1
|
Vejerano EP, Ahn J, Scott GI. Aerosolized algal bloom toxins are not inert. ENVIRONMENTAL SCIENCE: ATMOSPHERES 2024; 4:1113-1128. [PMID: 39169920 PMCID: PMC11331395 DOI: 10.1039/d4ea00078a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 08/11/2024] [Indexed: 08/23/2024]
Abstract
Harmful algal blooms (HABs) are projected to become increasingly prevalent, extending over longer periods and wider geographic regions due to the warming surface ocean water and other environmental factors, including but not limited to nutrient concentrations and runoff for marine and freshwater environments. Incidents of respiratory distress linked to the inhalation of marine aerosols containing HAB toxins have been documented, though the risk is typically associated with the original toxins. However, aerosolized toxins in micrometer and submicrometer particles are vulnerable to atmospheric processing. This processing can potentially degrade HAB toxins and produce byproducts with varying potencies compared to the parent toxins. The inhalation of aerosolized HAB toxins, especially in conjunction with co-morbid factors such as exposure to air pollutants from increased commercial activities in ports, may represent a significant exposure pathway for a considerable portion of the global population. Understanding the chemistry behind the transformation of these toxins can enhance public protection by improving the existing HAB alert systems.
Collapse
Affiliation(s)
- Eric P Vejerano
- Center for Environmental Nanoscience and Risk, Department of Environmental Health Sciences USA +1-803-777-6360
| | - Jeonghyeon Ahn
- Center for Oceans and Human Health on Climate Change Interactions, Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina Columbia 29208 USA
| | - Geoffrey I Scott
- Center for Oceans and Human Health on Climate Change Interactions, Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina Columbia 29208 USA
| |
Collapse
|
2
|
Wilson KR, Prophet AM. Chemical Kinetics in Microdroplets. Annu Rev Phys Chem 2024; 75:185-208. [PMID: 38382571 DOI: 10.1146/annurev-physchem-052623-120718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Micrometer-sized compartments play significant roles in driving heterogeneous transformations within atmospheric and biochemical systems as well as providing vehicles for drug delivery and novel reaction environments for the synthesis of industrial chemicals. Many reports now indicate that reaction kinetics are accelerated under microconfinement, for example, in sprays, thin films, droplets, aerosols, and emulsions. These observations are dramatic, posing a challenge to our understanding of chemical reaction mechanisms with potentially significant practical consequences for predicting the complex chemistry in natural systems. Here we introduce the idea of kinetic confinement, which is intended to provide a conceptual backdrop for understanding when and why microdroplet reaction kinetics differ from their macroscale analogs.
Collapse
Affiliation(s)
- Kevin R Wilson
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA;
| | - Alexander M Prophet
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA;
- Department of Chemistry, University of California, Berkeley, California, USA;
| |
Collapse
|
3
|
Devlin SW, Bernal F, Riffe EJ, Wilson KR, Saykally RJ. Spiers Memorial Lecture: Water at interfaces. Faraday Discuss 2024; 249:9-37. [PMID: 37795954 DOI: 10.1039/d3fd00147d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2023]
Abstract
In this article we discuss current issues in the context of the four chosen subtopics for the meeting: dynamics and nano-rheology of interfacial water, electrified/charged aqueous interfaces, ice interfaces, and soft matter/water interfaces. We emphasize current advances in both theory and experiment, as well as important practical manifestations and areas of unresolved controversy.
Collapse
Affiliation(s)
- Shane W Devlin
- Department of Chemistry, University of California, Berkeley, CA 94720, USA.
- Chemical Sciences Division, Lawrence Berkeley National Lab, Berkeley, CA 94720, USA
| | - Franky Bernal
- Department of Chemistry, University of California, Berkeley, CA 94720, USA.
- Chemical Sciences Division, Lawrence Berkeley National Lab, Berkeley, CA 94720, USA
| | - Erika J Riffe
- Department of Chemistry, University of California, Berkeley, CA 94720, USA.
- Chemical Sciences Division, Lawrence Berkeley National Lab, Berkeley, CA 94720, USA
| | - Kevin R Wilson
- Chemical Sciences Division, Lawrence Berkeley National Lab, Berkeley, CA 94720, USA
| | - Richard J Saykally
- Department of Chemistry, University of California, Berkeley, CA 94720, USA.
