. Three hundred Goldstone diagrams representing the MP4 correction are computer generated and then converted into algebraic formulas expressed in terms of Green's functions in real space and imaginary time. They are evaluated by the direct (i.e., non-Markov, non-Metropolis) Monte Carlo (MC) integration accelerated by the redundant-walker and control-variate algorithms. The resulting MC-MP4 method is efficiently parallelized and is shown to display O(n5.3) size-dependence of cost, which is nearly two ranks lower than the O(n7) dependence of the deterministic MP4 algorithm. It evaluates the MP4/aug-cc-pVDZ energy for benzene, naphthalene, phenanthrene, and corannulene with the statistical uncertainty of 10 mEh (1.1% of the total basis-set correlation energy), 38 mEh (2.6%), 110 mEh (5.5%), and 280 mEh (9.0%), respectively, after about 109 MC steps.
Collapse
Affiliation(s)
- Alexander E Doran
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - So Hirata
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| |
Collapse
|
11
|
Levine BG, Durden AS, Esch MP, Liang F, Shu Y. CAS without SCF-Why to use CASCI and where to get the orbitals. J Chem Phys 2021; 154:090902. [PMID: 33685182 DOI: 10.1063/5.0042147] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The complete active space self-consistent field (CASSCF) method has seen broad adoption due to its ability to describe the electronic structure of both the ground and excited states of molecules over a broader swath of the potential energy surface than is possible with the simpler Hartree-Fock approximation. However, it also has a reputation for being unwieldy, computationally costly, and un-black-box. Here, we discuss a class of alternatives, complete active space configuration interaction (CASCI) methods, paying particular attention to their application to electronic excited states. The goal of this Perspective is fourfold. First, we argue that CASCI is not merely an approximation to CASSCF, in that it can be designed to have important qualitative advantages over CASSCF. Second, we present several insights drawn from our experience experimenting with different schemes for computing orbitals to be employed in CASCI. Third, we argue that CASCI is well suited for application to nanomaterials. Finally, we reason that, with the rise in new low-scaling approaches for describing multireference systems, there is a greater need than ever to develop new methods for defining orbitals that provide an efficient and accurate description of both static correlation and electronic excitations in a limited active space.
Collapse
Affiliation(s)
- Benjamin G Levine
- Institute for Advanced Computational Science and Department of Chemistry, Stony Brook University, Stony Brook, New York 11794, USA
| | - Andrew S Durden
- Institute for Advanced Computational Science and Department of Chemistry, Stony Brook University, Stony Brook, New York 11794, USA
| | - Michael P Esch
- Institute for Advanced Computational Science and Department of Chemistry, Stony Brook University, Stony Brook, New York 11794, USA
| | - Fangchun Liang
- Institute for Advanced Computational Science and Department of Chemistry, Stony Brook University, Stony Brook, New York 11794, USA
| | - Yinan Shu
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, USA
| |
Collapse
|
12
|
Zhang N, Liu W, Hoffmann MR. Further Development of iCIPT2 for Strongly Correlated Electrons. J Chem Theory Comput 2021; 17:949-964. [PMID: 33410692 DOI: 10.1021/acs.jctc.0c01187] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The efficiency of the recently proposed iCIPT2 [iterative configuration interaction (iCI) with selection and second-order perturbation theory (PT2); J. Chem. Theory Comput. 2020, 16, 2296] for strongly correlated electrons is further enhanced (by up to 20×) by using (1) a new ranking criterion for configuration selection, (2) a new particle-hole algorithm for Hamiltonian construction over randomly selected configuration state functions (CSF), and (3) a new data structure for the quick sorting of the variational and first-order interaction spaces. Meanwhile, the memory requirement is also significantly reduced. As a result, this improved implementation of iCIPT2 can handle 1 order of magnitude more CSFs than the previous version, as revealed by taking the chromium dimer and an iron-sulfur cluster, [Fe2S2(SCH3)]42-, as examples.
Collapse
Affiliation(s)
- Ning Zhang
- Beijing National Laboratory for Molecular Sciences, Institute of Theoretical and Computational Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Wenjian Liu
- Qingdao Institute for Theoretical and Computational Sciences, Shandong University, Qingdao, Shandong 266237, China
| | - Mark R Hoffmann
- Chemistry Department, University of North Dakota, Grand Forks, North Dakota 58202-9024, United States
| |
Collapse
|
13
|
Abstract
We present a Perspective on what the future holds for full configuration interaction (FCI) theory, with an emphasis on conceptual rather than technical details. Upon revisiting the early history of FCI, a number of its key contemporary approximations are compared on as equal a footing as possible, using a recent blind challenge on the benzene molecule as a testbed [Eriksen et al., J. Phys. Chem. Lett., 2020 11, 8922]. In the process, we review the scope of applications for which FCI continues to prove indispensable, and the required traits in terms of robustness, efficacy, and reliability its modern approximations must satisfy are discussed. We close by conveying a number of general observations on the merits offered by the state-of-the-art alongside some of the challenges still faced to this day. While the field has altogether seen immense progress over the years-the past decade, in particular-it remains clear that our community as a whole has a substantial way to go in enhancing the overall applicability of near-exact electronic structure theory for systems of general composition and increasing size.
