• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (4604935)   Today's Articles (5250)   Subscriber (49371)
For: Liu W, Lindgren I. Going beyond “no-pair relativistic quantum chemistry”. J Chem Phys 2013;139:014108. [DOI: 10.1063/1.4811795] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]  Open
Number Cited by Other Article(s)
1
Liu W. Comment on "Theoretical examination of QED Hamiltonian in relativistic molecular orbital theory" [J. Chem. Phys. 159, 054105 (2023)]. J Chem Phys 2024;160:187101. [PMID: 38739035 DOI: 10.1063/5.0174011] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 01/02/2024] [Indexed: 05/14/2024]  Open
2
Liu W. Unified construction of relativistic Hamiltonians. J Chem Phys 2024;160:084111. [PMID: 38415836 DOI: 10.1063/5.0188794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 02/09/2024] [Indexed: 02/29/2024]  Open
3
Liao C, Lambros E, Sun Q, Dyall KG, Li X. Exploring Locality in Molecular Dirac-Coulomb-Breit Calculations: A Perspective. J Chem Theory Comput 2023;19:9009-9017. [PMID: 38090757 DOI: 10.1021/acs.jctc.3c01012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
4
Audinet T, Toulouse J. Effective quantum electrodynamics: One-dimensional model of the relativistic hydrogen-like atom. J Chem Phys 2023;158:244108. [PMID: 37352423 DOI: 10.1063/5.0152956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 06/06/2023] [Indexed: 06/25/2023]  Open
5
Hoyer CE, Lu L, Hu H, Shumilov KD, Sun S, Knecht S, Li X. Correlated Dirac-Coulomb-Breit multiconfigurational self-consistent-field methods. J Chem Phys 2023;158:044101. [PMID: 36725503 DOI: 10.1063/5.0133741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]  Open
6
Liu W. Perspective: Simultaneous treatment of relativity, correlation, and QED. WIRES COMPUTATIONAL MOLECULAR SCIENCE 2022. [DOI: 10.1002/wcms.1652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
7
Sun S, Ehrman JN, Sun Q, Li X. Efficient Evaluation of the Breit Operator in the Pauli Spinor Basis. J Chem Phys 2022;157:064112. [DOI: 10.1063/5.0098828] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]  Open
8
Zhang N, Xiao Y, Liu W. SOiCI and iCISO: combining iterative configuration interaction with spin-orbit coupling in two ways. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2022;34:224007. [PMID: 35287124 DOI: 10.1088/1361-648x/ac5db4] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 03/14/2022] [Indexed: 06/14/2023]
9
Ferenc D, Jeszenszki P, Mátyus E. On the Breit interaction in an explicitly correlated variational Dirac–Coulomb framework. J Chem Phys 2022;156:084110. [DOI: 10.1063/5.0075097] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]  Open
10
Jeszenszki P, Ferenc D, Mátyus E. Variational Dirac–Coulomb explicitly correlated computations for atoms and molecules. J Chem Phys 2022;156:084111. [DOI: 10.1063/5.0075096] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]  Open
11
Song Y, Guo Y, Lei Y, Zhang N, Liu W. The Static-Dynamic-Static Family of Methods for Strongly Correlated Electrons: Methodology and Benchmarking. Top Curr Chem (Cham) 2021;379:43. [PMID: 34724123 DOI: 10.1007/s41061-021-00351-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 09/15/2021] [Indexed: 11/28/2022]
12
Paquier J, Giner E, Toulouse J. Relativistic short-range exchange energy functionals beyond the local-density approximation. J Chem Phys 2020;152:214106. [DOI: 10.1063/5.0004926] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]  Open
13
Liu W. Essentials of relativistic quantum chemistry. J Chem Phys 2020;152:180901. [DOI: 10.1063/5.0008432] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]  Open
14
Zhang Y, Suo B, Wang Z, Zhang N, Li Z, Lei Y, Zou W, Gao J, Peng D, Pu Z, Xiao Y, Sun Q, Wang F, Ma Y, Wang X, Guo Y, Liu W. BDF: A relativistic electronic structure program package. J Chem Phys 2020;152:064113. [DOI: 10.1063/1.5143173] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]  Open