- Chemical Sciences Division, Lawrence Berkeley National Lab, Berkeley, CA 94720, USA
| |
Collapse
|
4
|
Konermann L, Liu Z, Haidar Y, Willans MJ, Bainbridge NA. On the Chemistry of Aqueous Ammonium Acetate Droplets during Native Electrospray Ionization Mass Spectrometry. Anal Chem 2023; 95:13957-13966. [PMID: 37669319 DOI: 10.1021/acs.analchem.3c02546] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2023]
Abstract
Ammonium acetate (NH4Ac) is a widely used solvent additive in native electrospray ionization (ESI) mass spectrometry. NH4Ac can undergo proton transfer to form ammonia and acetic acid (NH4+ + Ac- → NH3 + HAc). The volatility of these products ensures that electrosprayed ions are free of undesired adducts. NH4Ac dissolution in water yields pH 7, providing "physiological" conditions. However, NH4Ac is not a buffer at pH 7 because NH4+ and Ac- are not a conjugate acid/base pair (Konermann, L. J. Am. Soc. Mass Spectrom. 2017, 28, 1827-1835.). In native ESI, it is desirable that analytes experience physiological conditions not only in bulk solution but also while they reside in ESI droplets. Little is known about the internal milieu of NH4Ac-containing ESI droplets. The current work explored the acid/base chemistry of such droplets, starting from a pH 7 analyte solution. We used a two-pronged approach involving evaporation experiments on bulk solutions under ESI-mimicking conditions, as well as molecular dynamics simulations using a newly developed algorithm that allows for proton transfer. Our results reveal that during droplet formation at the tip of the Taylor cone, electrolytically generated protons get neutralized by Ac-, making NH4+ the net charge carriers in the weakly acidic nascent droplets. During the subsequent evaporation, the droplets lose water as well as NH3 and HAc that were generated by proton transfer. NH3 departs more quickly because of its greater volatility, causing the accumulation of HAc. Together with residual Ac-, these HAc molecules form an acetate buffer that stabilizes the average droplet pH at 5.4 ± 0.1, as governed by the Henderson-Hasselbalch equation. The remarkable success of native ESI investigations in the literature implies that this pH drop by ∼1.6 units relative to the initially neutral analyte solution can be tolerated by most biomolecular analytes on the short time scale of the ESI process.
Collapse
Affiliation(s)
- Lars Konermann
- Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Zeyuan Liu
- Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Yousef Haidar
- Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Mathew J Willans
- Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Nicholas A Bainbridge
- Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| |
Collapse
|
5
|
Kwan V, Ballaney P, Consta S. Limitations of Atomistic Molecular Dynamics to Reveal Ejection of Proteins from Charged Nanodroplets. J Phys Chem B 2023. [PMID: 37216215 DOI: 10.1021/acs.jpcb.3c01313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Atomistic molecular dynamics (MD) is frequently used to unravel the mechanisms of macroion release from electrosprayed droplets. However, atomistic MD is currently feasible for only the smallest window of droplet sizes appearing at the end steps of a droplet's lifetime. The relevance of the observations made to the actual droplet evolution, which is much longer than the simulated sizes, has not been addressed yet in the literature. Here, we perform a systematic study of the desolvation mechanisms of poly(ethylene glycol) (PEG), protonated peptides of different compositions, and proteins, to (a) obtain insight into the charging mechanism of macromolecules in larger droplets than those that are currently amenable to atomistic MD and (b) examine whether currently used atomistic MD modeling can establish the extrusion mechanism of proteins from droplets. To mimic larger droplets that are not amenable to MD modeling, we scale down the systems, by simulating a large droplet size relative to the macromolecule. MD of PEG charging reveals that, above a critical droplet size, ions are available near the backbone of the macromolecule, but charging occurs only transiently by transfer of ions from the solvent to the macroion, while below the critical size, the capture of the ion from PEG has a lifetime sufficiently long for the extrusion of a charged PEG from the aqueous droplet. This is the first report of the role of droplet curvature in the relation between macroion conformation and charging. Simulations of protonated peptides with a high degree of hydrophobicity show that partial extrusion of a peptide from the droplet surface is rare relative to desolvation by drying-out. Different from what has been presented in the literature, we argue that atomistic MD simulations have not sufficiently established the extrusion mechanism of proteins from droplets and their charging mechanism. We also argue that release of highly charged proteins can occur at an earlier stage of a droplet's lifetime than predicted by atomistic MD. In this earlier stage, we emphasize the key role of jets emanating from a droplet at the point of charge-induced instability in the release of proteins.
Collapse
Affiliation(s)
- Victor Kwan
- Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Pranav Ballaney
- Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Styliani Consta
- Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| |
Collapse
|
6
|
Consta S. Atomistic Modeling of Jet Formation in Charged Droplets. J Phys Chem B 2022; 126:8350-8357. [PMID: 36201739 DOI: 10.1021/acs.jpcb.2c05849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The first atomistic simulations that reveal the mechanism of Rayleigh fission are presented. It is demonstrated that simple ion or macroion ejection takes place through droplet deformation from a spherical into a distinct "tear" shape that contains a conical protrusion. We assert that the latter state is a free-energy minimum along an order parameter that measures the degree of droplet asphericity. The charged droplet's long-time evolution proceeds by alternating between the two minima above and below the critical value that are reached through solvent evaporation and ion ejection, respectively. For the first time, this mechanism allows one to explain the nature of the progeny droplets and the percentage of charge lost during fission. The cone half angle is estimated and found to be in good agreement with the value predicted from the solution of the electrostatic equation for the dielectric liquid. It is found that the conical deformation is independent of the effect of electrohydrodynamic forces reported in experiments. Contrary to the experimental observations of two diametrically opposite jets for droplets suspended in the electric field, we find that a single jet is formed at the Rayleigh limit. The study provides insight into the mechanism of capture of a macroion in jets appearing in electrospray ionization mass spectrometry (ESI-MS) experiments and may explain the tolerance of the ESI-MS spectrum to salt contamination of the sample.