Collapse
Affiliation(s)
- Janus J Eriksen
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, United Kingdom
| |
Collapse
|
14
|
Xu E, Uejima M, Ten-No SL. Towards Near-Exact Solutions of Molecular Electronic Structure: Full Coupled-Cluster Reduction with a Second-Order Perturbative Correction. J Phys Chem Lett 2020; 11:9775-9780. [PMID: 33146534 DOI: 10.1021/acs.jpclett.0c03084] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
We introduce a new augmented adaptation of the recently developed full coupled-cluster reduction (FCCR) with a second-order perturbative correction, abbreviated as FCCR(2). FCCR is a selected coupled-cluster expansion aimed at optimally reducing the excitation manifold and commutator expansions for high-rank excitations for obtaining accurate solutions of the electronic Schödinger equation in a size-extensive manner. The present FCCR(2) enables estimating the residual correlation of FCCR by the second-order perturbative correction E(2) from the complementary space of the FCCR projection manifold. The linear relationship between E(2) and the energy of FCCR(2) allows accurate estimates of near-exact energies for a wide variety of molecules with strong electron correlation. The potential of the method is demonstrated using challenging cases, the ground-state electronic energy of the benzene molecule in equilibrium and stretched geometries, and the isomerization energy of the transition metal complex [Cu(NH3)]2O22+.
Collapse
Affiliation(s)
- Enhua Xu
- Graduate School of Science, Technology, and Innovation, Kobe University, Kobe 657-8501, Japan
| | - Motoyuki Uejima
- Graduate School of Science, Technology, and Innovation, Kobe University, Kobe 657-8501, Japan
| | - Seiichiro L Ten-No
- Graduate School of Science, Technology, and Innovation, Kobe University, Kobe 657-8501, Japan
- Graduate School of System Informatics, Kobe University, Kobe 657-8501, Japan
| |
Collapse
|
15
|
Ladóczki B, Uejima M, Ten-no SL. Third-order Epstein–Nesbet perturbative correction to the initiator approximation of configuration space quantum Monte Carlo. J Chem Phys 2020; 153:114112. [DOI: 10.1063/5.0022101] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Bence Ladóczki
- Graduate School of System Informatics, Kobe University, Nada-ku, Kobe 657-8501, Japan
| | - Motoyuki Uejima
- Graduate School of Science, Technology, and Innovation, Kobe University, Nada-ku, Kobe 657-8501, Japan
| | - Seiichiro L. Ten-no
- Graduate School of System Informatics, Kobe University, Nada-ku, Kobe 657-8501, Japan
- Graduate School of Science, Technology, and Innovation, Kobe University, Nada-ku, Kobe 657-8501, Japan
| |
Collapse
|
16
|
Doran AE, Hirata S. Convergence acceleration of Monte Carlo many-body perturbation methods by direct sampling. J Chem Phys 2020; 153:104112. [DOI: 10.1063/5.0020583] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Alexander E. Doran
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - So Hirata
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| |
Collapse
|
17
|
Doran AE, Hirata S. Convergence acceleration of Monte Carlo many-body perturbation methods by using many control variates. J Chem Phys 2020; 153:094108. [DOI: 10.1063/5.0020584] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Affiliation(s)
- Alexander E. Doran
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - So Hirata
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| |
Collapse
|
18
|
Yang PJ, Sugiyama M, Tsuda K, Yanai T. Artificial Neural Networks Applied as Molecular Wave Function Solvers. J Chem Theory Comput 2020; 16:3513-3529. [PMID: 32320233 DOI: 10.1021/acs.jctc.9b01132] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We use artificial neural networks (ANNs) based on the Boltzmann machine (BM) architectures as an encoder of ab initio molecular many-electron wave functions represented with the complete active space configuration interaction (CAS-CI) model. As first introduced by the work of Carleo and Troyer for physical systems, the coefficients of the electronic configurations in the CI expansion are parametrized with the BMs as a function of their occupancies that act as descriptors. This ANN-based wave function ansatz is referred to as the neural-network quantum state (NQS). The machine learning is used for training the BMs in terms of finding a variationally optimal form of the ground-state wave function on the basis of the energy minimization. It is relevant to reinforcement learning and does not use any reference data nor prior knowledge of the wave function, while the Hamiltonian is given based on a user-specified chemical structure in the first-principles manner. Carleo and Troyer used the restricted Boltzmann machine (RBM), which has hidden units, for the neural network architecture of NQS, while, in this study, we further introduce its replacement with the BM that has only visible units but with different orders of connectivity. For this hidden-node free BM, the second- and third-order BMs based on quadratic and cubic energy functions, respectively, were implemented. We denote these second- and third-order BMs as BM2 and BM3, respectively. The pilot implementation of the NQS solver into an exact diagonalization module of the quantum chemistry program was made to assess the capability of variants of the BM-based NQS. The test calculations were performed by determining the CAS-CI wave functions of illustrative molecular systems, indocyanine green, and dinitrogen dissociation. The simulated energies have been shown to converge to CAS-CI energy in most cases by improving RBM with an increasing number of hidden nodes. BM3 systematically yields lower energies than BM2, reproducing the CAS-CI energies of dinitrogen across potential energy curves within an error of 50 μEh.
