1
|
Kundu N, Nandi D. Observation of Renner-Teller and predissociation coupled vibronic intensity borrowing in dissociative electron attachment to OCS. J Chem Phys 2024; 160:114315. [PMID: 38506287 DOI: 10.1063/5.0188833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 02/27/2024] [Indexed: 03/21/2024] Open
Abstract
We use a time-of-flight-based velocity map imaging method to look into the dissociative electron attachment to a linear OCS molecule at electron beam energies ranging from 4.5 to 8.5 eV. The conical time-gated wedge slice imaging method is utilized to extract fragments' slice images, kinetic energy (KE), and angular distributions, which provide a complete kinematic understanding of this experiment on the dissociative electron attachment process. We observe that the formation of S- is relatively higher than the O- product. Three distinct dissociative KE bands of S-/OCS have been observed for the 5.0 and 6.5 eV resonance positions. We notice a prominent rovibrationally coupled bimodality for each KE band in the variation of the most probable KE values. When the electron energy is changed from 5.5 to 6.0 eV, we observed vibronic intensity borrowing in the highest momentum band of S- via the Σ → Π symmetric dipole-forbidden transitions within the 1.5 eV energy gap. Multiple peaks in the angular distributions of S- and their modeling indicate the presence of Renner-Teller vibronic splitting. Using Q-Chem's implemented complex absorbing potential-equation of motion-electron affinity coupled cluster singles and doubles aug-cc-pVDZ+4s3p level of multireference-based electronic structure theory, we confirm the presence of OCS temporary negative ion bending vibrations and Renner-Teller vibronic splittings for the Π symmetric states. Additionally, we notice the presence of a non-radiative predissociation continuum (bringing down the rotational spectrum) and speed-dependent angular anisotropy in the S- fragmentation. Our findings at the resonance of OCS at 6.5 eV closely align with the prediction of vibronic intensity borrowing by Orlandi and Siebrand [J. Chem. Phys. 58, 4513 (1973)].
Collapse
Affiliation(s)
- Narayan Kundu
- Department of Physical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, India
| | - Dhananjay Nandi
- Department of Physical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, India
- Center for Atomic, Molecular and Optical Sciences and Technologies, Joint Initiative of IIT Tirupati and IISER Tirupati, Yerpedu 517619, Andhra Pradesh, India
| |
Collapse
|
2
|
Liu Q, Li Z, Liu P, Yang X, Yu S. Resonance-state selective photodissociation dynamics of OCS + hv → CS(X1Σ+) + O(3Pj=2,1,0) via the 21Σ+ state. J Chem Phys 2023; 158:2888161. [PMID: 37139996 DOI: 10.1063/5.0150850] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 04/21/2023] [Indexed: 05/05/2023] Open
Abstract
Understanding vacuum ultraviolet photodissociation dynamics of Carbonyl sulfide (OCS) is of considerable importance in the study of atmospheric chemistry. Yet, photodissociation dynamics of the CS(X1Σ+) + O(3Pj=2,1,0) channels following excitation to the 21Σ+(ν1',1,0) state has not been clearly understood so far. Here, we investigate the O(3Pj=2,1,0) elimination dissociation processes in the resonance-state selective photodissociation of OCS between 147.24 and 156.48 nm by using the time-sliced velocity-mapped ion imaging technique. The total kinetic energy release spectra are found to exhibit highly structured profiles, indicative of the formation of a broad range of vibrational states of CS(1Σ+). The fitted CS(1Σ+) vibrational state distributions differ for the three 3Pj spin-orbit states, but a general trend of the inverted characteristics is observed. Additionally, the wavelength-dependent behaviors are also observed in the vibrational populations for CS(1Σ+, v). The CS(X1Σ+, v = 0) has a significantly strong population at several shorter wavelengths, and the most populated CS(X1Σ+, v) is gradually transferred to a higher vibrational state with the decrease in the photolysis wavelength. The measured overall β-values for the three 3Pj spin-orbit channels slightly increase and then abruptly decrease as the photolysis wavelength increases, while the vibrational dependences of β-values show an irregularly decreasing trend with increasing CS(1Σ+) vibrational excitation at all studied photolysis wavelengths. The comparison of the experimental observations for this titled channel and the S(3Pj) channel reveals that two different intersystem crossing mechanisms may be involved in the formation of the CS(X1Σ+) + O(3Pj=2,1,0) photoproducts via the 21Σ+ state.