Collapse
Affiliation(s)
- Styliani Consta
- Department of Chemistry, The University of Western Ontario, London, Ontario, CanadaN6A 5B7.,Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EWUnited Kingdom
| |
Collapse
|
7
|
Aliyari E, Konermann L. Formation of Gaseous Peptide Ions from Electrospray Droplets: Competition between the Ion Evaporation Mechanism and Charged Residue Mechanism. Anal Chem 2022; 94:7713-7721. [PMID: 35587384 DOI: 10.1021/acs.analchem.2c01355] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The transfer of peptide ions from solution into the gas phase by electrospray ionization (ESI) is an integral component of mass spectrometry (MS)-based proteomics. The mechanisms whereby gaseous peptide ions are released from charged ESI nanodroplets remain unclear. This is in contrast to intact protein ESI, which has been the focus of detailed investigations using molecular dynamics (MD) simulations and other methods. Under acidic liquid chromatography/MS conditions, many peptides carry a solution charge of 3+ or 2+. Because of this pre-existing charge and their relatively small size, prevailing views suggest that peptides follow the ion evaporation mechanism (IEM). The IEM entails analyte ejection from ESI droplets, driven by electrostatic repulsion between the analyte and droplet. Surprisingly, recent peptide MD investigations reported a different behavior, that is, the release of peptide ions via droplet evaporation to dryness which represents the hallmark of the charged residue mechanism (CRM). Here, we resolved this conundrum by performing MD simulations on a common model peptide (bradykinin) in Rayleigh-charged aqueous droplets. The primary focus was on pH 2 conditions (bradykinin solution charge = 3+), but we also verified that our MD strategy captured pH-dependent charge state shifts seen in ESI-MS experiments. In agreement with earlier simulations, we found that droplets with initial radii of 1.5-3 nm predominantly release peptide ions via the CRM. In contrast, somewhat larger radii (4-5 nm) favor IEM behavior. It appears that these are the first MD data to unequivocally demonstrate the viability of peptide IEM events. Electrostatic arguments can account for the observed droplet size dependence. In summary, both CRM and IEM can be operative in peptide ESI-MS. The prevalence of one over the other mechanism depends on the droplet size distribution in the ESI plume.
Collapse
Affiliation(s)
- Elnaz Aliyari
- Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Lars Konermann
- Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| |
Collapse
|
8
|
Chamberlayne CF, Zare RN. Microdroplets can act as electrochemical cells. J Chem Phys 2022; 156:054705. [PMID: 35135250 PMCID: PMC8824579 DOI: 10.1063/5.0078281] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 01/10/2022] [Indexed: 12/21/2022] Open
Abstract
A water microdroplet in air or oil typically possesses an electric double layer (EDL) from the preferential adsorption of surface-bound ions at the periphery. We present the calculations of the ion gradients within a microdroplet at equilibrium, including systems containing buffers and water autoionization. These ion gradients are used to calculate the potential energy stored within the microdroplet. We consider how this stored potential energy can be utilized to drive chemical reactions, much like an electrochemical cell. Effective voltages as high as 111 mV are found for microdroplets having a low surface charge density (0.01 ions per nm2). Two sources of potential energy are investigated: (1) the electrostatic energy of the EDL of the microdroplet and (2) shifts in other chemical equilibria coupled to the main reaction through the EDL. A particularly important example of the latter is water autoionization, wherein the reaction of interest causes a flattening of the [H+] gradient within the EDL, resulting in a net recombination of H+ and OH- throughout the microdroplet. Numerical calculations are performed using a continuum model consisting of a balance between the electromigration and diffusion of ions throughout the microdroplet. Our treatment accounts for the autoionization of water and any chemical equilibrium of buffers present. The results are presented for uncharged water microdroplets with low amounts of salts and simple buffers in them. However, the calculational method presented here can be applied to microdroplets of any net charge, composed of any solvent, containing ions of any valence, and containing complex mixtures of chemical equilibria.
