1
|
Ellerbrock R, Johnson KG, Seritan S, Hoppe H, Zhang JH, Lenzen T, Weike T, Manthe U, Martínez TJ. QuTree: A tree tensor network package. J Chem Phys 2024; 160:112501. [PMID: 38497471 DOI: 10.1063/5.0180233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 02/20/2024] [Indexed: 03/19/2024] Open
Abstract
We present QuTree, a C++ library for tree tensor network approaches. QuTree provides class structures for tensors, tensor trees, and related linear algebra functions that facilitate the fast development of tree tensor network approaches such as the multilayer multiconfigurational time-dependent Hartree approach or the density matrix renormalization group approach and its various extensions. We investigate the efficiency of relevant tensor and tensor network operations and show that the overhead for managing the network structure is negligible, even in cases with a million leaves and small tensors. QuTree focuses on providing simple, high-level routines while retaining easy access to the backend to facilitate novel developments. We demonstrate the capabilities of the package by computing the eigenstates of coupled harmonic oscillator Hamiltonians and performing random circuit simulations on a virtual quantum computer.
Collapse
Affiliation(s)
- Roman Ellerbrock
- Department of Chemistry and The PULSE Institute, Stanford University, Stanford, California 94305, USA
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA
- Bielefeld University, Universitätsstraße 25, 33615 Bielefeld, Germany
| | - K Grace Johnson
- Department of Chemistry and The PULSE Institute, Stanford University, Stanford, California 94305, USA
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA
| | - Stefan Seritan
- Department of Chemistry and The PULSE Institute, Stanford University, Stanford, California 94305, USA
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA
| | - Hannes Hoppe
- Bielefeld University, Universitätsstraße 25, 33615 Bielefeld, Germany
| | - J H Zhang
- Department of Chemistry and The PULSE Institute, Stanford University, Stanford, California 94305, USA
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA
| | - Tim Lenzen
- Bielefeld University, Universitätsstraße 25, 33615 Bielefeld, Germany
| | - Thomas Weike
- Bielefeld University, Universitätsstraße 25, 33615 Bielefeld, Germany
| | - Uwe Manthe
- Bielefeld University, Universitätsstraße 25, 33615 Bielefeld, Germany
| | - Todd J Martínez
- Department of Chemistry and The PULSE Institute, Stanford University, Stanford, California 94305, USA
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA
| |
Collapse
|
2
|
Liu S, Chen J, Zhang X, Zhang DH. Feshbach resonances in the F + CHD 3 → HF + CD 3 reaction. Chem Sci 2023; 14:7973-7979. [PMID: 37502322 PMCID: PMC10370578 DOI: 10.1039/d3sc02629a] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 06/23/2023] [Indexed: 07/29/2023] Open
Abstract
The signature of dynamics resonances was observed in the benchmark polyatomic F + CH4/CHD3 reactions more than a decade ago; however, the dynamical origin of the resonances is still not clear due to the lack of reliable quantum dynamics studies on accurate potential energy surfaces. Here, we report a six-dimensional state-to-state quantum dynamics study on the F + CHD3 → HF + CD3 reaction on a highly accurate potential energy surface. Pronounced oscillatory structures are observed in the total and product rovibrational-state-resolved reaction probabilities. Detailed analysis reveals that these oscillating features originate from the Feshbach resonance states trapped in the peculiar well on the HF(v' = 3)-CD3 vibrationally adiabatic potential caused by HF chemical bond softening. Most of the resonance structures on the reaction probabilities are washed out in the well converged integral cross sections (ICS), leaving only one distinct peak at low collision energy. The calculated HF vibrational state-resolved ICS for CD3(v = 0) agrees quantitatively with the experimental results, especially the branching ratio, but the theoretical CD3 umbrella vibration state distribution is found to be much hotter than the experiment.