Collapse
Affiliation(s)
- Qian Liu
- Hangzhou Institute of Advanced Studies, Zhejiang Normal University, 1108 Gengwen Road, Hangzhou 311231, Zhejiang Province, People's Republic of China
| | - Zheng Li
- Hangzhou Institute of Advanced Studies, Zhejiang Normal University, 1108 Gengwen Road, Hangzhou 311231, Zhejiang Province, People's Republic of China
| | - Peng Liu
- Hangzhou Institute of Advanced Studies, Zhejiang Normal University, 1108 Gengwen Road, Hangzhou 311231, Zhejiang Province, People's Republic of China
| | - Xueming Yang
- Hangzhou Institute of Advanced Studies, Zhejiang Normal University, 1108 Gengwen Road, Hangzhou 311231, Zhejiang Province, People's Republic of China
- State Key Laboratory of Molecular Reaction Dynamics and Dalian Coherent Light Source, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, Liaoning 116023, People's Republic of China
- Department of Chemistry, College of Science, Southern University of Science and Technology, Shenzhen 518055, People's Republic of China
| | - Shengrui Yu
- Hangzhou Institute of Advanced Studies, Zhejiang Normal University, 1108 Gengwen Road, Hangzhou 311231, Zhejiang Province, People's Republic of China
| |
Collapse
|
3
|
Li Z, Liao H, Yang W, Yang X, Yu S. Vacuum ultraviolet photodissociation of OCS via the 2 1Σ + state: the S( 1D 2) elimination channel. Phys Chem Chem Phys 2022; 24:17870-17878. [PMID: 35851633 DOI: 10.1039/d2cp02044k] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The photodissociation of OCS is necessary to model the primary photochemical processes of OCS in the global cycling of sulfur and interstellar photochemistry. Here, by combining the time-sliced velocity-map ion imaging technique with the single vacuum ultraviolet photon ionization method, we have studied the CO(1Σ+, v) + S(1D2) photoproduct channel from the OCS photodissociation via the eight different vibrational resonances ( = 1-8) in the 21Σ+(, 1, 0) ← X1Σ+(0, 0, 0) band. From the measured S(1D2) images, the wavelength-dependent CO(1Σ+, v) vibrational state populations have been obtained in the wavelength range of 142.98-154.37 nm. The majority of the CO(1Σ+, v) photoproducts are shown to abruptly populate from low vibrational states to high vibrational states as the photolysis wavelength decreases from 152.38 to 148.92 nm. The anisotropy parameters (β) for the CO(1Σ+, v) + S(1D2) channel have also been determined from the images of the S(1D2) photoproducts. It is found that the vibrational state-specific β-values present a similar decreasing trend with increasing CO vibrational excitation for all the eight vibrational resonances of OCS*(21Σ+). These observations indicate that there is a possibility that more than one non-adiabatic dissociation pathways with different dissociation lifetimes are involved in the formation of CO(1Σ+) + S(1D2) photoproducts from the initial vibronic levels of the 21Σ+ state to the final dissociative state.
Collapse
Affiliation(s)
- Zheng Li
- Hangzhou Institute of Advanced Studies, Zhejiang Normal University, 1108 Gengwen Road, Hangzhou, 311231, Zhejiang Province, P. R. China.
| | - Hong Liao
- Hangzhou Institute of Advanced Studies, Zhejiang Normal University, 1108 Gengwen Road, Hangzhou, 311231, Zhejiang Province, P. R. China.
| | - Wenshao Yang
- Hangzhou Institute of Advanced Studies, Zhejiang Normal University, 1108 Gengwen Road, Hangzhou, 311231, Zhejiang Province, P. R. China.
| | - Xueming Yang
- Hangzhou Institute of Advanced Studies, Zhejiang Normal University, 1108 Gengwen Road, Hangzhou, 311231, Zhejiang Province, P. R. China. .,State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, Liaoning Province, P. R. China.,Department of Chemistry, College of Science, Southern University of Science and Technology, 1088 Xueyuan Road, Shenzhen, 518055, P. R. China
| | - Shengrui Yu
- Hangzhou Institute of Advanced Studies, Zhejiang Normal University, 1108 Gengwen Road, Hangzhou, 311231, Zhejiang Province, P. R. China.
| |
Collapse
|
4
|
Wang SJ, Daněk J, Blaga CI, DiMauro LF, Biegert J, Lin CD. Two-dimensional retrieval methods for ultrafast imaging of molecular structure using laser-induced electron diffraction. J Chem Phys 2021; 155:164104. [PMID: 34717362 DOI: 10.1063/5.0064761] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Molecular structural retrieval based on electron diffraction has been proposed to determine the atomic positions of molecules with sub-angstrom spatial and femtosecond temporal resolutions. Given its success on small molecular systems, in this work, we point out that the accuracy of structure retrieval is constrained by the availability of a wide range of experimental data in the momentum space in all molecular systems. To mitigate the limitations, for laser-induced electron diffraction, here we retrieve molecular structures using two-dimensional (energy and angle) electron momentum spectra in the laboratory frame for a number of small molecular systems, which have previously been studied with 1D methods. Compared to the conventional single-energy or single-angle analysis, our 2D methods effectively expand the momentum range of the measured data. Besides utilization of the 2D data, two complementary methods are developed for consistency check on the retrieved results. The 2D nature of our methods also offers a way of estimating the error from retrieval, which has never been explored before. Comparing with results from prior experiments, our findings show evidence that our 2D methods outperform the conventional 1D methods. Paving the way to the retrieval of large molecular systems, in which their tunneling ionization rates are challenging to obtain, we estimate the error of using the isotropic model in place of including the orientation-dependent ionization rate.
Collapse
Affiliation(s)
- Su-Ju Wang
- J. R. Macdonald Laboratory, Department of Physics, Kansas State University, Manhattan, Kansas 66506, USA
| | - Jiří Daněk
- J. R. Macdonald Laboratory, Department of Physics, Kansas State University, Manhattan, Kansas 66506, USA
| | - Cosmin I Blaga
- J. R. Macdonald Laboratory, Department of Physics, Kansas State University, Manhattan, Kansas 66506, USA
| | - Louis F DiMauro
- Department of Physics, The Ohio State University, Columbus, Ohio 43210, USA
| | - Jens Biegert
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels, Barcelona, Spain
| | - C D Lin
- J. R. Macdonald Laboratory, Department of Physics, Kansas State University, Manhattan, Kansas 66506, USA
| |
Collapse
|
5
|
Karamatskos ET, Yarlagadda S, Patchkovskii S, Vrakking MJJ, Welsch R, Küpper J, Rouzée A. Time-resolving the UV-initiated photodissociation dynamics of OCS. Faraday Discuss 2021; 228:413-431. [PMID: 33570531 DOI: 10.1039/d0fd00119h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
We present a time-resolved study of the photodissociation dynamics of OCS after UV-photoexcitation at λ = 237 nm. OCS molecules (X1Σ+) were primarily excited to the 11A'' and the 21A' Renner-Teller components of the 1Σ- and 1Δ states. Dissociation into CO and S fragments was observed through time-delayed strong-field ionisation and imaging of the kinetic energy of the resulting CO+ and S+ fragments by intense 790 nm laser pulses. Surprisingly, fast oscillations with a period of ∼100 fs were observed in the S+ channel of the UV dissociation. Based on wavepacket-dynamics simulations coupled with a simple electrostatic-interaction model, these oscillations do not correspond to the known highly-excited rotational motion of the leaving CO(X1Σ+, J ≫ 0) fragments, which has a timescale of ∼140 fs. Instead, we suggest to assign the observed oscillations to the excitation of vibrational wavepackets in the 23A'' or 21A'' states of the molecule that predissociate to form S(3PJ) photoproducts.
Collapse
Affiliation(s)
- Evangelos T Karamatskos
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany. and Department of Physics, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
| | | | | | | | - Ralph Welsch
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany. and Center for Ultrafast Imaging, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Jochen Küpper
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany. and Department of Physics, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany and Center for Ultrafast Imaging, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Arnaud Rouzée
- Max Born Institute, Max-Born-Straße 2a, 12489 Berlin, Germany.
| |
Collapse
|
6
|
Ling C, Liao H, Yuan D, Chen W, Tan Y, Li W, Yu S, Yang X, Wang X. Vacuum ultraviolet photodissociation dynamics of OCS + hv → CO( 1Σ +) + S( 1S 0) via the E and F Rydberg states. Phys Chem Chem Phys 2021; 23:5809-5816. [PMID: 33684186 DOI: 10.1039/d1cp00078k] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The state-resolved photodissociation of the CO(1Σ+) + S(1S0) photoproduct channel, formed by vacuum ultraviolet photoexcitation of OCS to a progression of the symmetric stretching vibration (ν1') in the E and F states, has been investigated by using the time-sliced velocity map ion imaging technique. The total kinetic energy release spectra and the vibrational state specific anisotropy parameters (β) were obtained based on the raw images of S(1S0) photoproducts detected in the wavelength ranges of 134.40-140.98 nm, respectively. Except for vibrational band origins, the CO(1Σ+) photoproducts are found to have more significant populations at highly vibrationally excited states as the symmetric stretching vibrational excitation of the E and F states increases. Furthermore, the vibrational-state specific β values for the CO(1Σ+) + S(1S0) channel via the E and F states both show a sudden change from negative to positive in the vicinity of moderately vibronic levels of the E and F states. This anomalous phenomenon suggests that multiple excited states with different symmetries are involved in the photoexcitation process at relatively short photolysis wavelengths due to the strong vibronic couplings existing in the higher vibronic levels of the E and F states, and the formation of CO(1Σ+) + S(1S0) photoproducts may proceed by different nonadiabatic interactions from the prepared excited states to the lower dissociative state 1Σ+, with strong dependence of the initially symmetric stretching excitation in the Rydberg-type transitions.
Collapse
Affiliation(s)
- Caining Ling
- Hangzhou Institute of Advanced Studies, Zhejiang Normal University, 1108 Gengwen Road, Hangzhou 311231, Zhejiang, P. R. China.
| | - Hong Liao
- Hangzhou Institute of Advanced Studies, Zhejiang Normal University, 1108 Gengwen Road, Hangzhou 311231, Zhejiang, P. R. China.
| | - Daofu Yuan
- Center for Advanced Chemical Physics and Department of Chemical Physics, School of Chemistry and Materials Science, University of Science and Technology of China, 96 Jinzhai Road, Hefei 230026, Anhui, P. R. China.
| | - Wentao Chen
- Center for Advanced Chemical Physics and Department of Chemical Physics, School of Chemistry and Materials Science, University of Science and Technology of China, 96 Jinzhai Road, Hefei 230026, Anhui, P. R. China.
| | - Yuxin Tan
- Center for Advanced Chemical Physics and Department of Chemical Physics, School of Chemistry and Materials Science, University of Science and Technology of China, 96 Jinzhai Road, Hefei 230026, Anhui, P. R. China.
| | - Wantao Li
- Hangzhou Institute of Advanced Studies, Zhejiang Normal University, 1108 Gengwen Road, Hangzhou 311231, Zhejiang, P. R. China.
| | - Shengrui Yu
- Hangzhou Institute of Advanced Studies, Zhejiang Normal University, 1108 Gengwen Road, Hangzhou 311231, Zhejiang, P. R. China.
| | - Xueming Yang
- Hangzhou Institute of Advanced Studies, Zhejiang Normal University, 1108 Gengwen Road, Hangzhou 311231, Zhejiang, P. R. China. and State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, Liaoning, P. R. China
| | - Xingan Wang
- Center for Advanced Chemical Physics and Department of Chemical Physics, School of Chemistry and Materials Science, University of Science and Technology of China, 96 Jinzhai Road, Hefei 230026, Anhui, P. R. China.
| |
Collapse
|
7
|
Sanchez A, Amini K, Wang SJ, Steinle T, Belsa B, Danek J, Le AT, Liu X, Moshammer R, Pfeifer T, Richter M, Ullrich J, Gräfe S, Lin CD, Biegert J. Molecular structure retrieval directly from laboratory-frame photoelectron spectra in laser-induced electron diffraction. Nat Commun 2021; 12:1520. [PMID: 33750798 PMCID: PMC7943781 DOI: 10.1038/s41467-021-21855-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 02/17/2021] [Indexed: 01/31/2023] Open
Abstract
Ubiquitous to most molecular scattering methods is the challenge to retrieve bond distance and angle from the scattering signals since this requires convergence of pattern matching algorithms or fitting methods. This problem is typically exacerbated when imaging larger molecules or for dynamic systems with little a priori knowledge. Here, we employ laser-induced electron diffraction (LIED) which is a powerful means to determine the precise atomic configuration of an isolated gas-phase molecule with picometre spatial and attosecond temporal precision. We introduce a simple molecular retrieval method, which is based only on the identification of critical points in the oscillating molecular interference scattering signal that is extracted directly from the laboratory-frame photoelectron spectrum. The method is compared with a Fourier-based retrieval method, and we show that both methods correctly retrieve the asymmetrically stretched and bent field-dressed configuration of the asymmetric top molecule carbonyl sulfide (OCS), which is confirmed by our quantum-classical calculations.
Collapse
Affiliation(s)
- A Sanchez
- ICFO - Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - K Amini
- ICFO - Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - S-J Wang
- Department of Physics, J. R. Macdonald Laboratory, Kansas State University, Manhattan, KS, USA
| | - T Steinle
- ICFO - Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - B Belsa
- ICFO - Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - J Danek
- Department of Physics, J. R. Macdonald Laboratory, Kansas State University, Manhattan, KS, USA
| | - A T Le
- Department of Physics, J. R. Macdonald Laboratory, Kansas State University, Manhattan, KS, USA
- Department of Physics, Missouri University of Science and Technology, Rolla, MO, USA
| | - X Liu
- ICFO - Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - R Moshammer
- Max-Planck-Institut für Kernphysik, Heidelberg, Germany
| | - T Pfeifer
- Max-Planck-Institut für Kernphysik, Heidelberg, Germany
| | - M Richter
- Physikalisch-Technische Bundesanstalt, Braunschweig, Germany
| | - J Ullrich
- Max-Planck-Institut für Kernphysik, Heidelberg, Germany
- Physikalisch-Technische Bundesanstalt, Braunschweig, Germany
| | - S Gräfe
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich-Schiller-Universität Jena, Jena, Germany
| | - C D Lin
- Department of Physics, J. R. Macdonald Laboratory, Kansas State University, Manhattan, KS, USA
| | - J Biegert
- ICFO - Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, Barcelona, Spain.
- ICREA, Barcelona, Spain.
| |
Collapse
|
8
|
Chichinin A, Maul C, Gericke KH. Ultraviolet photodissociation dynamics of PCl 3 at 235 nm: three-dimensional ion imaging and theoretical analysis. Phys Chem Chem Phys 2021; 23:13583-13593. [PMID: 34110344 DOI: 10.1039/d1cp01396c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The photodissociation dynamics of PCl3 at 235 nm has been studied by monitoring ground state Cl(2P3/2) and spin-orbitally excited Cl(2P1/2) atoms by resonance enhanced multiphoton ionization (REMPI). Also, the PCln+ (n = 0, 1, 2) photoions were observed non-resonantly. The speed distributions and speed-dependent anisotropy parameters β for all these particles have been determined by three-dimensional photofragment ion imaging. The β parameters are close to zero for all these particles. The relative yield of excited Cl(2P1/2) atoms for photodissociation of PCl3 is 0.49 ± 0.03. The speed distributions of Cl(2P3/2) and Cl(2P1/2) atoms are bimodal, mainly resulting from the sequential photodissociation PCl3 → PCl2 → PCl. Near-resonant two-photon ionisation followed by near-resonance one-photon photodissociation is proposed for the production of PCln+ photoions. Using Condon's reflection principle, we constructed the vibrational mode dependent absorption spectrum by accounting for the vibrational motion for all six normal coordinates. As a result, the absorption of 235 nm radiation by PCl3 occurs due to zero vibrational motion rather far from the equilibrium geometry. In particular, movement along the Q2 normal coordinate results in an efficient photoinduced transition into the excited state à of D3h symmetry due to a parallel transition.
Collapse
Affiliation(s)
- A Chichinin
- Institute of Chemical Kinetics and Combustion, 630090 Novosibirsk, Russia.
| | - C Maul
- Institut für Physikalische und Theoretische Chemie, Technische Universität Braunschweig, 38106 Braunschweig, Germany.
| | - K-H Gericke
- Institut für Physikalische und Theoretische Chemie, Technische Universität Braunschweig, 38106 Braunschweig, Germany.
| |
Collapse
|
9
|
Allum F, Mason R, Burt M, Slater CS, Squires E, Winter B, Brouard M. Post extraction inversion slice imaging for 3D velocity map imaging experiments. Mol Phys 2020. [DOI: 10.1080/00268976.2020.1842531] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Felix Allum
- The Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, UK
| | - Robert Mason
- The Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, UK
| | - Michael Burt
- The Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, UK
| | - Craig S. Slater
- The Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, UK
| | - Eleanor Squires
- The Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, UK
| | - Benjamin Winter
- The Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, UK
| | - Mark Brouard
- The Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, UK
| |
Collapse
|
10
|
Wang SW, Yuan DF, Chen WT, Tang L, Yu SR, Yang XM, Wang XA. Photodissociation dynamics of OCS near 128 nm: S(3PJ=2,1,0), S(1D2) and S(1S0) channels. CHINESE J CHEM PHYS 2020. [DOI: 10.1063/1674-0068/cjcp1911179] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Affiliation(s)
- Si-wen Wang
- Hefei National Laboratory for Materials Science at the Microscale and Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| | - Dao-fu Yuan
- Hefei National Laboratory for Materials Science at the Microscale and Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| | - Wen-tao Chen
- Hefei National Laboratory for Materials Science at the Microscale and Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| | - Ling Tang
- Hefei National Laboratory for Materials Science at the Microscale and Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| | - Sheng-rui Yu
- Hangzhou Institute of Advanced Studies, Zhejiang Normal University, Hangzhou 311231, China
| | - Xue-ming Yang
- State key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- School of Science, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xing-an Wang
- Hefei National Laboratory for Materials Science at the Microscale and Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
11
|
Chen W, Zhang L, Yuan D, Chang Y, Yu S, Wang S, Wang T, Jiang B, Yuan K, Yang X, Wang X. Observation of the Carbon Elimination Channel in Vacuum Ultraviolet Photodissociation of OCS. J Phys Chem Lett 2019; 10:4783-4787. [PMID: 31378065 DOI: 10.1021/acs.jpclett.9b01811] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The textbook mechanism for OCS photodissociation mainly involves the CO + S or CS + O product channel via a single bond fission. However, a third dissociation channel concerning the cleavage of both C-S and C-O bonds yielding SO + C products, though thermodynamically allowed, has never been verified experimentally to date. By using a tunable vacuum ultraviolet laser light and time-sliced velocity map ion imaging technique, we have clearly observed the SO(X3Σ-) + C(3PJ=0) products as the vacuum ultraviolet laser photon energy gradually exceeds its thermodynamic threshold. The corresponding SO(X3Σ-) coproducts are highly vibrationally excited and show varying angular distributions from isotropic to anisotropic as the excitation photon energy increases. Theoretical analysis suggests that a fast nonadiabatic pathway plays a dominant role in the formation of the anisotropic SO products. That isotropic products arise as the excitation photon energies approach the thermodynamic threshold can be reasonably explained by the "roaming mechanism".
Collapse
Affiliation(s)
- Wentao Chen
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| | - Liang Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| | - Daofu Yuan
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| | - Yao Chang
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Shengrui Yu
- Hangzhou Institute of Advanced Studies, Zhejiang Normal University, Hangzhou 311231, China
| | - Siwen Wang
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| | - Tao Wang
- Department of Chemistry, School of Science, Southern University of Science and Technology, Shenzhen 518055, China
| | - Bin Jiang
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| | - Kaijun Yuan
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Xueming Yang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- Department of Chemistry, School of Science, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xingan Wang
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
12
|
Lara-Cruz GA, Moyano GE. OCS isomerization and dissociation kinetics from statistical models. Theor Chem Acc 2018. [DOI: 10.1007/s00214-018-2253-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
13
|
Toulson BW, Murray C. Decomposing the First Absorption Band of OCS Using Photofragment Excitation Spectroscopy. J Phys Chem A 2016; 120:6745-52. [PMID: 27552402 DOI: 10.1021/acs.jpca.6b06060] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Photofragment excitation spectra of carbonyl sulfide (OCS) have been recorded from 212-260 nm by state-selectively probing either electronically excited S((1)D) or ground state S((3)P) photolysis products via 2 + 1 resonance-enhanced multiphoton ionization. Probing the major S((1)D) product results in a broad, unstructured action spectrum that reproduces the overall shape of the first absorption band. In contrast, spectra obtained probing S((3)P) products display prominent resonances superimposed on a broad continuum; the resonances correspond to the diffuse vibrational structure observed in the conventional absorption spectrum. The vibrational structure is assigned to four progressions, each dominated by the C-S stretch, ν1, following direct excitation to quasi-bound singlet and triplet states. The S((3)PJ) products are formed with a near-statistical population distribution over the J = 2, 1, and 0 spin-orbit levels across the wavelength range investigated. Although a minor contributor to the S atom yield near the peak of the absorption cross section, the relative yield of S((3)P) increases significantly at longer wavelengths. The experimental measurements validate recent theoretical work characterizing the electronic states responsible for the first absorption band by Schmidt and co-workers.
Collapse
Affiliation(s)
- Benjamin W Toulson
- Department of Chemistry, University of California, Irvine , Irvine, California 92697, United States
| | - Craig Murray
- Department of Chemistry, University of California, Irvine , Irvine, California 92697, United States
| |
Collapse
|
14
|
Wei W, Wallace CJ, McBane GC, North SW. Photodissociation dynamics of OCS near 214 nm using ion imaging. J Chem Phys 2016; 145:024310. [PMID: 27421408 DOI: 10.1063/1.4955189] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The OCS photodissociation dynamics of the dominant S((1)D2) channel near 214 nm have been studied using velocity map ion imaging. We report a CO vibrational branching ratio of 0.79:0.21 for v = 0:v = 1, indicating substantially higher vibrational excitation than that observed at slightly longer wavelengths. The CO rotational distribution is bimodal for both v = 0 and v = 1, although the bimodality is less pronounced than at longer wavelengths. Vector correlations, including rotational alignment, indicate that absorption to both the 2(1)A' (A) and 1(1)A″ (B) states is important in the lower-j part of the rotational distribution, while only 2(1)A' state absorption contributes to the upper part; this conclusion is consistent with work at longer wavelengths. Classical trajectory calculations including surface hopping reproduce the measured CO rotational distributions and their dependence on wavelength well, though they underestimate the v = 1 population. The calculations indicate that the higher-j peak in the rotational distribution arises from molecules that begin on the 2(1)A' state but make nonadiabatic transitions to the 1(1)A' (X) state during the dissociation, while the lower-j peak arises from direct photodissociation on either the 2(1)A' or the 1(1)A″ states, as found in previous work.
Collapse
Affiliation(s)
- Wei Wei
- Department of Chemistry, Texas A&M University, College Station, Texas 77842, USA
| | - Colin J Wallace
- Department of Chemistry, Texas A&M University, College Station, Texas 77842, USA
| | - George C McBane
- Department of Chemistry, Grand Valley State University, Allendale, Michigan 49401, USA
| | - Simon W North
- Department of Chemistry, Texas A&M University, College Station, Texas 77842, USA
| |
Collapse
|
15
|
Weeraratna C, Amarasinghe C, Fernando R, Tiwari V, Suits AG. Convenient (1 + 1) probe of S(1D2) and application to photodissociation of carbonyl sulfide at 216.9 nm. Chem Phys Lett 2016. [DOI: 10.1016/j.cplett.2016.05.067] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
16
|
Amini K, Blake S, Brouard M, Burt MB, Halford E, Lauer A, Slater CS, Lee JWL, Vallance C. Three-dimensional imaging of carbonyl sulfide and ethyl iodide photodissociation using the pixel imaging mass spectrometry camera. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2015; 86:103113. [PMID: 26520946 DOI: 10.1063/1.4934544] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The Pixel Imaging Mass Spectrometry (PImMS) camera is used in proof-of-principle three-dimensional imaging experiments on the photodissociation of carbonyl sulfide and ethyl iodide at wavelengths around 230 nm and 245 nm, respectively. Coupling the PImMS camera with DC-sliced velocity-map imaging allows the complete three-dimensional Newton sphere of photofragment ions to be recorded on each laser pump-probe cycle with a timing precision of 12.5 ns, yielding velocity resolutions along the time-of-flight axis of around 6%-9% in the applications presented.
Collapse
Affiliation(s)
- K Amini
- The Physical and Theoretical Chemistry Laboratory, The Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, United Kingdom
| | - S Blake
- The Physical and Theoretical Chemistry Laboratory, The Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, United Kingdom
| | - M Brouard
- The Physical and Theoretical Chemistry Laboratory, The Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, United Kingdom
| | - M B Burt
- The Physical and Theoretical Chemistry Laboratory, The Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, United Kingdom
| | - E Halford
- The Physical and Theoretical Chemistry Laboratory, The Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, United Kingdom
| | - A Lauer
- The Physical and Theoretical Chemistry Laboratory, The Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, United Kingdom
| | - C S Slater
- The Physical and Theoretical Chemistry Laboratory, The Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, United Kingdom
| | - J W L Lee
- The Chemistry Research Laboratory, The Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - C Vallance
- The Chemistry Research Laboratory, The Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| |
Collapse
|
17
|
Schmidt JA, Johnson MS, McBane GC, Schinke R. The ultraviolet spectrum of OCS from first principles: Electronic transitions, vibrational structure and temperature dependence. J Chem Phys 2012; 137:054313. [DOI: 10.1063/1.4739756] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
|
18
|
Wu SM, Yang X, Parker DH. Velocity map imaging study of OCS photodissociation followed by S(1S) autoionization at 157 nm. Mol Phys 2011. [DOI: 10.1080/00268970500054714] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Shiou-Min Wu
- a Department of Molecular and Laser Physics, Institute for Molecules and Materials , Radboud University Nijmegen , Nijmegen , NL-6500 GL , The Netherlands
| | - Xueming Yang
- b State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics , Chinese Academy of Sciences , Dalian, Liaoning , 116023 , People's Republic of China
| | - David H. Parker
- a Department of Molecular and Laser Physics, Institute for Molecules and Materials , Radboud University Nijmegen , Nijmegen , NL-6500 GL , The Netherlands
| |
Collapse
|
19
|
Lipciuc ML, Rakitzis TP, Meerts WL, Groenenboom GC, Janssen MHM. Towards the complete experiment: measurement of S(1D2) polarization in correlation with single rotational states of CO(J) from the photodissociation of oriented OCS(v2 = 1|JlM = 111). Phys Chem Chem Phys 2011; 13:8549-59. [DOI: 10.1039/c0cp02671a] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
20
|
Chichinin AI, Gericke KH, Kauczok S, Maul C. Imaging chemical reactions – 3D velocity mapping. INT REV PHYS CHEM 2009. [DOI: 10.1080/01442350903235045] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
21
|
|
22
|
Lipciuc ML, Janssen MHM. Slice imaging of the quantum state-to-state cross section for photodissociation of state-selected rovibrational bending states of OCS (v2=0,1,2∣JlM)+hν→CO(J)+S(D21). J Chem Phys 2007; 126:194318. [PMID: 17523815 DOI: 10.1063/1.2737450] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Using hexapole quantum state-selection of OCS (v(2)=0,1,2/JlM) and high-resolution slice imaging of quantum state-selected CO(J), the state-to-state cross section OCS (v(2)=0,1,2/JlM)+hnu-->CO(J)+S((1)D(2)) was measured for bending states up to v(2)=2. The population density of the state-selected OCS (v(2)=0,1,2 /JlM) in the molecular beam was obtained by resonantly enhanced multiphoton ionization of OCS and comparison with room temperature bulk gas. A strong increase of the cross section with increasing bending state is observed for CO(J) in the high J region, J=60-67. Integrating over all J states the authors find sigma(v(2)=0):sigma(v(2)=1):sigma(v(2)=2)=1.0:7.0:15.0. A quantitative comparison is made with the dependence of the transition dipole moment function on the bending angle.
