1
|
Mehmood A, Silfies MC, Durden AS, Allison TK, Levine BG. Simulating ultrafast transient absorption spectra from first principles using a time-dependent configuration interaction probe. J Chem Phys 2024; 161:044107. [PMID: 39041880 DOI: 10.1063/5.0215890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 06/30/2024] [Indexed: 07/24/2024] Open
Abstract
Transient absorption spectroscopy (TAS) is among the most common ultrafast photochemical experiments, but its interpretation remains challenging. In this work, we present an efficient and robust method for simulating TAS signals from first principles. Excited-state absorption and stimulated emission (SE) signals are computed using time-dependent complete active space configuration interaction (TD-CASCI) simulations, leveraging the robustness of time-domain simulation to minimize electronic structure failure. We demonstrate our approach by simulating the TAS signal of 1'-hydroxy-2'-acetonapthone (HAN) from ab initio multiple spawning nonadiabatic molecular dynamics simulations. Our results are compared to gas-phase TAS data recorded from both jet-cooled (T ∼ 40 K) and hot (∼403 K) molecules via cavity-enhanced TAS (CE-TAS). Decomposition of the computed spectrum allows us to assign a rise in the SE signal to excited-state proton transfer and the ultimate decay of the signal to relaxation through a twisted conical intersection. The total cost of computing the observable signal (∼1700 graphics processing unit hours for ∼4 ns of electron dynamics) was markedly less than that of performing the ab initio multiple spawning calculations used to compute the underlying nonadiabatic dynamics.
Collapse
Affiliation(s)
- Arshad Mehmood
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794, USA
- Institute for Advanced Computational Science, Stony Brook University, Stony Brook, New York 11794, USA
| | - Myles C Silfies
- Department of Physics, Stony Brook University, Stony Brook, New York 11794, USA
| | - Andrew S Durden
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794, USA
- Institute for Advanced Computational Science, Stony Brook University, Stony Brook, New York 11794, USA
| | - Thomas K Allison
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794, USA
- Department of Physics, Stony Brook University, Stony Brook, New York 11794, USA
| | - Benjamin G Levine
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794, USA
- Institute for Advanced Computational Science, Stony Brook University, Stony Brook, New York 11794, USA
| |
Collapse
|
2
|
Moghaddasi Fereidani R, Vaníček JJL. High-order geometric integrators for the local cubic variational Gaussian wavepacket dynamics. J Chem Phys 2024; 160:044113. [PMID: 38284658 DOI: 10.1063/5.0180070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 12/22/2023] [Indexed: 01/30/2024] Open
Abstract
Gaussian wavepacket dynamics has proven to be a useful semiclassical approximation for quantum simulations of high-dimensional systems with low anharmonicity. Compared to Heller's original local harmonic method, the variational Gaussian wavepacket dynamics is more accurate, but much more difficult to apply in practice because it requires evaluating the expectation values of the potential energy, gradient, and Hessian. If the variational approach is applied to the local cubic approximation of the potential, these expectation values can be evaluated analytically, but they still require the costly third derivative of the potential. To reduce the cost of the resulting local cubic variational Gaussian wavepacket dynamics, we describe efficient high-order geometric integrators, which are symplectic, time-reversible, and norm-conserving. For small time steps, they also conserve the effective energy. We demonstrate the efficiency and geometric properties of these integrators numerically on a multidimensional, nonseparable coupled Morse potential.
Collapse
Affiliation(s)
- Roya Moghaddasi Fereidani
- Laboratory of Theoretical Physical Chemistry, Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Jiří J L Vaníček
- Laboratory of Theoretical Physical Chemistry, Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| |
Collapse
|
3
|
Lassmann Y, Curchod BFE. Probing the sensitivity of ab initio multiple spawning to its parameters. Theor Chem Acc 2023; 142:66. [PMID: 37520272 PMCID: PMC10382418 DOI: 10.1007/s00214-023-03004-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 07/13/2023] [Indexed: 08/01/2023]
Abstract
Full multiple spawning (FMS) offers a strategy to simulate the nonadiabatic dynamics of molecular systems by describing their nuclear wavefunctions by a linear combination of coupled trajectory basis functions (TBFs). Applying a series of controlled approximations to the full multiple spawning (FMS) equations leads to the ab initio multiple spawning (AIMS), which is compatible with an on-the-fly propagation of the TBFs and an accurate description of nonadiabatic processes. The AIMS strategy and its numerical implementations, however, rely on a series of user-defined parameters. Herein, we investigate the influence of these parameters on the electronic-state population of two molecular systems- trans-azomethane and a two-dimensional model of the butatriene cation. This work highlights the stability of AIMS with respect to most of its parameters, underlines the specific parameters that require particular attention from the user of the method, and offers prescriptions for an informed selection of their value. Supplementary Information The online version contains supplementary material available at 10.1007/s00214-023-03004-w.
Collapse
Affiliation(s)
- Yorick Lassmann
- Centre for Computational Chemistry, School of Chemistry, Cantock’s Close, University of Bristol, Bristol, BS8 1TS UK
| | - Basile F. E. Curchod
- Centre for Computational Chemistry, School of Chemistry, Cantock’s Close, University of Bristol, Bristol, BS8 1TS UK
| |
Collapse
|
4
|
Avagliano D, Bonfanti M, Nenov A, Garavelli M. Automatized protocol and interface to simulate QM/MM time-resolved transient absorption at TD-DFT level with COBRAMM. J Comput Chem 2022; 43:1641-1655. [PMID: 35815854 PMCID: PMC9544370 DOI: 10.1002/jcc.26966] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 06/07/2022] [Accepted: 06/10/2022] [Indexed: 12/24/2022]
Abstract
We present a series of new implementations that we recently introduced in COBRAMM, the open-source academic software developed in our group. The goal of these implementations is to offer an automatized workflow and interface to simulate time-resolved transient absorption (TA) spectra of medium-to-big chromophore embedded in a complex environment. Therefore, the excited states absorption and the stimulated emission are simulated along nonadiabatic dynamics performed with trajectory surface hopping. The possibility of treating systems from medium to big size is given by the use of time-dependent density functional theory (TD-DFT) and the presence of the environment is taken into account employing a hybrid quantum mechanics/molecular mechanics (QM/MM) scheme. The full implementation includes a series of auxiliary scripts to properly setup the QM/MM system, the calculation of the wavefunction overlap along the dynamics for the propagation, the evaluation of the transition dipole moment at linear response TD-DFT level, and scripts to setup, run and analyze the TA from an ensemble of trajectories. Altogether, we believe that our implementation will open the door to the easily simulate the time-resolved TA of systems so far computationally inaccessible.
Collapse
Affiliation(s)
- Davide Avagliano
- Dipartimento di Chimica Industriale "Toso Montanari", Università degli Studi di Bologna, Bologna, Italy
| | - Matteo Bonfanti
- Dipartimento di Chimica Industriale "Toso Montanari", Università degli Studi di Bologna, Bologna, Italy.,Fondazione Human Technopole - Viale Rita Levi-Montalcini, 1 - Area MIND - Cargo 6 - 20157, Milano, Italy
| | - Artur Nenov
- Dipartimento di Chimica Industriale "Toso Montanari", Università degli Studi di Bologna, Bologna, Italy
| | - Marco Garavelli
- Dipartimento di Chimica Industriale "Toso Montanari", Università degli Studi di Bologna, Bologna, Italy
| |
Collapse
|
5
|
Scheidegger A, Vaníček J, Golubev NV. Search for long-lasting electronic coherence using on-the-fly ab initio semiclassical dynamics. J Chem Phys 2022; 156:034104. [DOI: 10.1063/5.0076609] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Affiliation(s)
- Alan Scheidegger
- Laboratory of Theoretical Physical Chemistry, Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Jiří Vaníček
- Laboratory of Theoretical Physical Chemistry, Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Nikolay V. Golubev
- Laboratory of Theoretical Physical Chemistry, Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| |
Collapse
|
6
|
Ibele LM, Curchod BFE. Dynamics near a conical intersection-A diabolical compromise for the approximations of ab initio multiple spawning. J Chem Phys 2021; 155:174119. [PMID: 34742188 DOI: 10.1063/5.0071376] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Full multiple spawning (FMS) offers an exciting framework for the development of strategies to simulate the excited-state dynamics of molecular systems. FMS proposes to depict the dynamics of nuclear wavepackets by using a growing set of traveling multidimensional Gaussian functions called trajectory basis functions (TBFs). Perhaps the most recognized method emanating from FMS is the so-called ab initio multiple spawning (AIMS). In AIMS, the couplings between TBFs-in principle exact in FMS-are approximated to allow for the on-the-fly evaluation of required electronic-structure quantities. In addition, AIMS proposes to neglect the so-called second-order nonadiabatic couplings and the diagonal Born-Oppenheimer corrections. While AIMS has been applied successfully to simulate the nonadiabatic dynamics of numerous complex molecules, the direct influence of these missing or approximated terms on the nonadiabatic dynamics when approaching and crossing a conical intersection remains unknown to date. It is also unclear how AIMS could incorporate geometric-phase effects in the vicinity of a conical intersection. In this work, we assess the performance of AIMS in describing the nonadiabatic dynamics through a conical intersection for three two-dimensional, two-state systems that mimic the excited-state dynamics of bis(methylene)adamantyl, butatriene cation, and pyrazine. The population traces and nuclear density dynamics are compared with numerically exact quantum dynamics and trajectory surface hopping results. We find that AIMS offers a qualitatively correct description of the dynamics through a conical intersection for the three model systems. However, any attempt at improving the AIMS results by accounting for the originally neglected second-order nonadiabatic contributions appears to be stymied by the hermiticity requirement of the AIMS Hamiltonian and the independent first-generation approximation.
Collapse
Affiliation(s)
- Lea M Ibele
- Department of Chemistry, Durham University, South Road, Durham DH1 3LE, United Kingdom
| | - Basile F E Curchod
- Department of Chemistry, Durham University, South Road, Durham DH1 3LE, United Kingdom
| |
Collapse
|
7
|
Begušić T, Vaníček J. Finite-Temperature, Anharmonicity, and Duschinsky Effects on the Two-Dimensional Electronic Spectra from Ab Initio Thermo-Field Gaussian Wavepacket Dynamics. J Phys Chem Lett 2021; 12:2997-3005. [PMID: 33733773 PMCID: PMC8006135 DOI: 10.1021/acs.jpclett.1c00123] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 03/08/2021] [Indexed: 05/28/2023]
Abstract
Accurate description of finite-temperature vibrational dynamics is indispensable in the computation of two-dimensional electronic spectra. Such simulations are often based on the density matrix evolution, statistical averaging of initial vibrational states, or approximate classical or semiclassical limits. While many practical approaches exist, they are often of limited accuracy and difficult to interpret. Here, we use the concept of thermo-field dynamics to derive an exact finite-temperature expression that lends itself to an intuitive wavepacket-based interpretation. Furthermore, an efficient method for computing finite-temperature two-dimensional spectra is obtained by combining the exact thermo-field dynamics approach with the thawed Gaussian approximation for the wavepacket dynamics, which is exact for any displaced, distorted, and Duschinsky-rotated harmonic potential but also accounts partially for anharmonicity effects in general potentials. Using this new method, we directly relate a symmetry breaking of the two-dimensional signal to the deviation from the conventional Brownian oscillator picture.
Collapse
|
8
|
Chen L, Sun K, Shalashilin DV, Gelin MF, Zhao Y. Efficient simulation of time- and frequency-resolved four-wave-mixing signals with a multiconfigurational Ehrenfest approach. J Chem Phys 2021; 154:054105. [PMID: 33557567 DOI: 10.1063/5.0038824] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
We have extended the multiconfigurational Ehrenfest approach to the simulation of four-wave-mixing signals of systems involving multiple electronic and vibrational degrees of freedom. As an illustration, we calculate signals of three widely used spectroscopic techniques, time- and frequency-resolved fluorescence spectroscopy, transient absorption spectroscopy, and two-dimensional (2D) electronic spectroscopy, for a two-electronic-state, twenty-four vibrational-mode conical intersection model. It has been shown that all these three spectroscopic signals characterize fast population transfer from the higher excited electronic state to the lower excited electronic state. While the time- and frequency-resolved spectrum maps the wave packet propagation exclusively on the electronically excited states, the transient absorption and 2D electronic spectra reflect the wave packet dynamics on both electronically excited states and the electronic ground state. Combining trajectory-guided Gaussian basis functions and the nonlinear response function formalism, the present approach provides a promising general technique for the applications of various Gaussian basis methods to the calculations of four-wave-mixing spectra of polyatomic molecules.
Collapse
Affiliation(s)
- Lipeng Chen
- Max Planck Institute for the Physics of Complex Systems, Nöthnitzer Str. 38, Dresden, Germany
| | - Kewei Sun
- School of Science, Hangzhou Dianzi University, Hangzhou 310018, China
| | | | - Maxim F Gelin
- School of Science, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Yang Zhao
- Division of Materials Science, Nanyang Technological University, Singapore 639798, Singapore
| |
Collapse
|
9
|
Begušić T, Vaníček J. On-the-fly ab initio semiclassical evaluation of third-order response functions for two-dimensional electronic spectroscopy. J Chem Phys 2020; 153:184110. [DOI: 10.1063/5.0031216] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Affiliation(s)
- Tomislav Begušić
- Laboratory of Theoretical Physical Chemistry, Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Jiří Vaníček
- Laboratory of Theoretical Physical Chemistry, Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| |
Collapse
|
10
|
Werther M, Choudhury SL, Großmann F. Coherent state based solutions of the time-dependent Schrödinger equation: hierarchy of approximations to the variational principle. INT REV PHYS CHEM 2020. [DOI: 10.1080/0144235x.2020.1823168] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Michael Werther
- Max-Planck-Institut für Physik Komplexer Systeme, Dresden, Germany
- Institut für Theoretische Physik, Technische Universität Dresden, Dresden, Germany
| | | | - Frank Großmann
- Institut für Theoretische Physik, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
11
|
Conti I, Cerullo G, Nenov A, Garavelli M. Ultrafast Spectroscopy of Photoactive Molecular Systems from First Principles: Where We Stand Today and Where We Are Going. J Am Chem Soc 2020; 142:16117-16139. [PMID: 32841559 PMCID: PMC7901644 DOI: 10.1021/jacs.0c04952] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
![]()
Computational spectroscopy is becoming a mandatory tool for the interpretation of the
complex, and often congested, spectral maps delivered by modern non-linear multi-pulse
techniques. The fields of Electronic Structure Methods,
Non-Adiabatic Molecular Dynamics, and Theoretical
Spectroscopy represent the three pillars of the virtual ultrafast
optical spectrometer, able to deliver transient spectra in
silico from first principles. A successful simulation strategy requires a
synergistic approach that balances between the three fields, each one having its very
own challenges and bottlenecks. The aim of this Perspective is to demonstrate that,
despite these challenges, an impressive agreement between theory and experiment is
achievable now regarding the modeling of ultrafast photoinduced processes in complex
molecular architectures. Beyond that, some key recent developments in the three fields
are presented that we believe will have major impacts on spectroscopic simulations in
the very near future. Potential directions of development, pending challenges, and
rising opportunities are illustrated.
Collapse
Affiliation(s)
- Irene Conti
- Dipartimento di Chimica Industriale, Università degli Studi di Bologna, Viale del Risorgimento 4, I-40136 Bologna, Italy
| | - Giulio Cerullo
- Dipartimento di Fisica, Politecnico di Milano, IFN-CNR, Piazza Leonardo da Vinci 32, I-20133 Milano, Italy
| | - Artur Nenov
- Dipartimento di Chimica Industriale, Università degli Studi di Bologna, Viale del Risorgimento 4, I-40136 Bologna, Italy
| | - Marco Garavelli
- Dipartimento di Chimica Industriale, Università degli Studi di Bologna, Viale del Risorgimento 4, I-40136 Bologna, Italy
| |
Collapse
|
12
|
Golubev NV, Begušić T, Vaníček J. On-the-Fly Ab Initio Semiclassical Evaluation of Electronic Coherences in Polyatomic Molecules Reveals a Simple Mechanism of Decoherence. PHYSICAL REVIEW LETTERS 2020; 125:083001. [PMID: 32909765 DOI: 10.1103/physrevlett.125.083001] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 06/30/2020] [Indexed: 06/11/2023]
Abstract
Irradiation of a molecular system by an intense laser field can trigger dynamics of both electronic and nuclear subsystems. The lighter electrons usually move on much faster, attosecond timescale but the slow nuclear rearrangement damps ultrafast electronic oscillations, leading to the decoherence of the electronic dynamics within a few femtoseconds. We show that a simple, single-trajectory semiclassical scheme can evaluate the electronic coherence time in polyatomic molecules accurately by demonstrating an excellent agreement with full-dimensional quantum calculations. In contrast to numerical quantum methods, the semiclassical one reveals the physical mechanism of decoherence beyond the general blame on nuclear motion. In the propiolic acid, the rate of decoherence and the large deviation from the static frequency of electronic oscillations are quantitatively described with just two semiclassical parameters-the phase space distance and signed area between the trajectories moving on two electronic surfaces. Because it evaluates the electronic structure on the fly, the semiclassical technique avoids the "curse of dimensionality" and should be useful for preselecting molecules for experimental studies.
Collapse
Affiliation(s)
- Nikolay V Golubev
- Laboratory of Theoretical Physical Chemistry, Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Tomislav Begušić
- Laboratory of Theoretical Physical Chemistry, Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Jiří Vaníček
- Laboratory of Theoretical Physical Chemistry, Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| |
Collapse
|
13
|
Curchod BFE, Glover WJ, Martínez TJ. SSAIMS-Stochastic-Selection Ab Initio Multiple Spawning for Efficient Nonadiabatic Molecular Dynamics. J Phys Chem A 2020; 124:6133-6143. [PMID: 32580552 DOI: 10.1021/acs.jpca.0c04113] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Ab initio multiple spawning provides a powerful and accurate way of describing the excited-state dynamics of molecular systems, whose strength resides in the proper description of coherence effects during nonadiabatic processes thanks to the coupling of trajectory basis functions. However, the simultaneous propagation of a large number of trajectory basis functions can be numerically inconvenient. We propose here an elegant and simple solution to this issue, which consists of (i) detecting uncoupled groups of coupled trajectory basis functions and (ii) selecting stochastically one of these groups to continue the ab initio multiple spawning dynamics. We show that this procedure can reproduce the results of full ab initio multiple spawning dynamics in cases where the uncoupled groups of trajectory basis functions stay uncoupled throughout the dynamics (which is often the case in high-dimensional problems). We present and discuss the aforementioned idea in detail and provide simple numerical applications on indole, ethylene, and protonated formaldimine, highlighting the potential of stochastic-selection ab initio multiple spawning.
Collapse
Affiliation(s)
- Basile F E Curchod
- Department of Chemistry, Durham University, South Road, Durham DH1 3LE, United Kingdom
| | - William J Glover
- NYU Shanghai, 1555 Century Ave., Shanghai 200122, China.,NYU-ECNU Center for Computational Chemistry at NYU Shanghai, 3663 Zhongshan Road North, Shanghai 200062, China.,Department of Chemistry, New York University, New York, New York 10003, United States
| | - Todd J Martínez
- Department of Chemistry and the PULSE Institute, Stanford University, Stanford, California 94305, United States.,SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| |
Collapse
|
14
|
Ibele LM, Nicolson A, Curchod BFE. Excited-state dynamics of molecules with classically driven trajectories and Gaussians. Mol Phys 2019. [DOI: 10.1080/00268976.2019.1665199] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Lea M. Ibele
- Department of Chemistry, Durham University, Durham, UK
| | | | | |
Collapse
|
15
|
Jain A, Petit AS, Anna JM, Subotnik JE. Simple and Efficient Theoretical Approach To Compute 2D Optical Spectra. J Phys Chem B 2019; 123:1602-1617. [DOI: 10.1021/acs.jpcb.8b08674] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Amber Jain
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, 400076, India
| | - Andrew S. Petit
- Department of Chemistry and Biochemistry, California State University, Fullerton, California 92834, United States
| | - Jessica M. Anna
- Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104, United States
| | - Joseph E. Subotnik
- Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
16
|
Begušić T, Roulet J, Vaníček J. On-the-fly ab initio semiclassical evaluation of time-resolved electronic spectra. J Chem Phys 2018; 149:244115. [DOI: 10.1063/1.5054586] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Tomislav Begušić
- Laboratory of Theoretical Physical Chemistry, Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Julien Roulet
- Laboratory of Theoretical Physical Chemistry, Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Jiří Vaníček
- Laboratory of Theoretical Physical Chemistry, Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| |
Collapse
|
17
|
Mignolet B, Curchod BFE. A walk through the approximations of ab initio multiple spawning. J Chem Phys 2018; 148:134110. [PMID: 29626896 DOI: 10.1063/1.5022877] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Full multiple spawning offers an in principle exact framework for excited-state dynamics, where nuclear wavefunctions in different electronic states are represented by a set of coupled trajectory basis functions that follow classical trajectories. The couplings between trajectory basis functions can be approximated to treat molecular systems, leading to the ab initio multiple spawning method which has been successfully employed to study the photochemistry and photophysics of several molecules. However, a detailed investigation of its approximations and their consequences is currently missing in the literature. In this work, we simulate the explicit photoexcitation and subsequent excited-state dynamics of a simple system, LiH, and we analyze (i) the effect of the ab initio multiple spawning approximations on different observables and (ii) the convergence of the ab initio multiple spawning results towards numerically exact quantum dynamics upon a progressive relaxation of these approximations. We show that, despite the crude character of the approximations underlying ab initio multiple spawning for this low-dimensional system, the qualitative excited-state dynamics is adequately captured, and affordable corrections can further be applied to ameliorate the coupling between trajectory basis functions.
Collapse
Affiliation(s)
- Benoit Mignolet
- Theoretical Physical Chemistry, UR MolSYS, B6c, University of Liège, B4000 Liège, Belgium
| | - Basile F E Curchod
- Department of Chemistry, Durham University, South Road, Durham DH1 3LE, United Kingdom
| |
Collapse
|
18
|
Affiliation(s)
- Basile F. E. Curchod
- Department of Chemistry, Durham University, South Road, Durham DH1 3LE, United Kingdom
| | - Todd J. Martínez
- Department of Chemistry and PULSE Institute, Stanford University, Stanford, California 94305, United States
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| |
Collapse
|
19
|
Antipov SV, Bhattacharyya S, El Hage K, Xu ZH, Meuwly M, Rothlisberger U, Vaníček J. Ultrafast dynamics induced by the interaction of molecules with electromagnetic fields: Several quantum, semiclassical, and classical approaches. STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2017; 4:061509. [PMID: 29376107 PMCID: PMC5758379 DOI: 10.1063/1.4996559] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 10/11/2017] [Indexed: 06/07/2023]
Abstract
Several strategies for simulating the ultrafast dynamics of molecules induced by interactions with electromagnetic fields are presented. After a brief overview of the theory of molecule-field interaction, we present several representative examples of quantum, semiclassical, and classical approaches to describe the ultrafast molecular dynamics, including the multiconfiguration time-dependent Hartree method, Bohmian dynamics, local control theory, semiclassical thawed Gaussian approximation, phase averaging, dephasing representation, molecular mechanics with proton transfer, and multipolar force fields. In addition to the general overview, some focus is given to the description of nuclear quantum effects and to the direct dynamics, in which the ab initio energies and forces acting on the nuclei are evaluated on the fly. Several practical applications, performed within the framework of the Swiss National Center of Competence in Research "Molecular Ultrafast Science and Technology," are presented: These include Bohmian dynamics description of the collision of H with H2, local control theory applied to the photoinduced ultrafast intramolecular proton transfer, semiclassical evaluation of vibrationally resolved electronic absorption, emission, photoelectron, and time-resolved stimulated emission spectra, infrared spectroscopy of H-bonding systems, and multipolar force fields applications in the condensed phase.
Collapse
Affiliation(s)
- Sergey V Antipov
- Laboratory of Theoretical Physical Chemistry, Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Swarnendu Bhattacharyya
- Laboratory of Computational Chemistry and Biochemistry, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Krystel El Hage
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, CH-4056 Basel, Switzerland
| | - Zhen-Hao Xu
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, CH-4056 Basel, Switzerland
| | - Markus Meuwly
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, CH-4056 Basel, Switzerland
| | - Ursula Rothlisberger
- Laboratory of Computational Chemistry and Biochemistry, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Jiří Vaníček
- Laboratory of Theoretical Physical Chemistry, Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| |
Collapse
|
20
|
Curchod BFE, Sisto A, Martínez TJ. Ab Initio Multiple Spawning Photochemical Dynamics of DMABN Using GPUs. J Phys Chem A 2017; 121:265-276. [DOI: 10.1021/acs.jpca.6b09962] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Basile F. E. Curchod
- Department
of Chemistry and the PULSE Institute, Stanford University, Stanford, California 94305, United States
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Aaron Sisto
- Department
of Chemistry and the PULSE Institute, Stanford University, Stanford, California 94305, United States
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Todd J. Martínez
- Department
of Chemistry and the PULSE Institute, Stanford University, Stanford, California 94305, United States
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| |
Collapse
|
21
|
Vaníček J, Cohen D. Path integral approach to the quantum fidelity amplitude. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2016; 374:rsta.2015.0164. [PMID: 27140973 PMCID: PMC4855403 DOI: 10.1098/rsta.2015.0164] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 10/13/2015] [Indexed: 06/05/2023]
Abstract
The Loschmidt echo is a measure of quantum irreversibility and is determined by the fidelity amplitude of an imperfect time-reversal protocol. Fidelity amplitude plays an important role both in the foundations of quantum mechanics and in its applications, such as time-resolved electronic spectroscopy. We derive an exact path integral formula for the fidelity amplitude and use it to obtain a series of increasingly accurate semiclassical approximations by truncating an exact expansion of the path integral exponent. While the zeroth-order expansion results in a remarkably simple, yet non-trivial approximation for the fidelity amplitude, the first-order expansion yields an alternative derivation of the so-called 'dephasing representation,' circumventing the use of a semiclassical propagator as in the original derivation. We also obtain an approximate expression for fidelity based on the second-order expansion, which resolves several shortcomings of the dephasing representation. The rigorous derivation from the path integral permits the identification of sufficient conditions under which various approximations obtained become exact.
Collapse
Affiliation(s)
- Jiří Vaníček
- Laboratory of Theoretical Physical Chemistry, Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Doron Cohen
- Department of Physics, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| |
Collapse
|
22
|
Nenov A, Giussani A, Fingerhut BP, Rivalta I, Dumont E, Mukamel S, Garavelli M. Spectral lineshapes in nonlinear electronic spectroscopy. Phys Chem Chem Phys 2016; 17:30925-36. [PMID: 26084213 DOI: 10.1039/c5cp01167a] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We outline a computational approach for nonlinear electronic spectra, which accounts for the electronic energy fluctuations due to nuclear degrees of freedom and explicitly incorporates the fluctuations of higher excited states, induced by the dynamics in the photoactive state(s). This approach is based on mixed quantum-classical dynamics simulations. Tedious averaging over multiple trajectories is avoided by employing the linearly displaced Brownian harmonic oscillator to model the correlation functions. The present strategy couples accurate computations of the high-lying excited state manifold with dynamics simulations. The application is made to the two-dimensional electronic spectra of pyrene, a polycyclic aromatic hydrocarbon characterized by an ultrafast (few tens of femtoseconds) decay from the bright S2 state to the dark S1 state. The spectra for waiting times t2 = 0 and t2 = 1 ps demonstrate the ability of this approach to model electronic state fluctuations and realistic lineshapes. Comparison with experimental spectra [Krebs et al., New Journal of Physics, 2013, 15, 085016] shows excellent agreement and allows us to unambiguously assign the excited state absorption features.
Collapse
Affiliation(s)
- Artur Nenov
- Dipartimento di Chimica G. Ciamician, Università di Bologna, V. F. Selmi 2, 40126 Bologna, Italy.
| | - Angelo Giussani
- Dipartimento di Chimica G. Ciamician, Università di Bologna, V. F. Selmi 2, 40126 Bologna, Italy.
| | - Benjamin P Fingerhut
- Max Born Institute for Nonlinear Optics and Short Pulse Spectroscopy, Max-Born-Strasse 2A, Berlin, 12489, Germany
| | - Ivan Rivalta
- Laboratoire de Chimie, Ecole Normale Suprieure de Lyon, 46, allée d'Italie, 69364 Lyon, France
| | - Elise Dumont
- Laboratoire de Chimie, Ecole Normale Suprieure de Lyon, 46, allée d'Italie, 69364 Lyon, France
| | - Shaul Mukamel
- Department of Chemistry, University of California, Irvine, California 92697-2025, USA
| | - Marco Garavelli
- Dipartimento di Chimica G. Ciamician, Università di Bologna, V. F. Selmi 2, 40126 Bologna, Italy. and Laboratoire de Chimie, Ecole Normale Suprieure de Lyon, 46, allée d'Italie, 69364 Lyon, France
| |
Collapse
|
23
|
Curchod BFE, Rauer C, Marquetand P, González L, Martínez TJ. Communication: GAIMS—Generalized Ab Initio Multiple Spawning for both internal conversion and intersystem crossing processes. J Chem Phys 2016; 144:101102. [DOI: 10.1063/1.4943571] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Basile F. E. Curchod
- Department of Chemistry and the PULSE Institute, Stanford University, Stanford, California 94305, USA
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Clemens Rauer
- Institute of Theoretical Chemistry, University of Vienna, Währinger Straße 17, 1090 Vienna, Austria
| | - Philipp Marquetand
- Institute of Theoretical Chemistry, University of Vienna, Währinger Straße 17, 1090 Vienna, Austria
| | - Leticia González
- Institute of Theoretical Chemistry, University of Vienna, Währinger Straße 17, 1090 Vienna, Austria
| | - Todd J. Martínez
- Department of Chemistry and the PULSE Institute, Stanford University, Stanford, California 94305, USA
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| |
Collapse
|
24
|
Petit AS, Subotnik JE. Appraisal of Surface Hopping as a Tool for Modeling Condensed Phase Linear Absorption Spectra. J Chem Theory Comput 2015; 11:4328-41. [DOI: 10.1021/acs.jctc.5b00510] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Andrew S. Petit
- Department of Chemistry, University of Pennsylvania, 231 South
34th Street, Philadelphia, Pennsylvania 19104, United States
| | - Joseph E. Subotnik
- Department of Chemistry, University of Pennsylvania, 231 South
34th Street, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
25
|
Zimmermann T, Vaníček J. Efficient on-the-fly ab initio semiclassical method for computing time-resolved nonadiabatic electronic spectra with surface hopping or Ehrenfest dynamics. J Chem Phys 2015; 141:134102. [PMID: 25296779 DOI: 10.1063/1.4896735] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We derive a somewhat crude, yet very efficient semiclassical approximation for computing nonadiabatic spectra. The resulting method, which is a generalization of the multiple-surface dephasing representation, includes quantum effects through interference of mixed quantum-classical trajectories and through quantum treatment of the collective electronic degree of freedom. The method requires very little computational effort beyond the fewest-switches surface hopping or Ehrenfest locally mean-field dynamics and is very easy to implement. The proposed approximation is tested by computing the absorption and time-resolved stimulated emission spectra of pyrazine using the four-dimensional three-surface model which allows for comparison with the numerically exact quantum spectra. As expected, the multiple-surface dephasing representation is not suitable for high-resolution linear spectra, yet it seems to capture all the important features of pump-probe spectra. Finally, the method is combined with on-the-fly ab initio evaluation of the electronic structure (i.e., energies, forces, electric-dipole, and nonadiabatic couplings) in order to compute fully dimensional nonadiabatic spectra of pyrazine without approximations inherent to analytical, including vibronic-coupling models. The Appendix provides derivations of perturbative expressions for linear and pump-probe spectra of arbitrary mixed states and for arbitrary laser pulse shapes.