Collapse
Affiliation(s)
- Shu Liu
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian Liaoning 116023 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Jun Chen
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou Fujian 350002 China
| | - Xiaoren Zhang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian Liaoning 116023 China
| | - Dong H Zhang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian Liaoning 116023 China
- University of Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
3
|
Ellerbrock R, Manthe U. A non-hierarchical correlation discrete variable representation. J Chem Phys 2022; 156:134107. [PMID: 35395891 DOI: 10.1063/5.0088509] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The correlation discrete variable representation (CDVR) facilitates (multi-layer) multi-configurational time-dependent Hartree (MCTDH) calculations with general potentials. It employs a layered grid representation to efficiently evaluate all potential matrix elements appearing in the MCTDH equations of motion. The original CDVR approach and its multi-layer extension show a hierarchical structure: the size of the grids employed at the different layers increases when moving from an upper layer to a lower one. In this work, a non-hierarchical CDVR approach, which uses identically structured quadratures at all layers of the MCTDH wavefunction representation, is introduced. The non-hierarchical CDVR approach crucially reduces the number of grid points required, compared to the hierarchical CDVR, shows superior scaling properties, and yields identical results for all three representations showing the same topology. Numerical tests studying the photodissociation of NOCl and the vibrational states of CH3 demonstrate the accuracy of the non-hierarchical CDVR approach.
Collapse
Affiliation(s)
- Roman Ellerbrock
- Department of Chemistry and The PULSE Institute, Stanford University, Stanford, California 94305, USA
| | - Uwe Manthe
- Theoretische Chemie, Fakultät für Chemie, Universität Bielefeld, Universitätsstr. 25, D-33615 Bielefeld, Germany
| |
Collapse
|
4
|
Zhao B, Manthe U. Direct product-type grid representations for angular coordinates in extended space and their application in the MCTDH approach. J Chem Phys 2021; 154:104115. [PMID: 33722051 DOI: 10.1063/5.0045054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Multi-configurational time-dependent Hartree (MCTDH) calculations using time-dependent grid representations can be used to accurately simulate high-dimensional quantum dynamics on general ab initio potential energy surfaces. Employing the correlation discrete variable representation, sets of direct product type grids are employed in the calculation of the required potential energy matrix elements. This direct product structure can be a problem if the coordinate system includes polar and azimuthal angles that result in singularities in the kinetic energy operator. In the present work, a new direct product-type discrete variable representation (DVR) for arbitrary sets of polar and azimuthal angles is introduced. It employs an extended coordinate space where the range of the polar angles is taken to be [-π, π]. The resulting extended space DVR resolves problems caused by the singularities in the kinetic energy operator without generating a very large spectral width. MCTDH calculations studying the F·CH4 complex are used to investigate important properties of the new scheme. The scheme is found to allow for more efficient integration of the equations of motion compared to the previously employed cot-DVR approach [G. Schiffel and U. Manthe, Chem. Phys. 374, 118 (2010)] and decreases the required central processing unit times by about an order of magnitude.
Collapse
Affiliation(s)
- Bin Zhao
- Theoretische Chemie, Fakultät für Chemie, Universität Bielefeld, Universitätsstr. 25, D-33615 Bielefeld, Germany
| | - Uwe Manthe
- Theoretische Chemie, Fakultät für Chemie, Universität Bielefeld, Universitätsstr. 25, D-33615 Bielefeld, Germany
| |
Collapse
|
5
|
Abstract
Scattering resonance is a fascinating phenomenon which manifests as a peak or a dip in an observable as a function of collisional energy (Ec). Its occurrence requires a potential well to support the resonance states. In this regard, reactive resonance is unusual in that it can exist in a reaction with unbound Born-Oppenheimer potential energy surface, on which the quasi-bound states are dynamically trapped-meaning that some energy is temporarily tied to the other degrees of freedom than the reaction coordinate. The concept of vibrational adiabaticity has been the cornerstone in understanding this phenomenon, for which the vibrationally adiabatic well depth is of primary concern. Recent studies on the F + CH3D reaction have accumulated compelling evidence for a dominant resonance-mediated pathway at low Ec as well as for a rainbow feature in pair-correlated angular distribution at higher Ec. Here, we report an in-depth study to not only substantiate both claims but also, more importantly, make the first attempt to quantify the vibrationally adiabatic well depth directly from the observed rainbow structure and then compare with the theoretical prediction.