Collapse
Affiliation(s)
- M Laura Lipciuc
- Department of Chemistry, Laser Centre, Vrije Universiteit, de Boelelaan 1083, 1081 HV Amsterdam, The Netherlands
| | | |
Collapse
|
23
|
Lee SK, Silva R, Thamanna S, Vasyutinskii OS, Suits AG. S(D21) atomic orbital polarization in the photodissociation of OCS at 193nm: Construction of the complete density matrix. J Chem Phys 2006; 125:144318. [PMID: 17042601 DOI: 10.1063/1.2357948] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The absolute velocity-dependent alignment and orientation for S(1D2) atoms from the photodissociation of OCS at 193 nm were measured using the dc slice imaging method. Three main peaks ascribed to specific groups of high rotational levels of CO in the vibrational ground state were found, with rotationally resolved rings in a fourth slow region ascribed to weak signals associated with excited vibrational states of CO. The observed speed-dependent beta and polarization parameters support the interpretation that there are two main dissociation processes: a simultaneous two-surface (A' and A") excitation and the initial single-surface (A') excitation followed by the nonadiabatic crossing to ground state. At 193 nm photodissociation, the nonadiabatic dissociation process is strongly enhanced relative to longer wavelengths. The angle- and speed-dependent S(1D2) density matrix can be constructed including the higher order (K = 3,4) contributions for the circularly polarized dissociation light. This was explicitly done for selected energies and angles. It was found in one case that the density matrix is sensitively affected by the rank 4 terms, suggesting that the higher order contributions should not be overlooked for an accurate picture of the dissociation dynamics in this system.
Collapse
Affiliation(s)
- Suk Kyoung Lee
- Department of Chemistry, Wayne State Univeristy, Detroit, Michigan 48202, USA
| | | | | | | | | |
Collapse
|
24
|
Ashfold MNR, Nahler NH, Orr-Ewing AJ, Vieuxmaire OPJ, Toomes RL, Kitsopoulos TN, Garcia IA, Chestakov DA, Wu SM, Parker DH. Imaging the dynamics of gas phase reactions. Phys Chem Chem Phys 2006; 8:26-53. [PMID: 16482242 DOI: 10.1039/b509304j] [Citation(s) in RCA: 240] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Ion imaging methods are making ever greater impact on studies of gas phase molecular reaction dynamics. This article traces the evolution of the technique, highlights some of the more important breakthroughs with regards to improving image resolution and in image processing and analysis methods, and then proceeds to illustrate some of the many applications to which the technique is now being applied--most notably in studies of molecular photodissociation and of bimolecular reaction dynamics.
Collapse
|
25
|
van den Brom AJ, Rakitzis TP, Janssen MHM. State-to-state photodissociation of carbonyl sulfide (ν2=0,1∣JlM). II. The effect of initial bending on coherence of S(D21) polarization. J Chem Phys 2005; 123:164313. [PMID: 16268703 DOI: 10.1063/1.2076647] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Photodissociation studies using ion imaging are reported, measuring the coherence of the polarization of the S((1)D(2)) fragment from the photolysis of single-quantum state-selected carbonyl sulfide (OCS) at 223 and 230 nm. A hexapole state-selector focuses a molecular beam of OCS parent molecules in the ground state (nu2=0mid R:JM=10) or in the first excited bending state (nu2=1mid R:JlM=111). At 230 nm photolysis the Im[a1 (1)(parallel, perpendicular)] moment for the fast S(1D2) channel increases by about 50% when the initial OCS parent state changes from the vibrationless ground state to the first excited bending state. No dependence on the initial bending state is found for photolysis at 223 nm. We observe separate rings in the slow channel of the velocity distribution of S(1D2) correlating to single CO(J) rotational states. The additional available energy for photolysis at 223 nm is found to be channeled mostly into the CO(J) rotational motion. An improved value for the OC-S bond energy D0=4.292 eV is reported.