Collapse
Affiliation(s)
| | - Richard N. Zare
- Department of Chemistry, Stanford University, Stanford, California 94305, USA
| |
Collapse
|
9
|
Palm E, Kruve A. Machine Learning for Absolute Quantification of Unidentified Compounds in Non-Targeted LC/HRMS. Molecules 2022; 27:1013. [PMID: 35164283 PMCID: PMC8840743 DOI: 10.3390/molecules27031013] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/24/2022] [Accepted: 01/27/2022] [Indexed: 11/16/2022] Open
Abstract
LC/ESI/HRMS is increasingly employed for monitoring chemical pollutants in water samples, with non-targeted analysis becoming more common. Unfortunately, due to the lack of analytical standards, non-targeted analysis is mostly qualitative. To remedy this, models have been developed to evaluate the response of compounds from their structure, which can then be used for quantification in non-targeted analysis. Still, these models rely on tentatively known structures while for most detected compounds, a list of structural candidates, or sometimes only exact mass and retention time are identified. In this study, a quantification approach was developed, where LC/ESI/HRMS descriptors are used for quantification of compounds even if the structure is unknown. The approach was developed based on 92 compounds analyzed in parallel in both positive and negative ESI mode with mobile phases at pH 2.7, 8.0, and 10.0. The developed approach was compared with two baseline approaches- one assuming equal response factors for all compounds and one using the response factor of the closest eluting standard. The former gave a mean prediction error of a factor of 29, while the latter gave a mean prediction error of a factor of 1300. In the machine learning-based quantification approach developed here, the corresponding prediction error was a factor of 10. Furthermore, the approach was validated by analyzing two blind samples containing 48 compounds spiked into tap water and ultrapure water. The obtained mean prediction error was lower than a factor of 6.0 for both samples. The errors were found to be comparable to approaches using structural information.
Collapse
Affiliation(s)
| | - Anneli Kruve
- Department of Materials and Environmental Chemistry, Stockholm University, Svante Arrhenius Väg 16, 114 18 Stockholm, Sweden;
| |
Collapse
|
10
|
Malek SMA, Kwan V, Saika-Voivod I, Consta S. Low Density Interior in Supercooled Aqueous Nanodroplets Expels Ions to the Subsurface. J Am Chem Soc 2021; 143:13113-13123. [PMID: 34375522 DOI: 10.1021/jacs.1c04142] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The interaction between water and ions within droplets plays a key role in the chemical reactivity of atmospheric and man-made aerosols. Here we report direct computational evidence that in supercooled aqueous nanodroplets a lower density core of tetrahedrally coordinated water expels the cosmotropic ions to the denser and more disordered subsurface. In contrast, at room temperature, depending on the nature of the ion, the radial distribution in the droplet core is nearly uniform or elevated toward the center. We analyze the spatial distribution of a single ion in terms of a reference electrostatic model. The energy of the system in the analytical model is expressed as the sum of the electrostatic and surface energy of a deformable droplet. The model predicts that the ion is subject to a harmonic potential centered at the droplet's center of mass. We name this effect "electrostatic confinement". The model's predictions are consistent with the simulation findings for a single ion at room temperature but not at supercooling. We anticipate this study to be the starting point for investigating the structure of supercooled (electro)sprayed droplets that are used to preserve the conformations of macromolecules originating from the bulk solution.
Collapse
Affiliation(s)
- Shahrazad M A Malek
- Department of Physics and Physical Oceanography, Memorial University of Newfoundland, St. John's A1B 3X7, Canada
| | - Victor Kwan
- Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Ivan Saika-Voivod
- Department of Physics and Physical Oceanography, Memorial University of Newfoundland, St. John's A1B 3X7, Canada.,Department of Applied Mathematics, Western University, London, Ontario N6A 3K7, Canada
| | - Styliani Consta
- Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| |
Collapse
|
11
|
Kwan V, O’Dwyer R, Laur D, Tan J, Consta S. Relation between Ejection Mechanism and Ion Abundance in the Electric Double Layer of Droplets. J Phys Chem A 2021; 125:2954-2966. [DOI: 10.1021/acs.jpca.1c01522] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Victor Kwan
- Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Ryan O’Dwyer
- Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - David Laur
- Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Jiahua Tan
- Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
- College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Styliani Consta
- Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| |
Collapse
|
12
|
Kwan V, Consta S. Molecular Characterization of the Surface Excess Charge Layer in Droplets. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2021; 32:33-45. [PMID: 32597645 DOI: 10.1021/jasms.0c00053] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The surface excess charge layer (SECL) in droplets has often been associated with distinct chemistry. We examine the effect of the nature of ions in the composition and structure of SECL by using molecular dynamics. We find that in the presence of simple ions the thickness of SECL is invariant not only with respect to droplet size but also with respect to the nature of the ions. In the presence of simple ions, this layer has a thickness of ∼1.5-1.7 nm but in the presence of macroions it may extend to ∼2.0 nm. The proportion of ions contained in SECL depends on the nature of the ions and the droplet size. For the same droplet size, I- and model H3O+ ions show considerably higher concentration than Na+ and Cl- ions. We identify the maximum ion concentration region, which, in nanodrops, may partially overlap with SECL. As the relative shape fluctuations decrease when microdrop size is approached, the overlap between SECL and maximum ion concentration region increases. We suggest the extension of the bilayer droplet structure assumed in the equilibrium partitioning model of Enke to include the maximum ion concentration region that may not coincide with SECL in nanodrops. We compute the ion concentrations in SECL, which are those that should enter the kinetic equation in the ion-evaporation mechanism, instead of the overall drop ion concentration that has been used.