Collapse
Affiliation(s)
- Huilin Pan
- Institute of Atomic and Molecular Sciences (IAMS), Academia Sinica, Taipei 10617, Taiwan
- Southern University of Science and Technology, Shenzhen 518055, P. R. China
| | - Shu Liu
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, CAS, Dalian 116023, P. R. China
| | - Dong H Zhang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, CAS, Dalian 116023, P. R. China
| | - Kopin Liu
- Institute of Atomic and Molecular Sciences (IAMS), Academia Sinica, Taipei 10617, Taiwan
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, CAS, Dalian 116023, P. R. China
- Aerosol Science Research Center, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
| |
Collapse
|
6
|
Li J, Zhao B, Xie D, Guo H. Advances and New Challenges to Bimolecular Reaction Dynamics Theory. J Phys Chem Lett 2020; 11:8844-8860. [PMID: 32970441 DOI: 10.1021/acs.jpclett.0c02501] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Dynamics of bimolecular reactions in the gas phase are of foundational importance in combustion, atmospheric chemistry, interstellar chemistry, and plasma chemistry. These collision-induced chemical transformations are a sensitive probe of the underlying potential energy surface(s). Despite tremendous progress in past decades, our understanding is still not complete. In this Perspective, we survey the recent advances in theoretical characterization of bimolecular reaction dynamics, stimulated by new experimental observations, and identify key new challenges.
Collapse
Affiliation(s)
- Jun Li
- School of Chemistry and Chemical Engineering & Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing 401331, China
| | - Bin Zhao
- Theoretische Chemie, Fakultät für Chemie, Universität Bielefeld, Universitätsstraße 25, D-33615 Bielefeld, Germany
| | - Daiqian Xie
- Institute of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Hua Guo
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131, United States
| |
Collapse
|
7
|
Zhao B, Manthe U. Non-adiabatic transitions in the reaction of fluorine with methane. J Chem Phys 2020; 152:231102. [DOI: 10.1063/5.0013852] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Bin Zhao
- Theoretische Chemie, Fakultät für Chemie, Universität Bielefeld, Universitätsstr. 25, D-33615 Bielefeld, Germany
| | - Uwe Manthe
- Theoretische Chemie, Fakultät für Chemie, Universität Bielefeld, Universitätsstr. 25, D-33615 Bielefeld, Germany
| |
Collapse
|
8
|
Guan Y, Yarkony DR. Accurate Neural Network Representation of the Ab Initio Determined Spin-Orbit Interaction in the Diabatic Representation Including the Effects of Conical Intersections. J Phys Chem Lett 2020; 11:1848-1858. [PMID: 32062966 DOI: 10.1021/acs.jpclett.0c00074] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
A method for fitting ab initio determined spin-orbit coupling interactions, in the Breit-Pauli approximation, based on quasidiabatic representations using neural network fits is reported. The algorithm generalizes our recently reported neural network approach for representing the dipole interaction. The S0, S1, and T1 states of formaldehyde are used as an example. First, the two singlet states S0 and S1 are diabatized with a modified Boys Localization diabatization method. Second, the spin-orbit coupling between singlet and triplet states is transformed to the diabatic representation. This removes the discontinuities in the adiabatic representation. The diabatized spin-orbit couplings are then fit with smooth neural network functions. The analytic representation of spin-orbit coupling interactions in a diabatic basis by neural networks will make accurate full-dimensional quantum dynamical treatment of both internal conversion and intersystem crossing possible, which will help us to gain better understanding of both processes.
Collapse
Affiliation(s)
- Yafu Guan
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - David R Yarkony
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| |
Collapse
|
9
|
Czakó G, Győri T, Olasz B, Papp D, Szabó I, Tajti V, Tasi DA. Benchmark ab initio and dynamical characterization of the stationary points of reactive atom + alkane and SN2 potential energy surfaces. Phys Chem Chem Phys 2020; 22:4298-4312. [DOI: 10.1039/c9cp04944d] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We review composite ab initio and dynamical methods and their applications to characterize stationary points of atom/ion + molecule reactions.