Collapse
Affiliation(s)
- Peng-Jian Yang
- Department of Chemistry, Nagoya University, Furocho, Chikusa Ward, Nagoya, Aichi 464-8601, Japan
| | - Mahito Sugiyama
- National Institute of Informatics, 2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo 101-8430, Japan.,JST, PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Koji Tsuda
- Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwa-no-ha, Kashiwa, Chiba 277-8561, Japan.,RIKEN Center for Advanced Intelligence Project, 1-4-1 Nihonbashi, Chuo-ku, Tokyo 103-0027, Japan.,Research and Services Division of Materials Data and Integrated System, National Institute for Materials Science, Ibaraki 305-0047, Japan
| | - Takeshi Yanai
- Department of Chemistry, Nagoya University, Furocho, Chikusa Ward, Nagoya, Aichi 464-8601, Japan.,Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Furocho, Chikusa Ward, Nagoya, Aichi 464-8601, Japan.,JST, PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| |
Collapse
|
19
|
Nakano K, Attaccalite C, Barborini M, Capriotti L, Casula M, Coccia E, Dagrada M, Genovese C, Luo Y, Mazzola G, Zen A, Sorella S. TurboRVB: A many-body toolkit for ab initio electronic simulations by quantum Monte Carlo. J Chem Phys 2020; 152:204121. [DOI: 10.1063/5.0005037] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Affiliation(s)
- Kousuke Nakano
- International School for Advanced Studies (SISSA), Via Bonomea 265, 34136 Trieste, Italy
- Japan Advanced Institute of Science and Technology (JAIST), Asahidai 1-1, Nomi, Ishikawa 923-1292, Japan
| | - Claudio Attaccalite
- Aix-Marseille Université, CNRS, CINaM UMR 7325, Campus de Luminy, 13288 Marseille, France
| | | | - Luca Capriotti
- New York University, Tandon School of Engineering, 6 MetroTech Center, Brooklyn, New York 11201, USA
- Department of Mathematics, University College London, Gower Street, London WC1E 6BT, United Kingdom
| | - Michele Casula
- Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie (IMPMC), Sorbonne Université, CNRS UMR 7590, IRD UMR 206, MNHN, 4 Place Jussieu, 75252 Paris, France
| | - Emanuele Coccia
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via L. Giorgieri 1, 34127 Trieste, Italy
| | - Mario Dagrada
- Forescout Technologies, John F. Kennedylaan 2, 5612AB Eindhoven, The Netherlands
| | - Claudio Genovese
- International School for Advanced Studies (SISSA), Via Bonomea 265, 34136 Trieste, Italy
| | - Ye Luo
- Computational Science Division, Argonne National Laboratory, 9700 S. Cass Avenue, Lemont, Illinois 60439, USA
- Argonne Leadership Computing Facility, Argonne National Laboratory, 9700 S. Cass Avenue, Lemont, Illinois 60439, USA
| | | | - Andrea Zen
- Department of Earth Sciences, University College London, Gower Street, London WC1E 6BT, United Kingdom
- Thomas Young Centre and London Centre for Nanotechnology, 17-19 Gordon Street, London WC1H 0AH, United Kingdom
| | - Sandro Sorella
- International School for Advanced Studies (SISSA), Via Bonomea 265, 34136 Trieste, Italy
| |
Collapse
|
20
|
Zhang N, Liu W, Hoffmann MR. Iterative Configuration Interaction with Selection. J Chem Theory Comput 2020; 16:2296-2316. [DOI: 10.1021/acs.jctc.9b01200] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Ning Zhang
- Beijing National Laboratory for Molecular Sciences, Institute of Theoretical and Computational Chemistry, College of Chemistry and Molecular Engineering, Beijing 100871, China
| | - Wenjian Liu
- Qingdao Institute for Theoretical and Computational Sciences, Shandong University, Qingdao, Shandong 266237, China
| | - Mark R. Hoffmann
- Chemistry Department, University of North Dakota, Grand Forks, North Dakota 58202-9024, United States
| |
Collapse
|
21
|
Neufeld VA, Thom AJW. Accelerating Convergence in Fock Space Quantum Monte Carlo Methods. J Chem Theory Comput 2020; 16:1503-1510. [DOI: 10.1021/acs.jctc.9b01023] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Verena A. Neufeld
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Alex J. W. Thom
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| |
Collapse
|
22
|
Blunt NS. A hybrid approach to extending selected configuration interaction and full configuration interaction quantum Monte Carlo. J Chem Phys 2019; 151:174103. [DOI: 10.1063/1.5123146] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Affiliation(s)
- Nick S. Blunt
- Department of Chemistry, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| |
Collapse
|
23
|
Doran AE, Hirata S. Monte Carlo Second- and Third-Order Many-Body Green’s Function Methods with Frequency-Dependent, Nondiagonal Self-Energy. J Chem Theory Comput 2019; 15:6097-6110. [DOI: 10.1021/acs.jctc.9b00693] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Alexander E. Doran