Collapse
Affiliation(s)
- Victor Kwan
- Department of Chemistry, The University of Western Ontario, London, Ontario, Canada N6A 5B7
| | - Styliani Consta
- Department of Chemistry, The University of Western Ontario, London, Ontario, Canada N6A 5B7
| |
Collapse
|
13
|
Chamberlayne CF, Zare RN. Simple model for the electric field and spatial distribution of ions in a microdroplet. J Chem Phys 2020; 152:184702. [PMID: 32414270 DOI: 10.1063/5.0006550] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
It is well established that the chemistry in microdroplets has been found to be radically different from reactions in bulk, particularly in the case of water. It has also been established that there is a threshold size for microdroplets to behave differently than droplets near the 10 µm diameter range. We present a three-dimensional electrostatic treatment in the spirit of the Gouy-Chapman model for double layers at interfaces. Our treatment predicts a strong concentration of charged molecules toward the surface of the droplet. As the droplet size deceases, the majority of the volume of the liquid experiences a large DC electric field. Such electric fields are highly unusual in a conducting fluid such as water. We believe that this unique environment helps to explain the reaction rate acceleration and new chemistry that have been observed in microdroplets compared to bulk phase.
Collapse
Affiliation(s)
| | - Richard N Zare
- Department of Chemistry, Stanford University, Stanford, California 94305, USA
| |
Collapse
|
14
|
Oh MI, Consta S. General solvation motifs of a charged linear macroion in an aqueous droplet. Mol Phys 2019. [DOI: 10.1080/00268976.2019.1596326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Myong In Oh
- Department of Chemistry, The University of Western Ontario, London, Ontario, Canada
| | - Styliani Consta
- Department of Chemistry, The University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
15
|
Kwan V, Malevanets A, Consta S. Where Do the Ions Reside in a Highly Charged Droplet? J Phys Chem A 2019; 123:9298-9310. [DOI: 10.1021/acs.jpca.9b03368] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Victor Kwan
- Department of Chemistry, The University of Western Ontario, London N6A 5B7, Ontario, Canada
| | - Anatoly Malevanets
- Department of Electrical and Computer Engineering, The University of Western Ontario, London N6A 5B9, Ontario, Canada
| | - Styliani Consta
- Department of Chemistry, The University of Western Ontario, London N6A 5B7, Ontario, Canada
| |
Collapse
|
16
|
Consta S, In Oh M, Kwan V, Malevanets A. Strengths and Weaknesses of Molecular Simulations of Electrosprayed Droplets. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2018; 29:2287-2296. [PMID: 30259408 DOI: 10.1007/s13361-018-2039-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Revised: 07/05/2018] [Accepted: 07/13/2018] [Indexed: 06/08/2023]
Abstract
The origin and the magnitude of the charge in a macroion are critical questions in mass spectrometry analysis coupled to electrospray and other ionization techniques that transfer analytes from the bulk solution into the gaseous phase via droplets. In many circumstances, it is the later stages of the existence of a macroion in the containing solvent drop before the detection that determines the final charge state. Experimental characterization of small (with linear dimensions of several nanometers) and short-lived droplets is quite challenging. Molecular simulations in principle may provide insight exactly in this challenging for experiments regime. We discuss the strengths and weaknesses of the molecular modeling of electrosprayed droplets using molecular dynamics. We illustrate the limitations of the molecular modeling in the analysis of large macroions and specifically proteins away from their native states. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Styliani Consta
- Department of Chemistry, The University of Western Ontario, London, Ontario, N6A 5B7, Canada.
| | - Myong In Oh
- Department of Chemistry, The University of Western Ontario, London, Ontario, N6A 5B7, Canada
| | - Victor Kwan
- Department of Chemistry, The University of Western Ontario, London, Ontario, N6A 5B7, Canada
| | - Anatoly Malevanets
- Department of Chemistry, The University of Western Ontario, London, Ontario, N6A 5B7, Canada
| |
Collapse
|
17
|
Consta S, Oh MI, Sharawy M, Malevanets A. Macroion–Solvent Interactions in Charged Droplets. J Phys Chem A 2018; 122:5239-5250. [DOI: 10.1021/acs.jpca.8b01404] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Styliani Consta
- Department of Chemistry, The University of Western Ontario, London, Ontario, Canada N6A 5B7
| | - Myong In Oh
- Department of Chemistry, The University of Western Ontario, London, Ontario, Canada N6A 5B7
| | - Mahmoud Sharawy
- Department of Chemistry, The University of Western Ontario, London, Ontario, Canada N6A 5B7
| | - Anatoly Malevanets
- Department of Electrical and Computer Engineering, The University of University of Western Ontario, London, Ontario, Canada N6A 5B9
| |
Collapse
|
18
|
Oh MI, Consta S. What factors determine the stability of a weak protein-protein interaction in a charged aqueous droplet? Phys Chem Chem Phys 2018; 19:31965-31981. [PMID: 29177351 DOI: 10.1039/c7cp05043g] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Maintaining the interface of a weak transient protein complex transferred from bulk solution to the gaseous state via evaporating droplets is a critical question in the detection of the complex association (dissociation) constant by using electrospray ionization mass spectrometry (ESI-MS). Here we explore the factors that may affect the stability of a protein-protein interaction (PPI) using atomistic molecular dynamics (MD) modelling of a complex of ubiquitin (Ub) and the ubiquitin-associated domain (UbA) (RCSB PDB code ) and a non-covalent complex of diubiquitin (RCSB PDB code ) in aqueous droplets. A general method is presented to determine the protonation states of the complexes we investigate in particular, and that of a protein in general, under various pH conditions that an evaporating droplet acquires due to its change in size. We find that the combination of high temperature and high charge states of the protein complexes may destabilize the interface by creating new interfaces instead of a direct rupture of the initial stable interface. We provide evidence that highly charged protein complexes are found in droplets that form conical extrusions of the solvent on the surface due to charge-induced instability. This distinct droplet morphology leads to a higher solvent evaporation rate that assists in transferring the complex in the gaseous state without dissociation. The conical solvent protrusions expose on the droplet surface certain amino acids that otherwise would be solvated in a droplet with the protein complex of low charge states. The new vapor-protein interface does not have a direct effect on the stability of the PPI. A common way in experiments to stabilize the protein complexes in droplets is to reduce the protonation state of the proteins. Here we find that weakly bound protein complexes even at high protonation states can be stabilized by the presence of a small number of counterions, without affecting the protonation state of the protein. Our findings may provide guiding principles in ESI-MS experiments to stabilize weak transient PPIs.