Collapse
Affiliation(s)
- Gábor Czakó
- MTA-SZTE Lendület Computational Reaction Dynamics Research Group
- Interdisciplinary Excellence Centre and Department of Physical Chemistry and Materials Science
- Institute of Chemistry
- University of Szeged
- Szeged H-6720
| | - Tibor Győri
- MTA-SZTE Lendület Computational Reaction Dynamics Research Group
- Interdisciplinary Excellence Centre and Department of Physical Chemistry and Materials Science
- Institute of Chemistry
- University of Szeged
- Szeged H-6720
| | - Balázs Olasz
- MTA-SZTE Lendület Computational Reaction Dynamics Research Group
- Interdisciplinary Excellence Centre and Department of Physical Chemistry and Materials Science
- Institute of Chemistry
- University of Szeged
- Szeged H-6720
| | - Dóra Papp
- MTA-SZTE Lendület Computational Reaction Dynamics Research Group
- Interdisciplinary Excellence Centre and Department of Physical Chemistry and Materials Science
- Institute of Chemistry
- University of Szeged
- Szeged H-6720
| | - István Szabó
- MTA-SZTE Lendület Computational Reaction Dynamics Research Group
- Interdisciplinary Excellence Centre and Department of Physical Chemistry and Materials Science
- Institute of Chemistry
- University of Szeged
- Szeged H-6720
| | - Viktor Tajti
- MTA-SZTE Lendület Computational Reaction Dynamics Research Group
- Interdisciplinary Excellence Centre and Department of Physical Chemistry and Materials Science
- Institute of Chemistry
- University of Szeged
- Szeged H-6720
| | - Domonkos A. Tasi
- MTA-SZTE Lendület Computational Reaction Dynamics Research Group
- Interdisciplinary Excellence Centre and Department of Physical Chemistry and Materials Science
- Institute of Chemistry
- University of Szeged
- Szeged H-6720
| |
Collapse
|
10
|
Schäpers D, Manthe U. Vibronic coupling in the F·CH4 prereactive complex. J Chem Phys 2019; 151:104106. [DOI: 10.1063/1.5110246] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Daniela Schäpers
- Theoretische Chemie, Fakultät für Chemie, Universität Bielefeld, Universitätsstr. 25, D-33615 Bielefeld, Germany
| | - Uwe Manthe
- Theoretische Chemie, Fakultät für Chemie, Universität Bielefeld, Universitätsstr. 25, D-33615 Bielefeld, Germany
| |
Collapse
|
11
|
Ellerbrock R, Manthe U, Palma J. A Quasi-Classical Evaluation of the J-Shifting Approximation for the Reactive Cross Sections of F + CHD 3 and F + CH 4. J Phys Chem A 2019; 123:7237-7245. [PMID: 31361132 DOI: 10.1021/acs.jpca.9b06060] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We evaluated the accuracy of the J-shifting approximation to estimate reactant state-selected cross sections for the F+CH4 → HF+CH3 and F+CHD3 → HF+CD3/DF+CHD2 reactions. In particular, we analyzed how the rotational state of methane influences the quality of the approximation. The systems were considered in full dimensionality. Since full-quantum scattering calculations are still unfeasible for these reactions, we employed quasi-classical trajectories (QCT) to calculate the cross sections. The characteristics of the Born-Oppenheimer potential energy surface of these reactions pose a great challenge to the assumptions of the J-shifting approach. In spite of this, we found that it performs well for both reactions if the methane molecule is in the rotational ground state. However, when methane is rotationally excited, the approach affords good results for the F+CH4 system but clearly fails for F+CHD3. The reasons for this failure will be discussed, and a simple procedure to recover good estimators for the cross sections from J = 0 calculations will be introduced.
Collapse
Affiliation(s)
- Roman Ellerbrock
- Theoretische Chemie, Fakultät für Chemie , Universität Bielefeld , Universitätsstr. 25 , D-33615 Bielefeld , Germany
| | - Uwe Manthe
- Theoretische Chemie, Fakultät für Chemie , Universität Bielefeld , Universitätsstr. 25 , D-33615 Bielefeld , Germany
| | - Juliana Palma
- Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Sáenz Peña 352, Bernal B1876BXD , Consejo Nacional de Investigaciones Científicas y Técnicas , Buenos Aires , Argentina
| |
Collapse
|
12
|
Yang CH, Hu LL, Liu K. Imaging pair-correlated reaction cross sections in F + CH 3D(ν b = 0, 1) → CH 2D(ν 4 = 1) + HF(ν). Phys Chem Chem Phys 2019; 21:13934-13942. [PMID: 29989118 DOI: 10.1039/c8cp03443e] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The title reactions were studied in a crossed-beam experiment at collisional energies (Ec) from 0.5 to 4.7 kcal mol-1. The νb (ν4) vibrational mode denotes the bending (umbrella) motion of the CH3D reactant (CH2D product). Using a time-sliced, velocity-map imaging technique, we extracted the state-specific, pair-correlated integral and differential cross sections. As with other isotopically analogous ground-state reactions, an inverted vibrational population of the HF coproduct was observed. Both the step-like excitation function near the threshold and the oscillatory forward-backward peakings in the Ec-evolution of the two dominant pair-correlated angular distributions at lower Ec suggest a resonance-mediated, time-delay mechanism. As Ec increases, the angular distribution of the HF(ν = 2) product evolves into a smooth and broad swath in the backward hemisphere, indicative of a direct rebound mechanism. One quantum excitation of the bending modes of CH3D(νb = 1) promotes the reaction rate by two- to three-fold up to Ec = 2.1 kcal mol-1. Broadly speaking, all major findings are qualitatively in line with previous results in the reactions of the F atom with other isotopologues. However, the rainbow feature recently observed in the CH2D(00) + HF(ν = 3) product channel is entirely absent. A possible rationale is put forward, which reinforces the previous reactive rainbow conjecture and calls for future theoretical investigations.
