1
|
Moid M, Sastry S, Dasgupta C, Pascal TA, Maiti PK. Dimensionality dependence of the Kauzmann temperature: A case study using bulk and confined water. J Chem Phys 2021; 154:164510. [PMID: 33940812 DOI: 10.1063/5.0047656] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The Kauzmann temperature (TK) of a supercooled liquid is defined as the temperature at which the liquid entropy becomes equal to that of the crystal. The excess entropy, the difference between liquid and crystal entropies, is routinely used as a measure of the configurational entropy, whose vanishing signals the thermodynamic glass transition. The existence of the thermodynamic glass transition is a widely studied subject, and of particular recent interest is the role of dimensionality in determining the presence of a glass transition at a finite temperature. The glass transition in water has been investigated intensely and is challenging as the experimental glass transition appears to occur at a temperature where the metastable liquid is strongly prone to crystallization and is not stable. To understand the dimensionality dependence of the Kauzmann temperature in water, we study computationally bulk water (three-dimensions), water confined in the slit pore of the graphene sheet (two-dimensions), and water confined in the pore of the carbon nanotube of chirality (11,11) having a diameter of 14.9 Å (one-dimension), which is the lowest diameter where amorphous water does not always crystallize into nanotube ice in the supercooled region. Using molecular dynamics simulations, we compute the entropy of water in bulk and under reduced dimensional nanoscale confinement to investigate the variation of the Kauzmann temperature with dimension. We obtain a value of TK (133 K) for bulk water in good agreement with experiments [136 K (C. A. Angell, Science 319, 582-587 (2008) and K. Amann-Winkel et al., Proc. Natl. Acad. Sci. U. S. A. 110, 17720-17725 (2013)]. However, for confined water, in two-dimensions and one-dimension, we find that there is no finite temperature Kauzmann point (in other words, the Kauzmann temperature is 0 K). Analysis of the fluidicity factor, a measure of anharmonicity in the oscillation of normal modes, reveals that the Kauzmann temperature can also be computed from the difference in the fluidicity factor between amorphous and ice phases.
Collapse
Affiliation(s)
- Mohd Moid
- Department of Physics, Centre for Condensed Matter Theory, Indian Institute of Science, Bangalore 560012, India
| | - Srikanth Sastry
- Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064, India
| | - Chandan Dasgupta
- Department of Physics, Centre for Condensed Matter Theory, Indian Institute of Science, Bangalore 560012, India
| | - Tod A Pascal
- Department of Nanoengineering and Chemical Engineering, University of California San Diego, La Jolla, California 92023, USA
| | - Prabal K Maiti
- Department of Physics, Centre for Condensed Matter Theory, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
2
|
Bocedi A, Romanelli G, Andreani C, Senesi R. Hydrogen nuclear mean kinetic energy in water down the Mariana Trench: Competition of pressure and salinity. J Chem Phys 2020; 153:134306. [PMID: 33032407 DOI: 10.1063/5.0021926] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The Mariana Trench is one of the most famous and extreme environments on our planet. We report experimental values of the hydrogen nuclear mean kinetic energy in water samples at the same physical and chemical conditions than in the Challenger Deep within the Mariana Trench: a pressure of 1092 bars, a temperature of 1 °C, and a salinity of 35 g of salt per kg of water. Results were obtained by deep inelastic neutron scattering at the VESUVIO spectrometer at ISIS. We find that the effect of pressure is to increase the hydrogen nuclear mean kinetic energy with respect to ambient conditions, while ions in the solution have the opposite effect. These results confirm the recent state-of-the-art simulations of the nuclear hydrogen dynamics in water. The changes in the nuclear mean kinetic energy likely correspond to different isotopic fractionation values in the Challenger Deep compared to standard sea water.