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - So Hirata
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
24
|
Ladóczki B, Ten-No SL. Stochastic perturbation theory in a limited configuration space. J Chem Phys 2019; 151:114113. [PMID: 31542048 DOI: 10.1063/1.5109820] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
A general-order stochastic perturbation algorithm is obtained from the order-by-order expansion of the imaginary-time evolution of a configuration interaction wave function. A truncation of configuration space that is required for the practical treatment of the perturbative corrections, however, does not preserve size-consistency as is the case for a truncated configuration interaction. To circumvent this problem, we formulate a linked variant of stochastic perturbation theory based on the coupled-cluster ansatz. The implementation based on the linearized coupled-cluster is compared with several full configuration interaction results. We also compare the results with those obtained from deterministic coupled-cluster and many-body perturbation theories.
Collapse
Affiliation(s)
- Bence Ladóczki
- Graduate School of System Informatics, Kobe University, Nada-ku, Kobe 657-8501, Japan
| | - Seiichiro L Ten-No
- Graduate School of System Informatics, Kobe University, Nada-ku, Kobe 657-8501, Japan
| |
Collapse
|
25
|
Petras HR, Graham DS, Ramadugu SK, Goodpaster JD, Shepherd JJ. Fully Quantum Embedding with Density Functional Theory for Full Configuration Interaction Quantum Monte Carlo. J Chem Theory Comput 2019; 15:5332-5342. [DOI: 10.1021/acs.jctc.9b00571] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Hayley R. Petras
- Department of Chemistry, University of Iowa, Iowa City, Iowa 52242, United States
- University of Iowa Informatics Initiative, University of Iowa, Iowa City, Iowa 52242, United States
| | - Daniel S. Graham
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Sai Kumar Ramadugu
- Department of Chemistry, University of Iowa, Iowa City, Iowa 52242, United States
- University of Iowa Informatics Initiative, University of Iowa, Iowa City, Iowa 52242, United States
| | - Jason D. Goodpaster
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - James J. Shepherd
- Department of Chemistry, University of Iowa, Iowa City, Iowa 52242, United States
- University of Iowa Informatics Initiative, University of Iowa, Iowa City, Iowa 52242, United States
| |
Collapse
|
26
|
Blunt NS, Thom AJW, Scott CJC. Preconditioning and Perturbative Estimators in Full Configuration Interaction Quantum Monte Carlo. J Chem Theory Comput 2019; 15:3537-3551. [DOI: 10.1021/acs.jctc.9b00049] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Nick S. Blunt
- Department of Chemistry, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Alex J. W. Thom
- Department of Chemistry, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | | |
Collapse
|
27
|
Spencer JS, Blunt NS, Choi S, Etrych J, Filip MA, Foulkes WMC, Franklin RST, Handley WJ, Malone FD, Neufeld VA, Di Remigio R, Rogers TW, Scott CJC, Shepherd JJ, Vigor WA, Weston J, Xu R, Thom AJW. The HANDE-QMC Project: Open-Source Stochastic Quantum Chemistry from the Ground State Up. J Chem Theory Comput 2019; 15:1728-1742. [DOI: 10.1021/acs.jctc.8b01217] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- James S. Spencer
- Department of Physics, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom
- Department of Materials, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom
| | - Nick S. Blunt
- University Chemical Laboratory, Lensfield Road, Cambridge CB2 1EW, United Kingdom
- St. John’s College, St. John’s Street, Cambridge, CB2 1TP, United Kingdom
| | - Seonghoon Choi
- University Chemical Laboratory, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Jiří Etrych
- University Chemical Laboratory, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Maria-Andreea Filip
- University Chemical Laboratory, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - W. M. C. Foulkes
- Department of Physics, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom
- Department of Physics, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Ruth S. T. Franklin
- University Chemical Laboratory, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Will J. Handley
- Astrophysics Group, Cavendish Laboratory, Cambridge, CB3 OHE, United Kingdom
- Kavli Institute for Cosmology, Madingley Road, Cambridge, CB3 0HA, United Kingdom
- Gonville & Caius College, Trinity Street, Cambridge, CB2 1TA, United Kingdom