15
De Santis M, Rampino S, Quiney HM, Belpassi L, Storchi L. Charge-Displacement Analysis via Natural Orbitals for Chemical Valence in the Four-Component Relativistic Framework. J Chem Theory Comput 2018;14:1286-1296. [DOI: 10.1021/acs.jctc.7b01077] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
16
Liu W, Xiao Y. Relativistic time-dependent density functional theories. Chem Soc Rev 2018;47:4481-4509. [DOI: 10.1039/c8cs00175h] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
17
Sasmal S, Talukdar K, Nayak MK, Vaval N, Pal S. Electron–nucleus scalar–pseudoscalar interaction in PbF: Z-vector study in the relativistic coupled-cluster framework. Mol Phys 2017. [DOI: 10.1080/00268976.2017.1332396] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
18
Niskanen J, Jänkälä K, Huttula M, Föhlisch A. QED effects in 1s and 2s single and double ionization potentials of the noble gases. J Chem Phys 2017;146:144312. [PMID: 28411594 DOI: 10.1063/1.4979991] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]  Open
19
Pašteka LF, Eliav E, Borschevsky A, Kaldor U, Schwerdtfeger P. Relativistic Coupled Cluster Calculations with Variational Quantum Electrodynamics Resolve the Discrepancy between Experiment and Theory Concerning the Electron Affinity and Ionization Potential of Gold. PHYSICAL REVIEW LETTERS 2017;118:023002. [PMID: 28128629 DOI: 10.1103/physrevlett.118.023002] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2016] [Indexed: 06/06/2023]
20
Almoukhalalati A, Knecht S, Jensen HJA, Dyall KG, Saue T. Electron correlation within the relativistic no-pair approximation. J Chem Phys 2016;145:074104. [DOI: 10.1063/1.4959452] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]  Open
21
Liu W, Lindgren I. Erratum: “Going beyond ‘no-pair relativistic quantum chemistry’” [J. Chem. Phys. 139, 014108 (2013)]. J Chem Phys 2016;144:049901. [DOI: 10.1063/1.4940777] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]  Open
22
Liu W. Big picture of relativistic molecular quantum mechanics. Natl Sci Rev 2015. [DOI: 10.1093/nsr/nwv081] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]  Open
23
Bhattacharyya S, Opalka D, Poluyanov LV, Domcke W. The (E + A) × (e + a) Jahn–Teller and Pseudo-Jahn–Teller Hamiltonian Including Spin–Orbit Coupling for Trigonal Systems. J Phys Chem A 2014;118:11962-70. [DOI: 10.1021/jp506793z] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
24
Li Z, Xiao Y, Liu W. On the spin separation of algebraic two-component relativistic Hamiltonians: Molecular properties. J Chem Phys 2014;141:054111. [DOI: 10.1063/1.4891567] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]  Open
25
Liu Y, Wu J. Structure and thermodynamic properties of relativistic electron gases. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2014;90:012141. [PMID: 25122285 DOI: 10.1103/physreve.90.012141] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Indexed: 06/03/2023]
26
SEINO J, NAKAI H. Large-Scale and Highly Accurate Relativistic Quantum-Chemical Scheme:toward Establishment ofTheoretical Foundation for Element Strategy. JOURNAL OF COMPUTER CHEMISTRY-JAPAN 2014. [DOI: 10.2477/jccj.2013-0010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
27
Tang LY, Tang YB, Shi TY, Mitroy J. Solution of the Dirac Coulomb equation for helium-like ions in the Poet-Temkin model. J Chem Phys 2013;139:134112. [PMID: 24116557 DOI: 10.1063/1.4823486] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]  Open
28
Analytical Nuclear Gradients of Density-Fitted Dirac–Fock Theory with a 2-Spinor Basis. J Chem Theory Comput 2013;9:4300-3. [DOI: 10.1021/ct400719d] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
PrevPage 1 of 1 1Next
© 2004-2024 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA