1
|
Panchagnula K, Graf D, Johnson ER, Thom AJW. Targeting spectroscopic accuracy for dispersion bound systems from ab initio techniques: Translational eigenstates of Ne@C70. J Chem Phys 2024; 161:054308. [PMID: 39092939 DOI: 10.1063/5.0223298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 07/17/2024] [Indexed: 08/04/2024] Open
Abstract
We investigate the endofullerene system Ne@C70 by constructing a three-dimensional Potential Energy Surface (PES) describing the translational motion of the Ne atom. This is constructed from electronic structure calculations from a plethora of methods, including MP2, SCS-MP2, SOS-MP2, RPA@PBE, and C(HF)-RPA, which were previously used for He@C60 in Panchagnula et al. [J. Chem. Phys. 160, 104303 (2024)], alongside B86bPBE-25X-XDM and B86bPBE-50X-XDM. The reduction in symmetry moving from C60 to C70 introduces a double well potential along the anisotropic direction, which forms a test of the sensitivity and effectiveness of the electronic structure methods. The nuclear Hamiltonian is diagonalized using a symmetrized double minimum basis set outlined in Panchagnula and Thom [J. Chem. Phys. 159, 164308 (2023)], with translational energies having error bars ±1 and ±2 cm-1. We find no consistency between electronic structure methods as they find a range of barrier heights and minima positions of the double well and different translational eigenspectra, which also differ from the Lennard-Jones (LJ) PES given in Mandziuk and Bačić [J. Chem. Phys. 101, 2126-2140 (1994)]. We find that generating effective LJ parameters for each electronic structure method cannot reproduce the full PES nor recreate the eigenstates, and this suggests that the LJ form of the PES, while simple, may not be best suited to describe these systems. Even though MP2 and RPA@PBE performed best for He@C60, due to the lack of concordance between all electronic structure methods, we require more experimental data in order to properly validate the choice.
Collapse
Affiliation(s)
- K Panchagnula
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, United Kingdom
| | - D Graf
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, United Kingdom
- Department of Chemistry, University of Munich (LMU), Munich, Germany
| | - E R Johnson
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, United Kingdom
- Department of Chemistry, Dalhousie University, 6243 Alumni Crescent, Halifax, Nova Scotia B3H 4R2, Canada
| | - A J W Thom
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
2
|
Panchagnula K, Graf D, Albertani FEA, Thom AJW. Translational eigenstates of He@C60 from four-dimensional ab initio potential energy surfaces interpolated using Gaussian process regression. J Chem Phys 2024; 160:104303. [PMID: 38465682 DOI: 10.1063/5.0197903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 02/22/2024] [Indexed: 03/12/2024] Open
Abstract
We investigate the endofullerene system 3He@C60 with a four-dimensional potential energy surface (PES) to include the three He translational degrees of freedom and C60 cage radius. We compare second order Møller-Plesset perturbation theory (MP2), spin component scaled-MP2, scaled opposite spin-MP2, random phase approximation (RPA)@Perdew, Burke, and Ernzerhof (PBE), and corrected Hartree-Fock-RPA to calibrate and gain confidence in the choice of electronic structure method. Due to the high cost of these calculations, the PES is interpolated using Gaussian Process Regression (GPR), owing to its effectiveness with sparse training data. The PES is split into a two-dimensional radial surface, to which corrections are applied to achieve an overall four-dimensional surface. The nuclear Hamiltonian is diagonalized to generate the in-cage translational/vibrational eigenstates. The degeneracy of the three-dimensional harmonic oscillator energies with principal quantum number n is lifted due to the anharmonicity in the radial potential. The (2l + 1)-fold degeneracy of the angular momentum states is also weakly lifted, due to the angular dependence in the potential. We calculate the fundamental frequency to range between 96 and 110 cm-1 depending on the electronic structure method used. Error bars of the eigenstate energies were calculated from the GPR and are on the order of ∼±1.5 cm-1. Wavefunctions are also compared by considering their overlap and Hellinger distance to the one-dimensional empirical potential. As with the energies, the two ab initio methods MP2 and RPA@PBE show the best agreement. While MP2 has better agreement than RPA@PBE, due to its higher computational efficiency and comparable performance, we recommend RPA as an alternative electronic structure method of choice to MP2 for these systems.
Collapse
Affiliation(s)
- K Panchagnula
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, United Kingdom
| | - D Graf
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, United Kingdom
| | - F E A Albertani
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, United Kingdom
| | - A J W Thom
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
3
|
Moncada F, Quintero W, Posada E, Pettersson LGM, Reyes A. A nuclear configuration interaction approach to study nuclear spin effects: an application to ortho- and para- 3 He 2 @C 60. Chemphyschem 2024; 25:e202300498. [PMID: 38055206 DOI: 10.1002/cphc.202300498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 11/29/2023] [Accepted: 12/01/2023] [Indexed: 12/07/2023]
Abstract
We introduce a non-orthogonal configuration interaction approach to investigate nuclear quantum effects on energies and densities of confined fermionic nuclei. The Hamiltonian employed draws parallels between confined systems and many-electron atoms, where effective non-Coulombic potentials represent the interactions of the trapped particles. One advantage of this method is its generality, as it offers the potential to study the nuclear quantum effects of various confined species affected by effective isotropic or anisotropic potentials. As a first application, we analyze the quantum states of two 3 He atoms encapsulated in C60 . At the Hartree-Fock level, we observe the breaking of spin and spatial symmetries. To ensure wavefunctions with the correct symmetries, we mix the broken-symmetry Hartree-Fock states within the non-orthogonal configuration interaction expansion. Our proposed approach predicts singly and triply degenerate ground states for the singlet (para-3 He2 @C60 ) and triplet (ortho-3 He2 @C60 ) nuclear spin configurations, respectively. The ortho-3 He2 @C60 ground state is 5.69 cm-1 higher in energy than the para-3 He2 @C60 ground state. The nuclear densities obtained for these states exhibit the icosahedral symmetry of the C60 embedding potential. Importantly, our calculated energies for the lowest 85 states are in close agreement with perturbation theory results based on a harmonic oscillator plus rigid rotor model of 3 He2 @C60 .
Collapse
Affiliation(s)
- Félix Moncada
- Department of Physics, AlbaNova University Center, Stockholm University, 106 91, Stockholm, Sweden
- Department of Chemistry, Universidad Nacional de Colombia, Av. Cra 30 45-03, Bogotá, Colombia
| | - William Quintero
- Doctorado en Fisicoquímica Molecular, Universidad Andres Bello, Santiago de Chile, Chile
- Department of Chemistry, Universidad Nacional de Colombia, Av. Cra 30 45-03, Bogotá, Colombia
| | - Edwin Posada
- Institute for Computational Molecular Science, Temple University, Philadelphia, PA, USA
- Department of Chemistry, Universidad Nacional de Colombia, Av. Cra 30 45-03, Bogotá, Colombia
| | - Lars G M Pettersson
- Department of Physics, AlbaNova University Center, Stockholm University, 106 91, Stockholm, Sweden
| | - Andrés Reyes
- Department of Chemistry, Universidad Nacional de Colombia, Av. Cra 30 45-03, Bogotá, Colombia
| |
Collapse
|
4
|
Real-time hydrogen molecular dynamics satisfying the nuclear spin statistics of a quantum rotor. Commun Chem 2022; 5:168. [PMID: 36697851 PMCID: PMC9814564 DOI: 10.1038/s42004-022-00788-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 11/24/2022] [Indexed: 12/07/2022] Open
Abstract
Apparent presence of the nuclear-spin species of a hydrogen molecule, para-hydrogen and ortho-hydrogen, associated with the quantum rotation is a manifestation of the nuclear quantum nature of hydrogen, governing not only molecular structures but also physical and chemical properties of hydrogen molecules. It has been a great challenge to observe and calculate real-time dynamics of such molecularized fermions. Here, we developed the non-empirical quantum molecular dynamics method that enables real-time molecular dynamics simulations of hydrogen molecules satisfying the nuclear spin statistics of the quantum rotor. While reproducing the species-dependent quantum rotational energy, population ratio, specific heat, and H-H bond length and frequency, we found that their translational, orientational and vibrational dynamics becomes accelerated with the higher rotational excitation, concluding that the nuclear quantum rotation stemmed from the nuclear spin statistics can induce various kinds of dynamics and reactions intrinsic to each hydrogen species.
Collapse
|
5
|
Xu M, Felker PM, Bačić Z. H 2O inside the fullerene C 60: Inelastic neutron scattering spectrum from rigorous quantum calculations. J Chem Phys 2022; 156:124101. [PMID: 35364860 DOI: 10.1063/5.0086842] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We present a methodology that, for the first time, allows rigorous quantum calculation of the inelastic neutron scattering (INS) spectra of a triatomic molecule in a nanoscale cavity, in this case, H2O inside the fullerene C60. Both moieties are taken to be rigid. Our treatment incorporates the quantum six-dimensional translation-rotation (TR) wave functions of the encapsulated H2O, which serve as the spatial parts of the initial and final states of the INS transitions. As a result, the simulated INS spectra reflect the coupled TR dynamics of the nanoconfined guest molecule. They also exhibit the features arising from symmetry breaking observed for solid H2O@C60 at low temperatures. Utilizing this methodology, we compute the INS spectra of H2O@C60 for two incident neutron wavelengths and compare them with the corresponding experimental spectra. Good overall agreement is found, and the calculated spectra provide valuable additional insights.
Collapse
Affiliation(s)
- Minzhong Xu
- Department of Chemistry, New York University, New York, New York 10003, USA
| | - Peter M Felker
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095-1569, USA
| | - Zlatko Bačić
- Department of Chemistry, New York University, New York, New York 10003, USA
| |
Collapse
|
6
|
Bacanu GR, Jafari T, Aouane M, Rantaharju J, Walkey M, Hoffman G, Shugai A, Nagel U, Jiménez-Ruiz M, Horsewill AJ, Rols S, Rõõm T, Whitby RJ, Levitt MH. Experimental determination of the interaction potential between a helium atom and the interior surface of a C 60 fullerene molecule. J Chem Phys 2021; 155:144302. [PMID: 34654304 DOI: 10.1063/5.0066817] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The interactions between atoms and molecules may be described by a potential energy function of the nuclear coordinates. Nonbonded interactions between neutral atoms or molecules are dominated by repulsive forces at a short range and attractive dispersion forces at a medium range. Experimental data on the detailed interaction potentials for nonbonded interatomic and intermolecular forces are scarce. Here, we use terahertz spectroscopy and inelastic neutron scattering to determine the potential energy function for the nonbonded interaction between single He atoms and encapsulating C60 fullerene cages in the helium endofullerenes 3He@C60 and 4He@C60, synthesized by molecular surgery techniques. The experimentally derived potential is compared to estimates from quantum chemistry calculations and from sums of empirical two-body potentials.
Collapse
Affiliation(s)
- George Razvan Bacanu
- School of Chemistry, University of Southampton, Southampton SO17 1BJ, United Kingdom
| | - Tanzeeha Jafari
- National Institute of Chemical Physics and Biophysics, Tallinn 12618, Estonia
| | | | - Jyrki Rantaharju
- School of Chemistry, University of Southampton, Southampton SO17 1BJ, United Kingdom
| | - Mark Walkey
- School of Chemistry, University of Southampton, Southampton SO17 1BJ, United Kingdom
| | - Gabriela Hoffman
- School of Chemistry, University of Southampton, Southampton SO17 1BJ, United Kingdom
| | - Anna Shugai
- National Institute of Chemical Physics and Biophysics, Tallinn 12618, Estonia
| | - Urmas Nagel
- National Institute of Chemical Physics and Biophysics, Tallinn 12618, Estonia
| | | | - Anthony J Horsewill
- School of Physics and Astronomy, University of Nottingham, Nottingham NG7 2RD, United Kingdom
| | - Stéphane Rols
- Institut Laue-Langevin, BP 156, 38042 Grenoble, France
| | - Toomas Rõõm
- National Institute of Chemical Physics and Biophysics, Tallinn 12618, Estonia
| | - Richard J Whitby
- School of Chemistry, University of Southampton, Southampton SO17 1BJ, United Kingdom
| | - Malcolm H Levitt
- School of Chemistry, University of Southampton, Southampton SO17 1BJ, United Kingdom
| |
Collapse
|
7
|
Xu M, Felker PM, Bačić Z. Light molecules inside the nanocavities of fullerenes and clathrate hydrates: inelastic neutron scattering spectra and the unexpected selection rule from rigorous quantum simulations. INT REV PHYS CHEM 2020. [DOI: 10.1080/0144235x.2020.1794097] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Minzhong Xu
- Department of Chemistry, New York University, New York, NY, USA
| | - Peter M. Felker
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, USA
| | - Zlatko Bačić
- Department of Chemistry, New York University, New York, NY, USA
- NYU-ECNU Center for Computational Chemistry at NYU Shanghai, Shanghai, People's Republic of China
| |
Collapse
|
8
|
Xu M, Felker PM, Mamone S, Horsewill AJ, Rols S, Whitby RJ, Bačić Z. The Endofullerene HF@C 60: Inelastic Neutron Scattering Spectra from Quantum Simulations and Experiment, Validity of the Selection Rule, and Symmetry Breaking. J Phys Chem Lett 2019; 10:5365-5371. [PMID: 31454486 DOI: 10.1021/acs.jpclett.9b02005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Accurate quantum simulations of the low-temperature inelastic neutron scattering (INS) spectra of HF@C60 are reported for two incident neutron wavelengths. They are distinguished by the rigorous inclusion of symmetry-breaking effects in the treatment and having the spectra computed with HF as the guest, rather than H2 or HD, as in the past work. The results demonstrate that the precedent-setting INS selection rule, originally derived for H2 and HD in near-spherical nanocavities, applies also to HF@C60, despite the large mass asymmetry of HF and the strongly mixed character of its translation-rotation eigenstates. This lends crucial support to the theoretical prediction made earlier that the INS selection rule is valid for any diatomic molecule in near-spherical nanoconfinement. The selection rule remains valid in the presence of symmetry breaking but is modified slightly in an interesting way. Comparison is made with the recently published experimental INS spectrum of HF@C60. The agreement is very good, apart from one peak for which our calculations suggest a reassignment. This reassignment is consistent with the measured INS spectrum presented in this work, which covers an extended energy range.
Collapse
Affiliation(s)
- Minzhong Xu
- Department of Chemistry , New York University , New York , New York 10003 , United States
| | - Peter M Felker
- Department of Chemistry and Biochemistry , University of California , Los Angeles , California 90095-1569 , United States
| | - Salvatore Mamone
- School of Physics & Astronomy , University of Nottingham , Nottingham NG7 2RD , United Kingdom
| | - Anthony J Horsewill
- School of Physics & Astronomy , University of Nottingham , Nottingham NG7 2RD , United Kingdom
| | - Stéphane Rols
- Institut Laue-Langevin , CS 20156, 38042 Grenoble , France
| | - Richard J Whitby
- Chemistry, Faculty of Engineering and Physical Sciences , University of Southampton , Southampton SO17 1BJ , United Kingdom
| | - Zlatko Bačić
- Department of Chemistry , New York University , New York , New York 10003 , United States
- NYU-ECNU Center for Computational Chemistry at NYU Shanghai , 3663 Zhongshan Road North , Shanghai 200062 , China
| |
Collapse
|
9
|
Bačić Z, Vlček V, Neuhauser D, Felker PM. Effects of symmetry breaking on the translation-rotation eigenstates of H 2, HF, and H 2O inside the fullerene C 60. Faraday Discuss 2018; 212:547-567. [PMID: 30226507 DOI: 10.1039/c8fd00082d] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Splittings of the translation-rotation (TR) eigenstates of the solid light-molecule endofullerenes M@C60 (M = H2, H2O, HF) attributed to the symmetry breaking have been observed in the infrared (IR) and inelastic neutron scattering spectra of these species in the past couple of years. In a recent paper [Felker et al., Phys. Chem. Chem. Phys., 2017, 19, 31274], we established that the electrostatic, quadrupolar interaction between the guest molecule M and the twelve nearest-neighbor C60 cages of the solid is the main source of the symmetry breaking. The splittings of the three-fold degenerate ground states of the endohedral ortho-H2, ortho-H2O and the j = 1 level of HF calculated using this model were found to be in excellent agreement with the experimental results. Utilizing the same electrostatic model, this theoretical study investigates the effects of the symmetry breaking on the excited TR eigenstates of the three species, and how they manifest in their simulated low-temperature (5-6 K) near-IR (NIR) and far-IR (FIR) spectra. The TR eigenstates are calculated variationally for both the major P and minor H crystal orientations. For the H orientation, the calculated splittings of all of the TR levels of these species are less than 0.1 cm-1. For the dominant P orientation, the splittings vary strongly depending on the character of the excitations involved. In all of the species, the splittings of the higher rotationally excited levels are comparable in magnitude to those for the j = 1 levels. For the levels corresponding to purely translational excitations, the calculated splittings are about an order of magnitude smaller than those of the purely rotational eigenstates. Based on the computed TR eigenstates, the low-temperature NIR (for M = H2) and FIR (for M = HF and H2O) spectra are simulated for both the P and H orientations, and also combined as their weighted sum (0.15H + 0.85P). The weighted sum spectra computed for M = H2 and HF match quantitatively the corresponding measured spectra, while for M = H2O, the weighted sum FIR spectrum predicts features that can potentially be observed experimentally.
Collapse
Affiliation(s)
- Zlatko Bačić
- Department of Chemistry, New York University, New York, NY 10003, USA. and NYU-ECNU Center for Computational Chemistry at NYU Shanghai, 3663 Zhongshan Road North, Shanghai, 200062, China
| | - Vojtěch Vlček
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095-1569, USA.
| | - Daniel Neuhauser
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095-1569, USA.
| | - Peter M Felker
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095-1569, USA.
| |
Collapse
|
10
|
Bačić Z. Perspective: Accurate treatment of the quantum dynamics of light molecules inside fullerene cages: Translation-rotation states, spectroscopy, and symmetry breaking. J Chem Phys 2018; 149:100901. [PMID: 30219006 DOI: 10.1063/1.5049358] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
In this perspective, I review the current status of the theoretical investigations of the quantum translation-rotation (TR) dynamics and spectroscopy of light molecules encapsulated inside fullerenes, mostly C60 and C70. The methodologies developed in the past decade allow accurate quantum calculations of the TR eigenstates of one and two nanoconfined molecules and have led to deep insights into the nature of the underlying dynamics. Combining these bound-state methodologies with the formalism of inelastic neutron scattering (INS) has resulted in the novel and powerful approach for the quantum calculation of the INS spectra of a diatomic molecule in a nanocavity with an arbitrary geometry. These simulations have not only become indispensable for the interpretation and assignment of the experimental spectra but are also behind the surprising discovery of the INS selection rule for diatomics in near-spherical nanocavities. Promising directions for future research are discussed.
Collapse
Affiliation(s)
- Zlatko Bačić
- Department of Chemistry, New York University, New York, New York 10003, USA
| |
Collapse
|
11
|
Felker PM, Bačić Z. Accurate quantum calculations of translation-rotation eigenstates in electric-dipole-coupled H2O@C60 assemblies. Chem Phys Lett 2017. [DOI: 10.1016/j.cplett.2017.02.027] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
12
|
Felker PM, Bačić Z. Electric-dipole-coupled H2O@C60 dimer: Translation-rotation eigenstates from twelve-dimensional quantum calculations. J Chem Phys 2017; 146:084303. [DOI: 10.1063/1.4976526] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Peter M. Felker
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095-1569, USA
| | - Zlatko Bačić
- Department of Chemistry, New York University, New York, New York 10003, USA
- NYU-ECNU Center for Computational Chemistry at NYU Shanghai, 3663 Zhongshan Road North, Shanghai 200062, China
| |
Collapse
|
13
|
Felker PM, Vlček V, Hietanen I, FitzGerald S, Neuhauser D, Bačić Z. Explaining the symmetry breaking observed in the endofullerenes H2@C60, HF@C60, and H2O@C60. Phys Chem Chem Phys 2017; 19:31274-31283. [DOI: 10.1039/c7cp06062a] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Symmetry breaking has been recently observed in the endofullerenes M@C60 (M = H2, HF, H2O), manifesting in the splittings of the three-fold degenerate ground states of the endohedral ortho-H2, ortho-H2O and the j = 1 level of HF.
