1
|
Henriksson A, Neubauer P, Birkholz M. Dielectrophoresis: An Approach to Increase Sensitivity, Reduce Response Time and to Suppress Nonspecific Binding in Biosensors? BIOSENSORS 2022; 12:784. [PMID: 36290922 PMCID: PMC9599301 DOI: 10.3390/bios12100784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/12/2022] [Accepted: 09/20/2022] [Indexed: 11/25/2022]
Abstract
The performance of receptor-based biosensors is often limited by either diffusion of the analyte causing unreasonable long assay times or a lack of specificity limiting the sensitivity due to the noise of nonspecific binding. Alternating current (AC) electrokinetics and its effect on biosensing is an increasing field of research dedicated to address this issue and can improve mass transfer of the analyte by electrothermal effects, electroosmosis, or dielectrophoresis (DEP). Accordingly, several works have shown improved sensitivity and lowered assay times by order of magnitude thanks to the improved mass transfer with these techniques. To realize high sensitivity in real samples with realistic sample matrix avoiding nonspecific binding is critical and the improved mass transfer should ideally be specific to the target analyte. In this paper we cover recent approaches to combine biosensors with DEP, which is the AC kinetic approach with the highest selectivity. We conclude that while associated with many challenges, for several applications the approach could be beneficial, especially if more work is dedicated to minimizing nonspecific bindings, for which DEP offers interesting perspectives.
Collapse
Affiliation(s)
- Anders Henriksson
- Chair of Bioprocess Engineering, Department of Biotechnology, Technische Universität Berlin, Ackerstraße 76, 13355 Berlin, Germany
| | - Peter Neubauer
- Chair of Bioprocess Engineering, Department of Biotechnology, Technische Universität Berlin, Ackerstraße 76, 13355 Berlin, Germany
| | - Mario Birkholz
- IHP—Leibniz-Institut für Innovative Mikroelektronik, Im Technologiepark 25, 15236 Frankfurt (Oder), Germany
| |
Collapse
|
2
|
Odabashyan L, Babajanyan A, Baghdasaryan Z, Kim S, Kim J, Friedman B, Lee JH, Lee K. Real-Time Noninvasive Measurement of Glucose Concentration Using a Modified Hilbert Shaped Microwave Sensor. SENSORS 2019; 19:s19245525. [PMID: 31847275 PMCID: PMC6960736 DOI: 10.3390/s19245525] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 12/08/2019] [Accepted: 12/12/2019] [Indexed: 01/09/2023]
Abstract
We developed a microwave glucose sensor based on the modified first-order Hilbert curve design and measured glucose concentration in aqueous solutions by using a real-time microwave near-field electromagnetic interaction technique. We observed S21 transmission parameters of the sensor at resonant frequencies depend on the glucose concentration. We could determine the glucose concentration in the 0-250 mg/dL concentration range at an operating frequency of near 6 GHz. The measured minimum detectable signal was 0.0156 dB/(mg/dL) and the measured minimum detectable concentration was 1.92 mg/dL. The simulation result for the minimum detectable signal and the minimum detectable concentration was 0.0182 dB/(mg/dL) and 1.65 mg/dL, respectively. The temperature instability of the sensor for human glycemia in situ measurement range (27-34 °C for fingers and 36-40 °C for body temperature ranges) can be improved by the integration of the temperature sensor in the microwave stripline platform and the obtained data can be corrected during signal processing. The microwave signal-temperature dependence is almost linear with the same slope for a glucose concentration range of 50-150 mg/dL. The temperature correlation coefficient is 0.05 dB/°C and 0.15 dB/°C in 27-34 °C and 36-40 °C temperature range, respectively. The presented system has a cheap, easy fabrication process and has great potential for non-invasive glucose monitoring.
Collapse
Affiliation(s)
- Levon Odabashyan
- Department of Radiophysics, Yerevan State University, Yerevan 0025, Armenia; (L.O.); (A.B.); (Z.B.)
| | - Arsen Babajanyan
- Department of Radiophysics, Yerevan State University, Yerevan 0025, Armenia; (L.O.); (A.B.); (Z.B.)
| | - Zhirayr Baghdasaryan
- Department of Radiophysics, Yerevan State University, Yerevan 0025, Armenia; (L.O.); (A.B.); (Z.B.)
- Department of Physics, Sogang University, Seoul 121-742, Korea; (S.K.); (J.K.)
| | - Seungwan Kim
- Department of Physics, Sogang University, Seoul 121-742, Korea; (S.K.); (J.K.)
| | - Jongchel Kim
- Department of Physics, Sogang University, Seoul 121-742, Korea; (S.K.); (J.K.)
| | - Barry Friedman
- Department of Physics, Sam Houston State University, Huntsville, TX 77341, USA;
| | - Jung-Ha Lee
- Department of Life Science, Sogang University, Seoul 121-742, Korea;
| | - Kiejin Lee
- Department of Physics, Sogang University, Seoul 121-742, Korea; (S.K.); (J.K.)