| | - Fionn D. Malone
- Department of Physics, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom
- Quantum Simulations Group, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| | - Verena A. Neufeld
- University Chemical Laboratory, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Roberto Di Remigio
- Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, University of Tromsø—The Arctic University of Norway, N-9037 Tromsø, Norway
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Thomas W. Rogers
- Department of Physics, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom
| | - Charles J. C. Scott
- University Chemical Laboratory, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | | | - William A. Vigor
- Department of Chemistry, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom
| | - Joseph Weston
- Department of Physics, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom
| | - RuQing Xu
- Department of Modern Physics, University of Science and Technology, Hefei, Anhui 230026, China
| | - Alex J. W. Thom
- University Chemical Laboratory, Lensfield Road, Cambridge CB2 1EW, United Kingdom
- Department of Chemistry, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom
| |
Collapse
|
28
|
Neufeld VA, Thom AJW. Exciting Determinants in Quantum Monte Carlo: Loading the Dice with Fast, Low-Memory Weights. J Chem Theory Comput 2018; 15:127-140. [DOI: 10.1021/acs.jctc.8b00844] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Verena A. Neufeld
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Alex J. W. Thom
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| |
Collapse
|
29
|
Xu E, Uejima M, Ten-No SL. Full Coupled-Cluster Reduction for Accurate Description of Strong Electron Correlation. PHYSICAL REVIEW LETTERS 2018; 121:113001. [PMID: 30265114 DOI: 10.1103/physrevlett.121.113001] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Indexed: 06/08/2023]
Abstract
A full coupled-cluster expansion suitable for sparse algebraic operations is developed by expanding the commutators of the Baker-Campbell-Hausdorff series explicitly for cluster operators in binary representations. A full coupled-cluster reduction that is capable of providing very accurate solutions of the many-body Schrödinger equation is then initiated employing screenings to the projection manifold and commutator operations. The projection manifold is iteratively updated through the single commutators ⟨κ|[H[over ^],T[over ^]]|0⟩ comprised of the primary clusters T[over ^]_{λ} with a substantial contribution to the connectivity. The operation of the commutators is further reduced by introducing a correction, taking into account the so-called exclusion-principle-violating terms that provides a fast and near-variational convergence in many cases.
Collapse
Affiliation(s)
- Enhua Xu
- Graduate School of Science, Technology, and Innovation, Kobe University, Nada-ku, Kobe 657-8501, Japan
| | - Motoyuki Uejima
- Graduate School of Science, Technology, and Innovation, Kobe University, Nada-ku, Kobe 657-8501, Japan
| | - Seiichiro Lenka Ten-No
- Graduate School of Science, Technology, and Innovation, Kobe University, Nada-ku, Kobe 657-8501, Japan
| |
Collapse
|
30
|
Lischka H, Nachtigallová D, Aquino AJA, Szalay PG, Plasser F, Machado FBC, Barbatti M. Multireference Approaches for Excited States of Molecules. Chem Rev 2018; 118:7293-7361. [DOI: 10.1021/acs.chemrev.8b00244] [Citation(s) in RCA: 197] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Hans Lischka
- School of Pharmaceutical Sciences and Technology, Tianjin University, Tianjin 300072, P.R. China
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409, United States
- Institute of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Straße 17, 1090 Vienna, Austria
| | - Dana Nachtigallová
- Institute of Organic Chemistry and Biochemistry v.v.i., The Czech Academy of Sciences, Flemingovo nám. 2, 16610 Prague 6, Czech Republic
- Regional Centre of Advanced Technologies and Materials, Palacký University, 78371 Olomouc, Czech Republic
| | - Adélia J. A. Aquino
- School of Pharmaceutical Sciences and Technology, Tianjin University, Tianjin 300072, P.R. China
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409, United States
- Institute for Soil Research, University of Natural Resources and Life Sciences Vienna, Peter-Jordan-Strasse 82, A-1190 Vienna, Austria
| | - Péter G. Szalay
- ELTE Eötvös Loránd University, Laboratory of Theoretical Chemistry, Pázmány Péter sétány 1/A, 1117 Budapest, Hungary
| | - Felix Plasser
- Institute of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Straße 17, 1090 Vienna, Austria