Collapse
Affiliation(s)
- Chung-Hsin Yang
- Institute of Atomic and Molecular Sciences (IAMS), Academia Sinica, Taipei, 10617, Taiwan.
| | | | | |
Collapse
|
13
|
Lenzen T, Eisfeld W, Manthe U. Vibronically and spin-orbit coupled diabatic potentials for X(2P) + CH4→ HX + CH3reactions: Neural network potentials for X = Cl. J Chem Phys 2019; 150:244115. [DOI: 10.1063/1.5109877] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Tim Lenzen
- Theoretische Chemie, Fakultät für Chemie, Universität Bielefeld, Universitätsstraße 25, D-33615 Bielefeld, Germany
| | - Wolfgang Eisfeld
- Theoretische Chemie, Fakultät für Chemie, Universität Bielefeld, Universitätsstraße 25, D-33615 Bielefeld, Germany
| | - Uwe Manthe
- Theoretische Chemie, Fakultät für Chemie, Universität Bielefeld, Universitätsstraße 25, D-33615 Bielefeld, Germany
| |
Collapse
|
14
|
Schäpers D, Manthe U. Correction to "Quasi-bound States of the F·CH 4 Complex". J Phys Chem A 2019; 123:2286-2287. [PMID: 30848133 DOI: 10.1021/acs.jpca.9b01852] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
15
|
Lenzen T, Manthe U. Vibronically and spin-orbit coupled diabatic potentials for X(P) + CH4→ HX + CH3reactions: General theory and application for X(P) = F(2P). J Chem Phys 2019; 150:064102. [DOI: 10.1063/1.5063907] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Tim Lenzen
- Theoretische Chemie, Fakultät für Chemie, Universität Bielefeld, Universitätsstraße 25, D-33615 Bielefeld, Germany
| | - Uwe Manthe
- Theoretische Chemie, Fakultät für Chemie, Universität Bielefeld, Universitätsstraße 25, D-33615 Bielefeld, Germany
| |
Collapse
|
16
|
Coordinate systems and kinetic energy operators for multi-configurational time-dependent Hartree calculations studying reactions of methane. Chem Phys 2018. [DOI: 10.1016/j.chemphys.2018.02.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
17
|
Lenzen T, Manthe U. Neural network based coupled diabatic potential energy surfaces for reactive scattering. J Chem Phys 2017; 147:084105. [DOI: 10.1063/1.4997995] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Tim Lenzen
- Theoretische Chemie, Fakultät für Chemie, Universität Bielefeld, Universitätsstraße 25, D-33615 Bielefeld, Germany
| | - Uwe Manthe
- Theoretische Chemie, Fakultät für Chemie, Universität Bielefeld, Universitätsstraße 25, D-33615 Bielefeld, Germany
| |
Collapse
|
18
|
Xie C, Malbon C, Yarkony DR, Guo H. Nonadiabatic photodissociation dynamics of the hydroxymethyl radical via the 22A(3s) Rydberg state: A four-dimensional quantum study. J Chem Phys 2017; 146:224306. [DOI: 10.1063/1.4985147] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Changjian Xie
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131, USA
| | - Christopher Malbon
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - David R. Yarkony
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Hua Guo
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131, USA
| |
Collapse
|
19
|
Palma J, Manthe U. Non-adiabatic effects in F + CHD3 reactive scattering. J Chem Phys 2017; 146:214117. [DOI: 10.1063/1.4984593] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Juliana Palma
- Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Sáenz Peña 352, Bernal B1876BXD, Argentina
| | - Uwe Manthe
- Theoretische Chemie, Fakultät für Chemie, Universität Bielefeld, Universitätsstr. 25, D-33615 Bielefeld, Germany
| |
Collapse
|
20
|
Espinosa-Garcia J, Bonnet L, Corchado JC. Theoretical Study of the Pair-Correlated F + CHD3(v = 0,ν1 = 1) Reaction: Effect of CH Stretching Vibrational Excitation. J Phys Chem A 2017; 121:4076-4092. [DOI: 10.1021/acs.jpca.7b02665] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Joaquin Espinosa-Garcia
- Departamento
de Química Física and Instituto de Computatión
Científica Avanzada, Universidad de Extremadura, 06071 Badajoz, Spain
| | - Laurent Bonnet
- CNRS, Institut
des Sciences Moleculaires, UMR 5255, 33405 Talence, and Université
de Bordeaux, Institut des Sciences Moleculaires, UMR 5255, 33405 Talence, France
| | - Jose C. Corchado
- Departamento
de Química Física and Instituto de Computatión
Científica Avanzada, Universidad de Extremadura, 06071 Badajoz, Spain
| |
Collapse
|
21
|
Abstract
Recent experimental and theoretical advances in transient reaction dynamics probed by photodetachment of polyatomic anions are reviewed.
Collapse
Affiliation(s)
- Robert E. Continetti
- Department of Chemistry and Biochemistry
- University of California San Diego
- La Jolla
- USA
| | - Hua Guo
- Department of Chemistry and Chemical Biology
- University of New Mexico
- Albuquerque
- USA
| |
Collapse
|
22
|
Fu B, Shan X, Zhang DH, Clary DC. Recent advances in quantum scattering calculations on polyatomic bimolecular reactions. Chem Soc Rev 2017; 46:7625-7649. [DOI: 10.1039/c7cs00526a] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This review surveys quantum scattering calculations on chemical reactions of polyatomic molecules in the gas phase published in the last ten years.
Collapse
Affiliation(s)
- Bina Fu
- State Key Laboratory of Molecular Reaction Dynamics and Center for Theoretical and Computational Chemistry
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian 116023
- China
| | - Xiao Shan
- Physical and Theoretical Chemistry Laboratory
- Department of Chemistry
- University of Oxford
- Oxford
- UK
| | - Dong H. Zhang
- State Key Laboratory of Molecular Reaction Dynamics and Center for Theoretical and Computational Chemistry
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian 116023
- China
| | - David C. Clary
- Physical and Theoretical Chemistry Laboratory
- Department of Chemistry
- University of Oxford
- Oxford
- UK
| |
Collapse
|
23
|
Zhang D, Yang J, Chen Z, Chen R, Jiang B, Dai D, Wu G, Zhang D, Yang X. CH stretching excitation promotes its cleavage in the F + CHD3(ν1 = 1) → HF + CD3 reaction at low collision energies. Phys Chem Chem Phys 2017; 19:13070-13074. [DOI: 10.1039/c7cp01428g] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The effects of CH stretching excitation on the reactivity of the F + CHD3 → HF + CD3 reaction were experimentally studied.
Collapse
Affiliation(s)
- Dong Zhang
- State Key Laboratory of Molecular Reaction Dynamics
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian 116023
- China
| | - Jiayue Yang
- State Key Laboratory of Molecular Reaction Dynamics
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian 116023
- China
| | - Zhen Chen
- State Key Laboratory of Molecular Reaction Dynamics
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian 116023
- China
| | - Rongjun Chen
- State Key Laboratory of Molecular Reaction Dynamics
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian 116023
- China
| | - Bo Jiang
- State Key Laboratory of Molecular Reaction Dynamics
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian 116023
- China
| | - Dongxu Dai
- State Key Laboratory of Molecular Reaction Dynamics
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian 116023
- China
| | - Guorong Wu
- State Key Laboratory of Molecular Reaction Dynamics
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian 116023
- China
| | - Donghui Zhang
- State Key Laboratory of Molecular Reaction Dynamics
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian 116023
- China
| | - Xueming Yang
- State Key Laboratory of Molecular Reaction Dynamics
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian 116023
- China
| |
Collapse
|
24
|
Pan H, Liu K. Observation of a Reactive Rainbow in F + CH3D → CH2D(v = 0) + HF(v = 3)? J Phys Chem A 2016; 120:6712-8. [DOI: 10.1021/acs.jpca.6b07772] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Huilin Pan
- Institute
of Atomic and Molecular Sciences (IAMS), Academia Sinica, P.O. Box 23-166, Taipei, Taiwan 10617
| | - Kopin Liu
- Institute
of Atomic and Molecular Sciences (IAMS), Academia Sinica, P.O. Box 23-166, Taipei, Taiwan 10617
- Department
of Physics, National Taiwan University, Taipei, Taiwan 10617
| |
Collapse
|
25
|
Xie C, Jiang B, Yang M, Guo H. State-to-State Mode Specificity in F + CHD3 → HF/DF + CD3/CHD2 Reaction. J Phys Chem A 2016; 120:6521-8. [DOI: 10.1021/acs.jpca.6b06450] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Changjian Xie
- Department of Chemistry
and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131, United States
| | - Bin Jiang
- Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| | - Minghui Yang
- Key Laboratory of Magnetic Resonance in
Biological Systems, Wuhan Center for Magnetic Resonance, State Key
Laboratory of Magnetic Resonance and Atomic and Molecular Physics,
Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China
| | - Hua Guo
- Department of Chemistry
and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131, United States
| |
Collapse
|
26
|
Jiang B, Li J, Guo H. Potential energy surfaces from high fidelity fitting ofab initiopoints: the permutation invariant polynomial - neural network approach. INT REV PHYS CHEM 2016. [DOI: 10.1080/0144235x.2016.1200347] [Citation(s) in RCA: 210] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
27
|
Qi J, Song H, Yang M, Palma J, Manthe U, Guo H. Communication: Mode specific quantum dynamics of the F + CHD3 → HF + CD3 reaction. J Chem Phys 2016; 144:171101. [DOI: 10.1063/1.4948547] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Ji Qi
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China
| | - Hongwei Song
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China
| | - Minghui Yang
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China
| | - Juliana Palma
- Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, CONICET, Sáenz Peña 352, Bernal B1876BXD, Argentina
| | - Uwe Manthe
- Theoretische Chemie, Fakultät für Chemie, Universität Bielefeld, Universitätsstr. 25, D-33615 Bielefeld, Germany
| | - Hua Guo
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131, USA
| |
Collapse
|
28
|
Affiliation(s)
- Daniela Schäpers
- Theoretische Chemie, Fakultät
für Chemie, Universität Bielefeld, Universitätsstraße 25, D-33615 Bielefeld, Germany
| | - Uwe Manthe
- Theoretische Chemie, Fakultät
für Chemie, Universität Bielefeld, Universitätsstraße 25, D-33615 Bielefeld, Germany
| |
Collapse
|
29
|
Ray AW, Agarwal J, Shen BB, Schaefer HF, Continetti RE. Energetics and transition-state dynamics of the F + HOCH3 → HF + OCH3 reaction. Phys Chem Chem Phys 2016; 18:30612-30621. [DOI: 10.1039/c6cp06409d] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Probing the transition state of the F + HOCH3 → HF + OCH3 reaction using photoelectron–photofragment coincidence spectroscopy accesses reactants, products, stable van der Waals complexes and long-lived metastable complexes.
Collapse
Affiliation(s)
- Amelia W. Ray
- Department of Chemistry and Biochemistry
- University of California, San Diego
- La Jolla
- USA
| | - Jay Agarwal
- Center for Computational Quantum Chemistry
- Department of Chemistry
- University of Georgia
- Athens
- USA
| | - Ben B. Shen
- Department of Chemistry and Biochemistry
- University of California, San Diego
- La Jolla
- USA
| | - H. F. Schaefer
- Center for Computational Quantum Chemistry
- Department of Chemistry
- University of Georgia
- Athens
- USA
| | - Robert E. Continetti
- Department of Chemistry and Biochemistry
- University of California, San Diego
- La Jolla
- USA
| |
Collapse
|
30
|
Espinosa-Garcia J. Quasiclassical Trajectory Study on the Role of CH-Stretching Vibrational Excitation in the F(2P) + CHD3(v1=0,1) Reactions. J Phys Chem A 2015; 120:5-13. [DOI: 10.1021/acs.jpca.5b10399] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- J. Espinosa-Garcia
- Departamento de Quimica Fisica, Universidad de Extremadura, 06071 Badajoz, Spain
| |
Collapse
|
31
|
Palma J, Manthe U. A Quasiclassical Study of the F(2P) + CHD3 (ν1 = 0,1) Reactive System on an Accurate Potential Energy Surface. J Phys Chem A 2015; 119:12209-17. [DOI: 10.1021/acs.jpca.5b06184] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Juliana Palma
- Departamento
de Ciencia y Tecnología, Universidad Nacional de Quilmes, Sáenz Peña 352, Bernal B1876BXD, Argentina
| | - Uwe Manthe
- Theoretische Chemie, Fakultät für Chemie, Universität Bielefeld, Universitätsstr.