Collapse
Affiliation(s)
- Alessio Bocedi
- Università degli Studi di Roma "Tor Vergata", Dipartimento di Scienze e Tecnologie Chimiche, Via della Ricerca Scientifica 1, Rome 00133, Italy
| | - Giovanni Romanelli
- ISIS Facility, Rutherford Appleton Laboratory, Chilton, Didcot, Oxfordshire OX11OQX, United Kingdom
| | - Carla Andreani
- Università degli Studi di Roma "Tor Vergata", Dipartimento di Fisica and NAST Center, Via della Ricerca Scientifica 1, Rome 00133, Italy
| | - Roberto Senesi
- Università degli Studi di Roma "Tor Vergata", Dipartimento di Fisica and NAST Center, Via della Ricerca Scientifica 1, Rome 00133, Italy
| |
Collapse
|
3
|
Moid M, Finkelstein Y, Moreh R, Maiti PK. Microscopic Study of Proton Kinetic Energy Anomaly for Nanoconfined Water. J Phys Chem B 2019; 124:190-198. [DOI: 10.1021/acs.jpcb.9b08667] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Mohd Moid
- Centre for Condensed Matter Theory, Department of Physics, Indian Institute of Science, Bangalore 560012, India
| | | | - Raymond Moreh
- Physics Department, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Prabal K. Maiti
- Centre for Condensed Matter Theory, Department of Physics, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
4
|
|
5
|
Ikeda T. First principles centroid molecular dynamics simulation of high pressure ices. J Chem Phys 2018; 148:102332. [DOI: 10.1063/1.5003055] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Takashi Ikeda
- Synchrotron Radiation Research Center, Quantum Beam Science Research Directorate (QuBS), National Institutes for Quantum and Radiological Science and Technology (QST), 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan
| |
Collapse
|
6
|
Finkelstein Y, Moreh R, Shang SL, Wang Y, Liu ZK. Quantum behavior of water nano-confined in beryl. J Chem Phys 2017; 146:124307. [PMID: 28388143 DOI: 10.1063/1.4978397] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The proton mean kinetic energy, Ke(H), of water confined in nanocavities of beryl (Be3Al2Si6O18) at 5 K was obtained by simulating the partial vibrational density of states from density functional theory based first-principles calculations. The result, Ke(H) = 104.4 meV, is in remarkable agreement with the 5 K deep inelastic neutron scattering (DINS) measured value of 105 meV. This is in fact the first successful calculation that reproduces an anomalous DINS value regarding Ke(H) in nano-confined water. The calculation indicates that the vibrational states of the proton of the nano-confined water molecule distribute much differently than in ordinary H2O phases, most probably due to coupling with lattice modes of the hosting beryl nano-cage. These findings may be viewed as a promising step towards the resolution of the DINS controversial measurements on other H2O nano-confining systems, e.g., H2O confined in single and double walled carbon nanotubes.
Collapse
Affiliation(s)
- Y Finkelstein
- Nuclear Research Center-Negev, Beer-Sheva 84190, Israel
| | - R Moreh
- Physics Department, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - S L Shang
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Y Wang
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Z K Liu
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| |
Collapse
|
7
|
Affiliation(s)
- Y. Finkelstein
- Chemistry Department, Nuclear Research Center - Negev, Beer-Sheva 84190, Israel
| | - R. Moreh
- Physics Department, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| |
Collapse
|
8
|
Finkelstein Y, Moreh R, Shang SL, Shchur Y, Wang Y, Liu ZK. On the mean kinetic energy of the proton in strong hydrogen bonded systems. J Chem Phys 2016; 144:054302. [PMID: 26851916 DOI: 10.1063/1.4940730] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The mean atomic kinetic energies of the proton, Ke(H), and of the deuteron, Ke(D), were calculated in moderate and strongly hydrogen bonded (HB) systems, such as the ferro-electric crystals of the KDP type (XH2PO4, X = K, Cs, Rb, Tl), the DKDP (XD2PO4, X = K, Cs, Rb) type, and the X3H(SO4)2 superprotonic conductors (X = K, Rb). All calculations utilized the simulated partial phonon density of states, deduced from density functional theory based first-principle calculations and from empirical lattice dynamics simulations in which the Coulomb, short range, covalent, and van der Waals interactions were accounted for. The presently calculated Ke(H) values for the two systems were found to be in excellent agreement with published values obtained by deep inelastic neutron scattering measurements carried out using the VESUVIO instrument of the Rutherford Laboratory, UK. The Ke(H) values of the M3H(SO4)2 compounds, in which the hydrogen bonds are centro-symmetric, are much lower than those of the KDP type crystals, in direct consistency with the oxygen-oxygen distance ROO, being a measure of the HB strength.
Collapse
Affiliation(s)
- Y Finkelstein
- Nuclear Research Center-Negev, Beer-Sheva 84190, Israel
| | - R Moreh
- Physics Department, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - S L Shang
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Ya Shchur
- Institute for Condensed Matter Physics, 1 Svientsitskii str., L'viv 79011, Ukraine
| | - Y Wang
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Z K Liu
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| |
Collapse
|
9
|
|
10
|
Parmentier A, Shephard JJ, Romanelli G, Senesi R, Salzmann CG, Andreani C. Evolution of Hydrogen Dynamics in Amorphous Ice with Density. J Phys Chem Lett 2015; 6:2038-2042. [PMID: 26266499 DOI: 10.1021/acs.jpclett.5b00711] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The single-particle dynamics of hydrogen atoms in several of the amorphous ices are reported using a combination of deep inelastic neutron scattering (DINS) and inelastic neutron scattering (INS). The mean kinetic energies of the hydrogen nuclei are found to increase with increasing density, indicating the weakening of hydrogen bonds as well as a trend toward steeper and more harmonic hydrogen vibrational potential energy surfaces. DINS shows much more pronounced changes in the O-H stretching component of the mean kinetic energy going from low- to high-density amorphous ices than indicated by INS and Raman spectroscopy. This highlights the power of the DINS technique to retrieve accurate ground-state kinetic energies beyond the harmonic approximation. In a novel approach, we use information from DINS and INS to determine the anharmonicity constants of the O-H stretching modes. Furthermore, our experimental kinetic energies will serve as important benchmark values for path-integral Monte Carlo simulations.
Collapse
Affiliation(s)
- A Parmentier
- †Dipartimento di Fisica and NAST Centre, Università degli Studi di Roma Tor Vergata, Via della Ricerca Scientifica 1, 00133 Roma, Italy
| | - J J Shephard
- ‡Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, United Kingdom
- §Department of Chemistry, Durham University, South Road, Durham DH1 3LE, United Kingdom
| | - G Romanelli
- †Dipartimento di Fisica and NAST Centre, Università degli Studi di Roma Tor Vergata, Via della Ricerca Scientifica 1, 00133 Roma, Italy
| | - R Senesi
- †Dipartimento di Fisica and NAST Centre, Università degli Studi di Roma Tor Vergata, Via della Ricerca Scientifica 1, 00133 Roma, Italy
- ∥CNR-IPCF Sezione di Messina, Viale F. Stagno D'Alcontres 37, 98158 Messina, Italy
| | - C G Salzmann
- ‡Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, United Kingdom
| | - C Andreani
- †Dipartimento di Fisica and NAST Centre, Università degli Studi di Roma Tor Vergata, Via della Ricerca Scientifica 1, 00133 Roma, Italy
- ∥CNR-IPCF Sezione di Messina, Viale F. Stagno D'Alcontres 37, 98158 Messina, Italy
| |
Collapse
|
11
|
Finkelstein Y, Moreh R. Temperature dependence of the proton kinetic energy in water between 5 and 673K. Chem Phys 2014. [DOI: 10.1016/j.chemphys.2014.01.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
12
|
Senesi R, Romanelli G, Adams M, Andreani C. Temperature dependence of the zero point kinetic energy in ice and water above room temperature. Chem Phys 2013. [DOI: 10.1016/j.chemphys.2013.09.010] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|