- Department of Chemistry, Loughborough University, Leicestershire LE11 3TU, United Kingdom
| | - Francisco B. C. Machado
- Departamento de Química, Instituto Tecnológico de Aeronáutica, São José dos Campos 12228-900, São Paulo, Brazil
| | | |
Collapse
|
31
|
Blunt NS. Communication: An efficient and accurate perturbative correction to initiator full configuration interaction quantum Monte Carlo. J Chem Phys 2018; 148:221101. [DOI: 10.1063/1.5037923] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Nick S. Blunt
- University Chemical Laboratory, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| |
Collapse
|
32
|
Samanta PK, Blunt NS, Booth GH. Response Formalism within Full Configuration Interaction Quantum Monte Carlo: Static Properties and Electrical Response. J Chem Theory Comput 2018; 14:3532-3546. [DOI: 10.1021/acs.jctc.8b00454] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Pradipta Kumar Samanta
- Institut für Theoretische Chemie, Universität Stuttgart, D-70569 Stuttgart, Germany
- Max Planck Institute for Solid State Research, D-70569 Stuttgart, Germany
| | - Nick S. Blunt
- University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - George H. Booth
- Department of Physics, King’s College London, Strand, London WC2R 2LS, United Kingdom
| |
Collapse
|
33
|
Large-Scale Electron Correlation Calculations: Rank-Reduced Full Configuration Interaction. J Chem Theory Comput 2018; 14:4139-4150. [DOI: 10.1021/acs.jctc.8b00382] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
34
|
Ten-no SL. Multi-state effective Hamiltonian and size-consistency corrections in stochastic configuration interactions. J Chem Phys 2017; 147:244107. [DOI: 10.1063/1.5003222] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Seiichiro L. Ten-no
- Graduate School of Science, Technology, and Innovation, Kobe University, Nada-ku, Kobe 657-8501, Japan
| |
Collapse
|
35
|
Blunt NS, Neuscamman E. Charge-transfer excited states: Seeking a balanced and efficient wave function ansatz in variational Monte Carlo. J Chem Phys 2017; 147:194101. [DOI: 10.1063/1.4998197] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- N. S. Blunt
- Department of Chemistry, University of California, Berkeley, California 94720, USA
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Eric Neuscamman
- Department of Chemistry, University of California, Berkeley, California 94720, USA
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| |
Collapse
|
36
|
Schriber JB, Evangelista FA. Adaptive Configuration Interaction for Computing Challenging Electronic Excited States with Tunable Accuracy. J Chem Theory Comput 2017; 13:5354-5366. [DOI: 10.1021/acs.jctc.7b00725] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jeffrey B. Schriber
- Department of Chemistry and
Cherry L. Emerson Center for Scientific Computation, Emory University, Atlanta, Georgia 30322, United States
| | - Francesco A. Evangelista
- Department of Chemistry and
Cherry L. Emerson Center for Scientific Computation, Emory University, Atlanta, Georgia 30322, United States
| |
Collapse
|
37
|
Ohtsuka Y, Hasegawa JY. Selected configuration interaction method using sampled first-order corrections to wave functions. J Chem Phys 2017; 147:034102. [DOI: 10.1063/1.4993214] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Affiliation(s)
- Yuhki Ohtsuka
- Institute for Catalysis, Hokkaido University, N21 W10 Kita-ku, Sapporo, Hokkaido 001-0021, Japan
| | - Jun-ya Hasegawa
- Institute for Catalysis, Hokkaido University, N21 W10 Kita-ku, Sapporo, Hokkaido 001-0021, Japan
- JST-CREST, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| |
Collapse
|
38
|
Grüneis A, Hirata S, Ohnishi YY, Ten-no S. Perspective: Explicitly correlated electronic structure theory for complex systems. J Chem Phys 2017; 146:080901. [DOI: 10.1063/1.4976974] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Andreas Grüneis
- Max Planck Institute for Solid State Research, Heisenbergstrasse 1, 70569 Stuttgart,
Germany
- Department Chemie, Technische Universität München (TUM), Lichtenbergstrasse 4, D-85747 Garching,
Germany
- Graduate School of Science, Technology, and Innovation,
Kobe University, Nada-ku, Kobe 657-8501,
Japan
| | - So Hirata
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Yu-ya Ohnishi
- Graduate School of System Informatics, Kobe University, Nada-ku, Kobe 657-8501, Japan
| | - Seiichiro Ten-no
- Graduate School of Science, Technology, and Innovation,
Kobe University, Nada-ku, Kobe 657-8501,
Japan
- Graduate School of System Informatics, Kobe University, Nada-ku, Kobe 657-8501, Japan
| |
Collapse
|
39
|
Johnson CM, Doran AE, Zhang J, Valeev EF, Hirata S. Monte Carlo explicitly correlated second-order many-body perturbation theory. J Chem Phys 2016; 145:154115. [DOI: 10.1063/1.4964854] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Cole M. Johnson
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Alexander E. Doran
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Jinmei Zhang
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, USA
| | - Edward F. Valeev
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, USA
| | - So Hirata
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| |
Collapse
|
40
|
Doran AE, Hirata S. Monte Carlo MP2 on Many Graphical Processing Units. J Chem Theory Comput 2016; 12:4821-4832. [DOI: 10.1021/acs.jctc.6b00588] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Alexander E. Doran
- Department of Chemistry, University of Illinois at Urbana−Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - So Hirata
- Department of Chemistry, University of Illinois at Urbana−Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| |
Collapse
|
41
|
Zhang T, Evangelista FA. A Deterministic Projector Configuration Interaction Approach for the Ground State of Quantum Many-Body Systems. J Chem Theory Comput 2016; 12:4326-37. [PMID: 27464301 DOI: 10.1021/acs.jctc.6b00639] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In this work we propose a novel approach to solve the Schrödinger equation which combines projection onto the ground state with a path-filtering truncation scheme. The resulting projector configuration interaction (PCI) approach realizes a deterministic version of the full configuration interaction quantum Monte Carlo (FCIQMC) method [Booth, G. H.; Thom, A. J. W.; Alavi, A. J. Chem. Phys. 2009, 131, 054106]. To improve upon the linearized imaginary-time propagator, we develop an optimal projector scheme based on an exponential Chebyshev expansion in the limit of an infinite imaginary time step. After writing the exact projector as a path integral in determinant space, we introduce a path filtering procedure that truncates the size of the determinantal basis and approximates the Hamiltonian. The path filtering procedure is controlled by one real threshold that determines the accuracy of the PCI energy and is not biased toward any determinant. Therefore, the PCI approach can equally well describe static and dynamic electron correlation effects. This point is illustrated in benchmark computations on N2 at both equilibrium and stretched geometries. In both cases, the PCI achieves chemical accuracy with wave functions that contain less than 0.5% determinants of full CI space. We also report computations on the ground state of C2 with up to quaduple-ζ basis sets and wave functions as large as 200 million determinants, which allow a direct comparison of the PCI, FCIQMC, and density matrix renormalization group (DMRG) methods. The size of the PCI wave function grows modestly with the number of unoccupied orbitals, and its accuracy may be tuned to match that of FCIQMC and DMRG.
Collapse
Affiliation(s)
- Tianyuan Zhang
- Department of Chemistry and Cherry L. Emerson Center for Scientific Computation, Emory University , Atlanta, Georgia 30322, United States
| | - Francesco A Evangelista
- Department of Chemistry and Cherry L. Emerson Center for Scientific Computation, Emory University , Atlanta, Georgia 30322, United States
| |
Collapse
|
42
|
Kersten JAF, Booth GH, Alavi A. Assessment of multireference approaches to explicitly correlated full configuration interaction quantum Monte Carlo. J Chem Phys 2016; 145:054117. [DOI: 10.1063/1.4959245] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- J. A. F. Kersten
- University Chemical Laboratory, Lensfield Road, Cambridge CB2 1EW, United Kingdom
- Max Planck Institute for Solid State Research, Heisenbergstraße 1, 70569 Stuttgart, Germany
| | - George H. Booth
- Department of Physics, King’s College London, Strand, London WC2R 2LS, United Kingdom
| | - Ali Alavi
- University Chemical Laboratory, Lensfield Road, Cambridge CB2 1EW, United Kingdom
- Max Planck Institute for Solid State Research, Heisenbergstraße 1, 70569 Stuttgart, Germany
| |
Collapse
|
43
|
Holmes AA, Tubman NM, Umrigar CJ. Heat-Bath Configuration Interaction: An Efficient Selected Configuration Interaction Algorithm Inspired by Heat-Bath Sampling. J Chem Theory Comput 2016; 12:3674-80. [DOI: 10.1021/acs.jctc.6b00407] [Citation(s) in RCA: 227] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Adam A. Holmes
- Laboratory
