Jodoin DN, Brown A. Photodissociation of HI and DI: Testing models for electronic structure via polarization of atomic photofragments.
J Chem Phys 2005;
123:054301. [PMID:
16108633 DOI:
10.1063/1.1989327]
[Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The photodissociation dynamics of HI and DI are examined using time-dependent wave-packet techniques. The orientation and alignment parameters aQ(K) (p) are determined as a function of photolysis energy for the resulting ground-state I(2P(3/2)) and excited-state I(2P(1/2)) atoms. The aQ(K) (p) parameters describe the coherent and incoherent contributions to the angular momentum distributions from the A 1pi(1), a 3pi(1), and t 3sigma(1) electronic states accessed by perpendicular excitation and the a 3pi(0+) state accessed by a parallel transition. The outcomes of the dynamics based on both shifted ab initio results and three empirical models for the potential-energy curves and transition dipole moments are compared and contrasted. It is demonstrated that experimental measurement of the aQ(K) (p) parameters for the excitation from the vibrational ground state (upsilon=0) would be able to distinguish between the available models for the HI potential-energy curves and transition dipole moments. The differences between the aQ(K) (p) parameters for the excitation from upsilon=0 stand in sharp contrast to the scalar properties, i.e., total cross section and I* branching fraction, which require experimental measurement of photodissociation from excited vibrational states (upsilon>0) to distinguish between the models.
Collapse