- Correspondence: ; Tel.: +82-270-584-29
| |
Collapse
|
3
|
Prolonged Corrosion Stability of a Microchip Sensor Implant during In Vivo Exposure. BIOSENSORS 2018; 8:bios8010013. [PMID: 29389853 PMCID: PMC5872061 DOI: 10.3390/bios8010013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 01/15/2018] [Accepted: 01/29/2018] [Indexed: 11/17/2022]
Abstract
A microelectronic biosensor was subjected to in vivo exposure by implanting it in the vicinity of m. trapezii (Trapezius muscle) from cattle. The implant is intended for the continuous monitoring of glucose levels, and the study aimed at evaluating the biostability of exposed semiconductor surfaces. The sensor chip was a microelectromechanical system (MEMS) prepared using 0.25 µm complementary metal–oxide–semiconductor CMOS/BiCMOS technology. Sensing is based on the principle of affinity viscometry with a sensoric assay, which is separated by a semipermeable membrane from the tissue. Outer dimensions of the otherwise hermetically sealed biosensor system were 39 × 49 × 16 mm. The test system was implanted into cattle in a subcutaneous position without running it. After 17 months, the device was explanted and analyzed by comparing it with unexposed chips and systems. Investigations focused on the MEMS chip using SEM, TEM, and elemental analysis by EDX mapping. The sensor chip turned out to be uncorroded and no diminishing of the topmost passivation layer could be determined, which contrasts remarkably with previous results on CMOS biosensors. The negligible corrosive attack is understood to be a side effect of the semipermeable membrane separating the assay from the tissue. It is concluded that the separation has enabled a prolonged biostability of the chip, which will be of relevance for biosensor implants in general.
Collapse
|
4
|
Coffel J, Nuxoll E. BioMEMS for biosensors and closed-loop drug delivery. Int J Pharm 2018; 544:335-349. [PMID: 29378239 DOI: 10.1016/j.ijpharm.2018.01.030] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2017] [Revised: 01/10/2018] [Accepted: 01/14/2018] [Indexed: 12/14/2022]
Abstract
The efficacy of pharmaceutical treatments can be greatly enhanced by physiological feedback from the patient using biosensors, though this is often invasive or infeasible. By adapting microelectromechanical systems (MEMS) technology to miniaturize such biosensors, previously inaccessible signals can be obtained, often from inside the patient. This is enabled by the device's extremely small footprint which minimizes both power consumption and implantation trauma, as well as the transport time for chemical analytes, in turn decreasing the sensor's response time. MEMS fabrication also allows mass production which can be easily scaled without sacrificing its high reproducibility and reliability, and allows seamless integration with control circuitry and telemetry which is already produced using the same materials and fabrication steps. By integrating these systems with drug delivery devices, many of which are also MEMS-based, closed loop drug delivery can be achieved. This paper surveys the types of signal transduction devices available for biosensing-primarily electrochemical, optical, and mechanical-looking at their implementation via MEMS technology. The impact of MEMS technology on the challenges of biosensor development, particularly safety, power consumption, degradation, fouling, and foreign body response, are also discussed.
Collapse
Affiliation(s)
- Joel Coffel
- Department of Chemical and Biochemical Engineering, 4133 Seamans Center for the Engineering Arts & Sciences, University of Iowa, Iowa City, IA 52242, USA
| | - Eric Nuxoll
- Department of Chemical and Biochemical Engineering, 4133 Seamans Center for the Engineering Arts & Sciences, University of Iowa, Iowa City, IA 52242, USA.
| |
Collapse
|
5
|
Theuer L, Lehmann M, Junne S, Neubauer P, Birkholz M. Micro-Electromechanical Affinity Sensor for the Monitoring of Glucose in Bioprocess Media. Int J Mol Sci 2017; 18:E1235. [PMID: 28594350 PMCID: PMC5486058 DOI: 10.3390/ijms18061235] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 04/23/2017] [Accepted: 05/31/2017] [Indexed: 12/03/2022] Open
Abstract
An affinity-viscometry-based micro-sensor probe for continuous glucose monitoring was investigated with respect to its suitability for bioprocesses. The sensor operates with glucose and dextran competing as binding partner for concanavalin A, while the viscosity of the assay scales with glucose concentration. Changes in viscosity are determined with a micro-electromechanical system (MEMS) in the measurement cavity of the sensor probe. The study aimed to elucidate the interactions between the assay and a typical phosphate buffered bacterial cultivation medium. It turned out that contact with the medium resulted in a significant long-lasting drift of the assay's viscosity at zero glucose concentration. Adding glucose to the medium lowers the drift by a factor of eight. The cglc values measured off-line with the glucose sensor for monitoring of a bacterial cultivation were similar to the measurements with an enzymatic assay with a difference of less than ±0.15 g·L-1. We propose that lectin agglomeration, the electro-viscous effect, and constitutional changes of concanavalin A due to exchanges of the incorporated metal ions may account for the observed viscosity increase. The study has demonstrated the potential of the MEMS sensor to determine sensitive viscosity changes within very small sample volumes, which could be of interest for various biotechnological applications.