of Atomic and Solid State Physics, Cornell University, Ithaca, New York 14853, United States
| | - Norm M. Tubman
- University of California, Berkeley, Berkeley, California 94720, United States
| | - C. J. Umrigar
- Laboratory
of Atomic and Solid State Physics, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
44
|
Schriber JB, Evangelista FA. Communication: An adaptive configuration interaction approach for strongly correlated electrons with tunable accuracy. J Chem Phys 2016; 144:161106. [DOI: 10.1063/1.4948308] [Citation(s) in RCA: 161] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Jeffrey B. Schriber
- Department of Chemistry and Cherry L. Emerson Center for Scientific Computation, Emory University, Atlanta, Georgia 30322, USA
| | - Francesco A. Evangelista
- Department of Chemistry and Cherry L. Emerson Center for Scientific Computation, Emory University, Atlanta, Georgia 30322, USA
| |
Collapse
|
45
|
Holmes AA, Changlani HJ, Umrigar CJ. Efficient Heat-Bath Sampling in Fock Space. J Chem Theory Comput 2016; 12:1561-71. [DOI: 10.1021/acs.jctc.5b01170] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Adam A. Holmes
- Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, New York 14853, United States
| | - Hitesh J. Changlani
- Department of Physics, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - C. J. Umrigar
- Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
46
|
Vigor WA, Spencer JS, Bearpark MJ, Thom AJW. Understanding and improving the efficiency of full configuration interaction quantum Monte Carlo. J Chem Phys 2016; 144:094110. [DOI: 10.1063/1.4943113] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Affiliation(s)
- W. A. Vigor
- Department of Chemistry, Imperial College London, Exhibition Road, London SW7 2AZ, United Kingdom
| | - J. S. Spencer
- Department of Physics, Imperial College London, Exhibition Road, London SW7 2AZ, United Kingdom
- Department of Materials, Imperial College London, Exhibition Road, London SW7 2AZ, United Kingdom
| | - M. J. Bearpark
- Department of Chemistry, Imperial College London, Exhibition Road, London SW7 2AZ, United Kingdom
| | - A. J. W. Thom
- Department of Chemistry, Imperial College London, Exhibition Road, London SW7 2AZ, United Kingdom
- University Chemical Laboratory, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| |
Collapse
|
47
|
Ohtsuka Y, Ten-no S. A study of potential energy curves from the model space quantum Monte Carlo method. J Chem Phys 2015; 143:214107. [DOI: 10.1063/1.4936412] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Yuhki Ohtsuka
- Department of Computational Sciences, Graduate School of System Informatics, Kobe University, Nada-ku, Kobe 657-8501, Japan
| | - Seiichiro Ten-no
- Department of Computational Sciences, Graduate School of System Informatics, Kobe University, Nada-ku, Kobe 657-8501, Japan
| |
Collapse
|
48
|
Umrigar CJ. Observations on variational and projector Monte Carlo methods. J Chem Phys 2015; 143:164105. [DOI: 10.1063/1.4933112] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Affiliation(s)
- C. J. Umrigar
- Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, New York 14853, USA
| |
Collapse
|
49
|
Blunt NS, Smart SD, Booth GH, Alavi A. An excited-state approach within full configuration interaction quantum Monte Carlo. J Chem Phys 2015; 143:134117. [DOI: 10.1063/1.4932595] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- N. S. Blunt
- University Chemical Laboratory, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Simon D. Smart
- Max Planck Institute for Solid State Research, Heisenbergstraße 1, 70569 Stuttgart, Germany
| | - George H. Booth
- Department of Physics, King’s College London, Strand, London WC2R 2LS, United Kingdom
| | - Ali Alavi
- University Chemical Laboratory, Lensfield Road, Cambridge CB2 1EW, United Kingdom
- Max Planck Institute for Solid State Research, Heisenbergstraße 1, 70569 Stuttgart, Germany
| |
Collapse
|
50
|
Changlani HJ, Zheng H, Wagner LK. Density-matrix based determination of low-energy model Hamiltonians from ab initio wavefunctions. J Chem Phys 2015; 143:102814. [PMID: 26374007 DOI: 10.1063/1.4927664] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Affiliation(s)
- Hitesh J. Changlani
- Department of Physics, University of Illinois at Urbana-Champaign, 1110 West Green St., Urbana, Illinois 61801, USA
| | - Huihuo Zheng
- Department of Physics, University of Illinois at Urbana-Champaign, 1110 West Green St., Urbana, Illinois 61801, USA
| | - Lucas K. Wagner
- Department of Physics, University of Illinois at Urbana-Champaign, 1110 West Green St., Urbana, Illinois 61801, USA
| |
Collapse
|