Collapse
Affiliation(s)
- Tomáš Zimmermann
- Laboratory of Theoretical Physical Chemistry, Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Jiří Vaníček
- Laboratory of Theoretical Physical Chemistry, Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| |
Collapse
|
26
|
Petit AS, Subotnik JE. Calculating time-resolved differential absorbance spectra for ultrafast pump-probe experiments with surface hopping trajectories. J Chem Phys 2014; 141:154108. [DOI: 10.1063/1.4897258] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Affiliation(s)
- Andrew S. Petit
- Department of Chemistry, University of Pennsylvania, 231 S. 34th Street, Philadelphia, Pennsylvania 19104, USA
| | - Joseph E. Subotnik
- Department of Chemistry, University of Pennsylvania, 231 S. 34th Street, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
27
|
Bai S, Xie W, Shi Q. A new trajectory branching approximation to propagate the mixed quantum-classical Liouville equation. J Phys Chem A 2014; 118:9262-71. [PMID: 24964189 DOI: 10.1021/jp503522g] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Starting from the mixed quantum-classical Liouville (MQCL) equation, we derive a new trajectory branching method as a modification to the conventional mean field approximation. In the new method, the mean field approximation is used to propagate the mixed quantum-classical dynamics for short times. When the mean field description becomes invalid, new trajectories are added in the simulation by branching the single trajectory into multiple ones. To achieve this, a new set of variables are defined to monitor the deviations of the dynamics on different potential energy surfaces from the reference mean field trajectory, and their equations of motion are derived from the MQCL equation based on the method of first moment expansion. The new method is tested on several one-dimensional two surface problems and is shown to correctly solve the problem of the mean field approximation in several cases.
Collapse
Affiliation(s)
- Shuming Bai
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences , Zhongguancun, Beijing 100190, China
| | | | | |
Collapse
|
28
|
Makhov DV, Glover WJ, Martinez TJ, Shalashilin DV. Ab initio multiple cloning algorithm for quantum nonadiabatic molecular dynamics. J Chem Phys 2014; 141:054110. [DOI: 10.1063/1.4891530] [Citation(s) in RCA: 139] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Dmitry V. Makhov
- Department of Chemistry, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - William J. Glover
- Department of Chemistry and The PULSE Institute, Stanford University, Stanford, California 94305, USA and SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Todd J. Martinez
- Department of Chemistry and The PULSE Institute, Stanford University, Stanford, California 94305, USA and SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | | |
Collapse
|
29
|
Petit AS, Subotnik JE. How to calculate linear absorption spectra with lifetime broadening using fewest switches surface hopping trajectories: A simple generalization of ground-state Kubo theory. J Chem Phys 2014; 141:014107. [DOI: 10.1063/1.4884945] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Andrew S. Petit
- Department of Chemistry, University of Pennsylvania, 231 S. 34th Street, Philadelphia, Pennsylvania 19104, USA
| | - Joseph E. Subotnik
- Department of Chemistry, University of Pennsylvania, 231 S. 34th Street, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
30
|
Ouyang W, Subotnik JE. Estimating the entropy and quantifying the impurity of a swarm of surface-hopping trajectories: A new perspective on decoherence. J Chem Phys 2014; 140:204102. [DOI: 10.1063/1.4876491] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
31
|
Kocia L, Heller EJ. Generalized dephasing relation for fidelity and application as an efficient propagator. J Chem Phys 2013; 139:124110. [DOI: 10.1063/1.4820880] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
32
|
Zambrano E, Šulc M, Vaníček J. Improving the accuracy and efficiency of time-resolved electronic spectra calculations: Cellular dephasing representation with a prefactor. J Chem Phys 2013; 139:054109. [DOI: 10.1063/1.4817005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|