Collapse
Affiliation(s)
- Peter M. Felker
- Department of Chemistry and Biochemistry
- University of California
- Los Angeles
- USA
| | - Vojtěch Vlček
- Department of Chemistry and Biochemistry
- University of California
- Los Angeles
- USA
| | - Isaac Hietanen
- Department of Physics and Astronomy
- Oberlin College
- Oberlin
- USA
| | | | - Daniel Neuhauser
- Department of Chemistry and Biochemistry
- University of California
- Los Angeles
- USA
| | - Zlatko Bačić
- Department of Chemistry
- New York University
- New York
- USA
- NYU-ECNU Center for Computational Chemistry at NYU Shanghai
| |
Collapse
|
14
|
Felker PM, Bačić Z. Translation-rotation states of H2 in C60: New insights from a perturbation-theory treatment. J Chem Phys 2016; 145:084310. [DOI: 10.1063/1.4961650] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Affiliation(s)
- Peter M. Felker
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095-1569, USA
| | - Zlatko Bačić
- Department of Chemistry, New York University, New York, New York 10003, USA
- NYU-ECNU Center for Computational Chemistry at NYU Shanghai, 3663 Zhongshan Road North, Shanghai 200062, China
| |
Collapse
|
15
|
Felker PM, Bačić Z. Communication: Quantum six-dimensional calculations of the coupled translation-rotation eigenstates of H2O@C60. J Chem Phys 2016; 144:201101. [DOI: 10.1063/1.4953180] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Peter M. Felker
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095-1569, USA
| | - Zlatko Bačić
- Department of Chemistry, New York University, New York, New York 10003, USA
- NYU-ECNU Center for Computational Chemistry at NYU Shanghai, 3663 Zhongshan Road North, Shanghai 200062, China
| |
Collapse
|
16
|
Mamone S, Jiménez-Ruiz M, Johnson MR, Rols S, Horsewill AJ. Experimental, theoretical and computational investigation of the inelastic neutron scattering spectrum of a homonuclear diatomic molecule in a nearly spherical trap: H2@C60. Phys Chem Chem Phys 2016; 18:29369-29380. [DOI: 10.1039/c6cp06059e] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this paper we report a methodology for calculating the inelastic neutron scattering spectrum of homonuclear diatomic molecules confined within nano-cavities of spherical symmetry.
Collapse
Affiliation(s)
- Salvatore Mamone
- School of Physics and Astronomy
- University of Nottingham
- NG7 2RD Nottingham
- UK
| | | | | | | | | |
Collapse
|
17
|
Mamone S, Johnson MR, Ollivier J, Rols S, Levitt MH, Horsewill AJ. Symmetry-breaking in the H2@C60 endofullerene revealed by inelastic neutron scattering at low temperature. Phys Chem Chem Phys 2016; 18:1998-2005. [DOI: 10.1039/c5cp07146a] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The fine structure of the rotational ground state of molecular ortho-hydrogen confined inside the fullerene cage C60 is investigated by inelastic neutron scattering (INS).
Collapse
Affiliation(s)
- Salvatore Mamone
- School of Physics and Astronomy
- University of Nottingham
- NG7 2RD Nottingham
- UK
| | | | | | | | | | | |
Collapse
|
18
|
Xu M, Ye S, Bačić Z. General Selection Rule in the Inelastic Neutron Scattering Spectroscopy of a Diatomic Molecule Confined Inside a Near-Spherical Nanocavity. J Phys Chem Lett 2015; 6:3721-3725. [PMID: 26722746 DOI: 10.1021/acs.jpclett.5b01505] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Knowledge of the relevant selection rules is crucial for the accurate interpretation of experimental spectra in general. There has been a consensus for a long time that the incoherent inelastic neutron scattering (INS) spectroscopy of the vibrations of discrete molecular compunds is free from any selection rules. We contradict this widely held view by presenting an analytical derivation of the general selection rule for the INS spectroscopy of a hydrogen molecule inside a near-spherical nanocavity. It defines all forbidden transitions, originating in a range of initial translation-rotation (TR) states, ground and excited, of the caged para- and ortho-H2, as well as HD, that are unobservable in the INS spectra. These predictions are amenable to experimental verification. In addition, we demonstrate that the general selection rule applies to the INS spectroscopy of any diatomic molecule in a nanocavity with near-spherical symmetry, which exhibits strong TR coupling. Its existence strongly suggests that similar selection rules apply to the INS spectra of other molecular and supramolecular systems, and need to be identified.