Collapse
Affiliation(s)
- Lorenz Theuer
- Chair of Bioprocess Engineering, Department of Biotechnology, Technical University Berlin, ACK24, Ackerstr. 76, 13355 Berlin, Germany.
| | - Micha Lehmann
- Chair of Bioprocess Engineering, Department of Biotechnology, Technical University Berlin, ACK24, Ackerstr. 76, 13355 Berlin, Germany.
| | - Stefan Junne
- Chair of Bioprocess Engineering, Department of Biotechnology, Technical University Berlin, ACK24, Ackerstr. 76, 13355 Berlin, Germany.
| | - Peter Neubauer
- Chair of Bioprocess Engineering, Department of Biotechnology, Technical University Berlin, ACK24, Ackerstr. 76, 13355 Berlin, Germany.
| | - Mario Birkholz
- IHP, Im Technologiepark 25, 15236 Frankfurt (Oder), Germany.
| |
Collapse
|
6
|
Birkholz M, Glogener P, Glös F, Basmer T, Theuer L. Continuously Operating Biosensor and Its Integration into a Hermetically Sealed Medical Implant. MICROMACHINES 2016; 7:mi7100183. [PMID: 30404356 PMCID: PMC6190112 DOI: 10.3390/mi7100183] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 09/23/2016] [Accepted: 09/28/2016] [Indexed: 01/17/2023]
Abstract
An integration concept for an implantable biosensor for the continuous monitoring of blood sugar levels is presented. The system architecture is based on technical modules used in cardiovascular implants in order to minimize legal certification efforts for its perspective usage in medical applications. The sensor chip operates via the principle of affinity viscometry, which is realized by a fully embedded biomedical microelectromechanical systems (BioMEMS) prepared in 0.25-µm complementary metal–oxide–semiconductor (CMOS)/BiCMOS technology. Communication with a base station is established in the 402–405 MHz band used for medical implant communication services (MICS). The implant shall operate within the interstitial tissue, and the hermetical sealing of the electronic system against interaction with the body fluid is established using titanium housing. Only the sensor chip and the antenna are encapsulated in an epoxy header closely connected to the metallic housing. The study demonstrates that biosensor implants for the sensing of low-molecular-weight metabolites in the interstitial may successfully rely on components already established in cardiovascular implantology.
Collapse
Affiliation(s)
- Mario Birkholz
- IHP, Im Technologiepark 25, 15236 Frankfurt (Oder), Germany.
| | - Paul Glogener
- IHP, Im Technologiepark 25, 15236 Frankfurt (Oder), Germany.
| | - Franziska Glös
- IHP, Im Technologiepark 25, 15236 Frankfurt (Oder), Germany.
| | - Thomas Basmer
- IHP, Im Technologiepark 25, 15236 Frankfurt (Oder), Germany.
| | - Lorenz Theuer
- Department of Biotechnology, Technical University Berlin, ACK24, Ackerstr. 76, 13355 Berlin, Germany.
- Acreo Swedish ICT AB, Box 787, SE-60117 Norrköping, Sweden.
| |
Collapse
|
7
|
Birkholz M, Mai A, Wenger C, Meliani C, Scholz R. Technology modules from micro- and nano-electronics for the life sciences. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2015; 8:355-77. [PMID: 26391194 DOI: 10.1002/wnan.1367] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Revised: 07/07/2015] [Accepted: 07/22/2015] [Indexed: 01/08/2023]
Abstract
The capabilities of modern semiconductor manufacturing offer remarkable possibilities to be applied in life science research as well as for its commercialization. In this review, the technology modules available in micro- and nano-electronics are exemplarily presented for the case of 250 and 130 nm technology nodes. Preparation procedures and the different transistor types as available in complementary metal-oxide-silicon devices (CMOS) and BipolarCMOS (BiCMOS) technologies are introduced as key elements of comprehensive chip architectures. Techniques for circuit design and the elements of completely integrated bioelectronics systems are outlined. The possibility for life scientists to make use of these technology modules for their research and development projects via so-called multi-project wafer services is emphasized. Various examples from diverse fields such as (1) immobilization of biomolecules and cells on semiconductor surfaces, (2) biosensors operating by different principles such as affinity viscosimetry, impedance spectroscopy, and dielectrophoresis, (3) complete systems for human body implants and monitors for bioreactors, and (4) the combination of microelectronics with microfluidics either by chip-in-polymer integration as well as Si-based microfluidics are demonstrated from joint developments with partners from biotechnology and medicine. WIREs Nanomed Nanobiotechnol 2016, 8:355-377. doi: 10.1002/wnan.1367 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- M Birkholz
- Innovations for High Performance Microelectronics, Frankfurt (Oder), Germany
| | - A Mai
- Innovations for High Performance Microelectronics, Frankfurt (Oder), Germany
| | - C Wenger
- Innovations for High Performance Microelectronics, Frankfurt (Oder), Germany
| | - C Meliani
- Innovations for High Performance Microelectronics, Frankfurt (Oder), Germany
| | - R Scholz
- Innovations for High Performance Microelectronics, Frankfurt (Oder), Germany
| |
Collapse
|