Collapse
Affiliation(s)
- Myong In Oh
- Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| | | |
Collapse
|
19
|
Affiliation(s)
- Mari Ojakivi
- Institute of Chemistry; University of Tartu; Ravila 14a Tartu 50411 Estonia
| | - Jaanus Liigand
- Institute of Chemistry; University of Tartu; Ravila 14a Tartu 50411 Estonia
| | - Anneli Kruve
- Institute of Chemistry and Biochemistry; Free University of Berlin; Takustr. 3 14195 Berlin Germany
- Institute of Chemistry; University of Tartu; Ravila 14a Tartu 50411 Estonia
| |
Collapse
|
20
|
Liigand P, Heering Suu A, Kaupmees K, Leito I, Girod M, Antoine R, Kruve A. The Evolution of Electrospray Generated Droplets is Not Affected by Ionization Mode. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2017; 28:2124-2131. [PMID: 28744770 DOI: 10.1007/s13361-017-1737-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 05/22/2017] [Accepted: 06/11/2017] [Indexed: 06/07/2023]
Abstract
Ionization efficiency and mechanism in ESI is strongly affected by the properties of mobile phase. The use of mobile-phase properties to accurately describe droplets in ESI source is convenient but may be inadequate as the composition of the droplets is changing in the plume due to electrochemical reactions occurring in the needle tip as well as continuous drying and fission of droplets. Presently, there is paucity of research on the effect of the polarity of the ESI mode on mobile phase composition in the droplets. In this paper, the change in the organic solvent content, pH, and droplet size are studied in the ESI plume in both ESI+ and ESI- ionization mode. We introduce a rigorous way - the absolute pH (pHabsH2O) - to describe pH change in the plume that takes into account organic solvent content in the mobile phase. pHabsH2O enables comparing acidities of ESI droplets with different organic solvent contents. The results are surprisingly similar for both ionization modes, indicating that the dynamics of the change of mobile-phase properties is independent from the ESI mode used. This allows us to conclude that the evolution of ESI droplets first of all proceeds via the evaporation of the organic modifier and to a lesser extent via fission of smaller droplets from parent droplets. Secondly, our study shows that qualitative findings related to the ESI process obtained on the ESI+ mode can almost directly be applied also in the ESI- mode. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Piia Liigand
- Institute of Chemistry, University of Tartu, Ravila 14a, 50411, Tartu, Estonia.
| | - Agnes Heering Suu
- Institute of Chemistry, University of Tartu, Ravila 14a, 50411, Tartu, Estonia
| | - Karl Kaupmees
- Institute of Chemistry, University of Tartu, Ravila 14a, 50411, Tartu, Estonia
| | - Ivo Leito
- Institute of Chemistry, University of Tartu, Ravila 14a, 50411, Tartu, Estonia
| | - Marion Girod
- CNRS, Université Claude Bernard Lyon 1, Ens de Lyon, Institut des Sciences Analytiques, University of Lyon, UMR 5280, 5 rue de la Doua, F-69100, Villeurbanne, France
| | - Rodolphe Antoine
- Université Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, University of Lyon, UMR 5306, F-69622, Lyon, France
| | - Anneli Kruve
- Institute of Chemistry, University of Tartu, Ravila 14a, 50411, Tartu, Estonia
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Technion City, Haifa, 3200008, Israel
| |
Collapse
|
21
|
Hermans J, Ongay S, Markov V, Bischoff R. Physicochemical Parameters Affecting the Electrospray Ionization Efficiency of Amino Acids after Acylation. Anal Chem 2017; 89:9159-9166. [PMID: 28737384 PMCID: PMC5588090 DOI: 10.1021/acs.analchem.7b01899] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
Electrospray
ionization (ESI) is widely used in liquid chromatography
coupled to mass spectrometry (LC–MS) for the analysis of biomolecules.