Collapse
Affiliation(s)
- Minzhong Xu
- Department of Chemistry, New York University , New York, New York 10003, United States
| | - Shufeng Ye
- Department of Chemistry, New York University , New York, New York 10003, United States
| | - Zlatko Bačić
- Department of Chemistry, New York University , New York, New York 10003, United States
- NYU-ECNU Center for Computational Chemistry at NYU Shanghai, Shanghai, 200062, China
| |
Collapse
|
19
|
Poirier B. Communication: The H2@C60 inelastic neutron scattering selection rule: Expanded and explained. J Chem Phys 2015; 143:101104. [DOI: 10.1063/1.4930922] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Bill Poirier
- Department of Chemistry and Biochemistry, and Department of Physics, Texas Tech University, Box 41061, Lubbock, Texas 79409-1061, USA
| |
Collapse
|
20
|
Felker PM. Fully quantal calculation of H2 translation-rotation states in the (p-H2)2@51264 clathrate hydrate inclusion compound. J Chem Phys 2014; 141:184305. [DOI: 10.1063/1.4901057] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
21
|
Xu M, Jiménez-Ruiz M, Johnson MR, Rols S, Ye S, Carravetta M, Denning MS, Lei X, Bačić Z, Horsewill AJ. Confirming a predicted selection rule in inelastic neutron scattering spectroscopy: the quantum translator-rotator H2 entrapped inside C60. PHYSICAL REVIEW LETTERS 2014; 113:123001. [PMID: 25279623 DOI: 10.1103/physrevlett.113.123001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Indexed: 06/03/2023]
Abstract
We report an inelastic neutron scattering (INS) study of a H2 molecule encapsulated inside the fullerene C60 which confirms the recently predicted selection rule, the first to be established for the INS spectroscopy of aperiodic, discrete molecular compounds. Several transitions from the ground state of para-H2 to certain excited translation-rotation states, forbidden according to the selection rule, are systematically absent from the INS spectra, thus validating the selection rule with a high degree of confidence. Its confirmation sets a precedent, as it runs counter to the widely held view that the INS spectroscopy of molecular compounds is not subject to any selection rules.
Collapse
Affiliation(s)
- Minzhong Xu
- Department of Chemistry, New York University, New York, New York 10003, USA
| | | | | | - Stéphane Rols
- Institut Laue-Langevin, BP 156, 38042 Grenoble, France
| | - Shufeng Ye
- Department of Chemistry, New York University, New York, New York 10003, USA
| | - Marina Carravetta
- School of Chemistry, University of Southampton, Southampton SO17 1BJ, United Kingdom
| | - Mark S Denning
- School of Chemistry, University of Southampton, Southampton SO17 1BJ, United Kingdom
| | - Xuegong Lei
- Department of Chemistry, Columbia University, New York, New York 10027, USA
| | - Zlatko Bačić
- Department of Chemistry, New York University, New York, New York 10003, USA and NYU-ECNU Center for Computational Chemistry at NYU Shanghai, Shanghai 200062, China
| | - Anthony J Horsewill
- School of Physics & Astronomy, University of Nottingham, Nottingham NG7 2RD, United Kingdom
| |
Collapse
|
22
|
Goh KSK, Jiménez-Ruiz M, Johnson MR, Rols S, Ollivier J, Denning MS, Mamone S, Levitt MH, Lei X, Li Y, Turro NJ, Murata Y, Horsewill AJ. Symmetry-breaking in the endofullerene H2O@C60 revealed in the quantum dynamics of ortho and para-water: a neutron scattering investigation. Phys Chem Chem Phys 2014; 16:21330-9. [DOI: 10.1039/c4cp03272a] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The splitting of the ortho-H2O ground state is clearly revealed by inelastic neutron scattering.
Collapse
Affiliation(s)
- Kelvin S. K. Goh
- School of Physics & Astronomy
- University of Nottingham
- Nottingham NG7 2RD, UK
| | | | | | | | | | - Mark S. Denning
- School of Chemistry
- University of Southampton
- Southampton SO17 1BJ, UK
| | - Salvatore Mamone
- School of Chemistry
- University of Southampton
- Southampton SO17 1BJ, UK
| | - Malcolm H. Levitt
- School of Chemistry
- University of Southampton
- Southampton SO17 1BJ, UK
| | - Xuegong Lei
- Department of Chemistry
- Columbia University
- New York, USA
| | - Yongjun Li
- Department of Chemistry
- Columbia University
- New York, USA
| | | | - Yasujiro Murata
- Institute for Chemical Research
- Kyoto University
- Kyoto 611-0011, Japan
| | | |
Collapse
|