25, D-33615 Bielefeld, Germany
| |
Collapse
|
32
|
Abstract
Multilayer multiconfiguration time-dependent Hartree (ML-MCTDH) theory is a rigorous and powerful method to simulate quantum dynamics in complex many-body systems. This approach extends the original MCTDH theory of Meyer, Manthe, and Cederbaum to include dynamically contracted layers in a recursive way, within which the equations of motion are determined from the Dirac-Frenkel variational principle. This paper presents the general derivation of the theory and analyzes the important features that make the ML-MCTDH method numerically efficient. Furthermore, we discuss the generalization of the theory to treat many-body identical particles (fermions or bosons) as well as calculating energy eigenstates via the improved relaxation method.
Collapse
Affiliation(s)
- Haobin Wang
- Department of Chemistry, University of Colorado Denver, Denver, Colorado 80217-3364, United States
| |
Collapse
|
33
|
Zhao B, Zhang DH, Lee SY, Sun Z. Calculation of state-to-state cross sections for triatomic reaction by the multi-configuration time-dependent Hartree method. J Chem Phys 2014; 140:164108. [DOI: 10.1063/1.4872157] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
|
34
|
Czakó G, Bowman JM. Reaction Dynamics of Methane with F, O, Cl, and Br on ab Initio Potential Energy Surfaces. J Phys Chem A 2014; 118:2839-64. [DOI: 10.1021/jp500085h] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Gábor Czakó
- Laboratory of Molecular Structure and Dynamics,
Institute of Chemistry, Eötvös University, H-1518 Budapest 112, P.O. Box 32, Hungary
| | - Joel M. Bowman
- Cherry
L. Emerson Center for Scientific Computation and Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| |
Collapse
|
35
|
Otto F. Multi-layer Potfit: An accurate potential representation for efficient high-dimensional quantum dynamics. J Chem Phys 2014; 140:014106. [DOI: 10.1063/1.4856135] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
36
|
Westermann T, Kim JB, Weichman ML, Hock C, Yacovitch TI, Palma J, Neumark DM, Manthe U. Resonances in the Entrance Channel of the Elementary Chemical Reaction of Fluorine and Methane. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201307822] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
37
|
Westermann T, Kim JB, Weichman ML, Hock C, Yacovitch TI, Palma J, Neumark DM, Manthe U. Resonances in the entrance channel of the elementary chemical reaction of fluorine and methane. Angew Chem Int Ed Engl 2013; 53:1122-6. [PMID: 24307593 DOI: 10.1002/anie.201307822] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Indexed: 11/08/2022]
Abstract
Extending the fully quantum-state-resolved description of elementary chemical reactions beyond three or four atom systems is a crucial issue in fundamental chemical research. Reactions of methane with F, Cl, H or O are key examples that have been studied prominently. In particular, reactive resonances and nonintuitive mode-selective chemistry have been reported in experimental studies for the F+CH4 →HF+CH3 reaction. By investigating this reaction using transition-state spectroscopy, this joint theoretical and experimental study provides a clear picture of resonances in the F+CH4 system. This picture is deduced from high-resolution slow electron velocity-map imaging (SEVI) spectra and accurate full-dimensional (12D) quantum dynamics simulations in the picosecond regime.
Collapse
Affiliation(s)
- Till Westermann
- Theoretische Chemie, Fakultät für Chemie, Universität Bielefeld, Universitätsstr. 25, 33615 Bielefeld (Germany)
| | | | | | | | | | | | | | | |
Collapse
|