However, the ESI process is still not completely understood, and it
is often a matter of trial and error to enhance ESI efficiency and,
hence, the response of a given set of compounds. In this work we performed
a systematic study of the ESI response of 14 amino acids that were
acylated with organic acid anhydrides of increasing chain length and
with poly(ethylene glycol) (PEG) changing certain physicochemical
properties in a predictable manner. By comparing the ESI response
of 70 derivatives, we found that there was a strong correlation between
the calculated molecular volume and the ESI response, while correlation
with hydrophobicity (log P values), pKa, and the inverse calculated surface tension was significantly
lower although still present, especially for individual derivatized
amino acids with increasing acyl chain lengths. Acylation with PEG
containing five ethylene glycol units led to the largest gain in ESI
response. This response was maximal independent of the calculated
physicochemical properties or the type of amino acid. Since no actual
physicochemical data is available for most derivatized compounds,
the responses were also used as input for a quantitative structure–property
relationship (QSPR) model to find the best physicochemical descriptors
relating to the ESI response from molecular structures using the amino
acids and their derivatives as a reference set. A topological descriptor
related to molecular size (SPAN) was isolated next to a descriptor
related to the atomic composition and structural groups (BIC0). The
validity of the model was checked with a test set of 43 additional
compounds that were unrelated to amino acids. While prediction was
generally good (R2 > 0.9), compounds
containing
halogen atoms or nitro groups gave a lower predicted ESI response.
Collapse
Affiliation(s)
- Jos Hermans
- Analytical Biochemistry, Department of Pharmacy, University of Groningen , Antonius Deusinglaan 1, 9713AV Groningen, The Netherlands
| | - Sara Ongay
- Analytical Biochemistry, Department of Pharmacy, University of Groningen , Antonius Deusinglaan 1, 9713AV Groningen, The Netherlands
| | - Vadym Markov
- Department of Chemical Metrology, Kharkov V. N. Karazin National University , Svoboda Square 4, 61022 Kharkov, Ukraine
| | - Rainer Bischoff
- Analytical Biochemistry, Department of Pharmacy, University of Groningen , Antonius Deusinglaan 1, 9713AV Groningen, The Netherlands
| |
Collapse
|
22
|
Consta S, Sharawy M, Oh MI, Malevanets A. Advances in Modeling the Stability of Noncovalent Complexes in Charged Droplets with Applications in Electrospray Ionization-MS Experiments. Anal Chem 2017; 89:8192-8202. [DOI: 10.1021/acs.analchem.7b01941] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Styliani Consta
- Department
of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
- Department
of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, United Kingdom
| | - Mahmoud Sharawy
- Department
of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Myong In Oh
- Department
of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Anatoly Malevanets
- Department
of Electrical and Computer Engineering, The University of Western Ontario, London, Ontario N6A 5B9, Canada
| |
Collapse
|
23
|
Kim D, Wagner N, Wooding K, Clemmer DE, Russell DH. Ions from Solution to the Gas Phase: A Molecular Dynamics Simulation of the Structural Evolution of Substance P during Desolvation of Charged Nanodroplets Generated by Electrospray Ionization. J Am Chem Soc 2017; 139:2981-2988. [DOI: 10.1021/jacs.6b10731] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Doyong Kim
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Nicole Wagner
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Kerry Wooding
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - David E. Clemmer
- Department
of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - David H. Russell
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| |
Collapse
|
24
|
|
25
|
Wagner ND, Kim D, Russell DH. Increasing Ubiquitin Ion Resistance to Unfolding in the Gas Phase Using Chloride Adduction: Preserving More "Native-Like" Conformations Despite Collisional Activation. Anal Chem 2016; 88:5934-40. [PMID: 27137645 DOI: 10.1021/acs.analchem.6b00871] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Electrospray ionization (ESI) of ubiquitin from acidified (0.1%) aqueous solution produces abundant ubiquitin-chloride adduct ions, [M + nH + xCl]((n - x)+), that upon mild heating react via elimination of neutral HCl. Ion mobility collision cross section (CCS) measurements show that ubiquitin ions retaining chloride adducts exhibit CCS values similar to those of the "native-state" of the protein. Coupled with results from recent molecular dynamics (MD) simulations for the evolution of a salt-containing electrospray droplet, this study provides a more complete picture for how the presence of salts affects the evolution of protein conformers in the final stages of dehydration of the ESI process and within the instrument.