Collapse
Affiliation(s)
- Alrik J van den Brom
- Laser Center and Department of Chemistry, Vrije Universiteit, de Boelelaan 1083, 1081 HV Amsterdam, The Netherlands
| | | | | |
Collapse
|
26
|
van den Brom AJ, Rakitzis TP, Janssen MHM. Photodissociation of laboratory oriented molecules: Revealing molecular frame properties of nonaxial recoil. J Chem Phys 2004; 121:11645-52. [PMID: 15634130 DOI: 10.1063/1.1812756] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
We report the photodissociation of laboratory oriented OCS molecules. A molecular beam of OCS molecules is hexapole state-selected and spatially oriented in the electric field of a velocity map imaging lens. The oriented OCS molecules are dissociated at 230 nm with the linear polarization set at 45 degrees to the orientation direction of the OCS molecules. The CO(nu=0,J) photofragments are quantum state-selectively ionized by the same 230 nm pulse and the angular distribution is measured using the velocity map imaging technique. The observed CO(nu=0,J) images are strongly asymmetric and the degree of asymmetry varies with the CO rotational state J. From the observed asymmetry in the laboratory frame we can directly extract the molecular frame angles between the final photofragment recoil velocity and the permanent dipole moment and the transition dipole moment. The data for CO fragments with high rotational excitation reveal that the dissociation dynamics is highly nonaxial, even though conventional wisdom suggests that the nearly limiting beta parameter results from fast axial recoil dynamics. From our data we can extract the relative contribution of parallel and perpendicular transitions at 230 nm excitation.
Collapse
Affiliation(s)
- Alrik J van den Brom
- Laser Centre and Department of Chemistry, Vrije Universiteit, de Boelelaan 1083, 1081 HV Amsterdam, The Netherlands
| | | | | |
Collapse
|
27
|
Kim MH, Li W, Lee SK, Suits AG. Probing of the hot-band excitations in the photodissociation of OCS at 288 nm by DC slice imaging. CAN J CHEM 2004. [DOI: 10.1139/v04-072] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The photodissociation dynamics of OCS at 288 nm has been investigated using the DC (direct current) slice imaging technique, which is a recently developed high-resolution "slicing" approach that directly measures the central slice of the photofragment distribution in imaging experiments. By analyzing a DC sliced image of S(1D2) photofragments we observe dissociation originating from OCS molecules excited up to v2 = 4 in the molecular beam. The measured translational energy distribution was used to determine the branching ratio for the contribution from each initial bending state (0 v2 0) of OCS and relative photodissociation cross section ratios compared to v2 = 1. Large negative anisotropy parameters determined as a function of the S(1D2) fragment recoil speed indicate that the photodissociation of OCS at 288 nm occurs exclusively from the 11A′′(1Σ) bending excited potential surface that can be accessed through a perpendicular transition.Key words: DC slicing imaging, OCS, photodissociation, hot-band excitation.
Collapse
|
28
|
Abstract
We discuss experiments on the dynamics of photodissociation that employ methods to select the energy, sometimes quantum states, of the reactant and to determine the quantum states and energy, sometimes also the orientation and alignment, of products. A summary of new advances of experimental methods is followed by applications to photodissociation of various types. Representative examples of simple bond fission, molecular elimination, and three-body dissociation with determined electronic states-sometimes the orientation of their angular momentum-of product atoms or distributions of electronic and internal states of product molecules illustrate the detailed information and insight that one can derive from such experiments. Photodissociation of van der Waals complexes, ions, species adsorbed on surfaces, and species in solution is excluded from this review.
Collapse
Affiliation(s)
- Yuan-Pern Lee
- Department of Chemistry, National Tsing Hua University, Hsinchu 30013, Taiwan.
| |
Collapse
|
29
|
van den Brom AJ, Rakitzis TP, van Heyst J, Kitsopoulos TN, Jezowski SR, Janssen MHM. State-to-state photodissociation of OCS (ν2=0,1|JlM). I. The angular recoil distribution of CO (X 1Σ+;v=0|J). J Chem Phys 2002. [DOI: 10.1063/1.1496464] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
30
|
Kawasaki M, Bersohn R. Photodissociation of Small Molecules in the Gas Phase. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2002. [DOI: 10.1246/bcsj.75.1885] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
31
|
Katayanagi H, Suzuki T. Non-adiabatic bending dissociation of OCS: the effect of bending excitation on the transition probability. Chem Phys Lett 2002. [DOI: 10.1016/s0009-2614(02)00788-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
32
|
Rijs AM, Backus EHG, de Lange CA, Janssen MHM, Westwood NPC, Wang K, McKoy V. Rotationally resolved photoionization dynamics of hot CO fragmented from OCS. J Chem Phys 2002. [DOI: 10.1063/1.1434993] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
|
33
|
Kawasaki M. Control of Photodissociation by Alignment, Bleaching and Optical Phase. J CHIN CHEM SOC-TAIP 2001. [DOI: 10.1002/jccs.200100049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
34
|
Sugita A, Suto K, Kawasaki M, Matsumi Y. Controlling the branching ratio of the photodissociation of aligned Cl2 at 404 nm. Chem Phys Lett 2001. [DOI: 10.1016/s0009-2614(01)00388-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|