Collapse
Affiliation(s)
- Nicole D Wagner
- Department of Chemistry, Texas A&M University , College Station, Texas 77843, United States
| | - Doyong Kim
- Department of Chemistry, Texas A&M University , College Station, Texas 77843, United States
| | - David H Russell
- Department of Chemistry, Texas A&M University , College Station, Texas 77843, United States
| |
Collapse
|
26
|
Herrmann H, Schaefer T, Tilgner A, Styler SA, Weller C, Teich M, Otto T. Tropospheric aqueous-phase chemistry: kinetics, mechanisms, and its coupling to a changing gas phase. Chem Rev 2015; 115:4259-334. [PMID: 25950643 DOI: 10.1021/cr500447k] [Citation(s) in RCA: 211] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Hartmut Herrmann
- Atmospheric Chemistry Department (ACD), Leibniz Institute for Tropospheric Research (TROPOS), Permoserstraße 15, 04318 Leipzig, Germany
| | - Thomas Schaefer
- Atmospheric Chemistry Department (ACD), Leibniz Institute for Tropospheric Research (TROPOS), Permoserstraße 15, 04318 Leipzig, Germany
| | - Andreas Tilgner
- Atmospheric Chemistry Department (ACD), Leibniz Institute for Tropospheric Research (TROPOS), Permoserstraße 15, 04318 Leipzig, Germany
| | - Sarah A Styler
- Atmospheric Chemistry Department (ACD), Leibniz Institute for Tropospheric Research (TROPOS), Permoserstraße 15, 04318 Leipzig, Germany
| | - Christian Weller
- Atmospheric Chemistry Department (ACD), Leibniz Institute for Tropospheric Research (TROPOS), Permoserstraße 15, 04318 Leipzig, Germany
| | - Monique Teich
- Atmospheric Chemistry Department (ACD), Leibniz Institute for Tropospheric Research (TROPOS), Permoserstraße 15, 04318 Leipzig, Germany
| | - Tobias Otto
- Atmospheric Chemistry Department (ACD), Leibniz Institute for Tropospheric Research (TROPOS), Permoserstraße 15, 04318 Leipzig, Germany
| |
Collapse
|
27
|
Soltani S, Oh MI, Consta S. Effect of solvent on the charging mechanisms of poly(ethylene glycol) in droplets. J Chem Phys 2015; 142:114307. [DOI: 10.1063/1.4914923] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Affiliation(s)
- Sepideh Soltani
- Department of Physics and Astronomy, The University of Western Ontario, London, Ontario N6A 3K7, Canada
| | - Myong In Oh
- Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Styliani Consta
- Department of Physics and Astronomy, The University of Western Ontario, London, Ontario N6A 3K7, Canada
- Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| |
Collapse
|
28
|
Sheriff FA, Consta S. Charge-induced instabilities of droplets containing macromolecular complexes. CAN J CHEM 2015. [DOI: 10.1139/cjc-2014-0299] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Solvated macromolecular complexes are ubiquitous in nature, notably in biological systems containing proteins and nucleic acids. Studies of the interactions within a macromolecular complex and between the complex and the solvent in droplet environments are critical for understanding the stability of macromolecular complexes in electrospray ionization (ESI) and nanofluidic experiments. In this study, two distinct cases of macromolecular complexes in aqueous nanodrops are examined by using molecular dynamics simulations: (i) a pair of sodiated poly(ethylene) glycol (PEG) macroions and (ii) a double-stranded DNA (dsDNA). PEG represents a case in which the surface energy of the aqueous droplet is larger than the solvent–macromolecule energy. Conversely, in a droplet solvating dsDNA, the solvent–macromolecule interaction energy overcomes the solvent interaction energy. We report that charge-induced instabilities previously identified for single macroions also appear in the case of complexes, but with a higher level of complexity. In the case of a pair of PEG macroions, we found that their conformations on the surface of a droplet “sense” each other. The charged PEGs are each released from a droplet at different times through contiguous extrusion or drying-out mechanisms. In the case of the DNA, the charge-induced instability manifests as a spine droplet morphology. Narrow regions of the spines promote break down of the hydrogen bonds that hold the dsDNA together. The dsDNA separates into two single strands as it is increasingly exposed to vacuum. These findings elucidate charge-induced instabilities of macromolecular complexes in droplets, which are critical intermediates in ESI and nanofluidic experiments.
Collapse
Affiliation(s)
- Falana Aziza Sheriff
- Department of Biochemistry, The University of Western Ontario, London, ON N6A 5C1, Canada
| | - Styliani Consta
- Department of Chemistry, The University of Western Ontario, London, Ontario, Canada N6A 5B7
| |
Collapse
|
29
|
Sharawy M, Consta S. Effect of counterions on the charging mechanisms of a macromolecule in aqueous nanodrops. J Chem Phys 2014; 141:104321. [DOI: 10.1063/1.4894847] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Affiliation(s)
- Mahmoud Sharawy
- Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Styliani Consta
- Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
- Department of Physics and Astronomy, The University of Western Ontario, London, Ontario N6A 3K7, Canada
| |
Collapse
|
30
|
Consta S, Malevanets A. Disintegration mechanisms of charged nanodroplets: novel systems for applying methods of activated processes. MOLECULAR SIMULATION 2014. [DOI: 10.1080/08927022.2014.907495] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|