1
|
Chen W, Zhu Y, Cui F, Liu L, Sun Z, Chen J, Li Y. GPU-Accelerated Molecular Dynamics Simulation to Study Liquid Crystal Phase Transition Using Coarse-Grained Gay-Berne Anisotropic Potential. PLoS One 2016; 11:e0151704. [PMID: 26986851 PMCID: PMC4795799 DOI: 10.1371/journal.pone.0151704] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 03/02/2016] [Indexed: 12/26/2022] Open
Abstract
Gay-Berne (GB) potential is regarded as an accurate model in the simulation of anisotropic particles, especially for liquid crystal (LC) mesogens. However, its computational complexity leads to an extremely time-consuming process for large systems. Here, we developed a GPU-accelerated molecular dynamics (MD) simulation with coarse-grained GB potential implemented in GALAMOST package to investigate the LC phase transitions for mesogens in small molecules, main-chain or side-chain polymers. For identical mesogens in three different molecules, on cooling from fully isotropic melts, the small molecules form a single-domain smectic-B phase, while the main-chain LC polymers prefer a single-domain nematic phase as a result of connective restraints in neighboring mesogens. The phase transition of side-chain LC polymers undergoes a two-step process: nucleation of nematic islands and formation of multi-domain nematic texture. The particular behavior originates in the fact that the rotational orientation of the mesogenes is hindered by the polymer backbones. Both the global distribution and the local orientation of mesogens are critical for the phase transition of anisotropic particles. Furthermore, compared with the MD simulation in LAMMPS, our GPU-accelerated code is about 4 times faster than the GPU version of LAMMPS and at least 200 times faster than the CPU version of LAMMPS. This study clearly shows that GPU-accelerated MD simulation with GB potential in GALAMOST can efficiently handle systems with anisotropic particles and interactions, and accurately explore phase differences originated from molecular structures.
Collapse
Affiliation(s)
- Wenduo Chen
- Key Laboratory of Synthetic Rubber & Laboratory of Advanced Power Sources, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, PR China
| | - Youliang Zhu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, PR China
| | - Fengchao Cui
- Key Laboratory of Synthetic Rubber & Laboratory of Advanced Power Sources, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, PR China
| | - Lunyang Liu
- Key Laboratory of Synthetic Rubber & Laboratory of Advanced Power Sources, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, PR China
| | - Zhaoyan Sun
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, PR China
| | - Jizhong Chen
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, PR China
| | - Yunqi Li
- Key Laboratory of Synthetic Rubber & Laboratory of Advanced Power Sources, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, PR China
| |
Collapse
|
2
|
Tarnacka M, Madejczyk O, Adrjanowicz K, Pionteck J, Kaminska E, Kamiński K, Paluch M. Thermodynamic scaling of molecular dynamics in supercooled liquid state of pharmaceuticals: Itraconazole and ketoconazole. J Chem Phys 2015; 142:224507. [PMID: 26071720 DOI: 10.1063/1.4921985] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Pressure-Volume-Temperature (PVT) measurements and broadband dielectric spectroscopy were carried out to investigate molecular dynamics and to test the validity of thermodynamic scaling of two homologous compounds of pharmaceutical activity: itraconazole and ketoconazole in the wide range of thermodynamic conditions. The pressure coefficients of the glass transition temperature (dT(g)/dp) for itraconazole and ketoconazole were determined to be equal to 183 and 228 K/GPa, respectively. However, for itraconazole, the additional transition to the nematic phase was observed and characterized by the pressure coefficient dT(n)/dp = 258 K/GPa. From PVT and dielectric data, we obtained that the liquid-nematic phase transition is governed by the relaxation time since it occurred at constant τ(α) = 10(-5) s. Furthermore, we plotted the obtained relaxation times as a function of T(-1)v(-γ), which has revealed that the validity of thermodynamic scaling with the γ exponent equals to 3.69 ± 0.04 and 3.64 ± 0.03 for itraconazole and ketoconazole, respectively. Further analysis of the scaling parameter in itraconazole revealed that it unexpectedly decreases with increasing relaxation time, which resulted in dramatic change of the shape of the thermodynamic scaling master curve. While in the case of ketoconazole, it remained the same within entire range of data (within experimental uncertainty). We suppose that in case of itraconazole, this peculiar behavior is related to the liquid crystals' properties of itraconazole molecule.
Collapse
Affiliation(s)
- M Tarnacka
- Institute of Physics, University of Silesia, ul. Uniwersytecka 4, 40-007 Katowice, Poland
| | - O Madejczyk
- Institute of Physics, University of Silesia, ul. Uniwersytecka 4, 40-007 Katowice, Poland
| | - K Adrjanowicz
- NanoBioMedical Centre, ul. Umultowska 85, 61-614 Poznan, Poland
| | - J Pionteck
- Leibniz Institute of Polymer Research Dresden, Hohe Strasse 6, D-01069 Dresden, Germany
| | - E Kaminska
- Department of Pharmacognosy and Phytochemistry, School of Pharmacy and Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia, ul. Jagiellonska 4, 41-200 Sosnowiec, Poland
| | - K Kamiński
- Institute of Physics, University of Silesia, ul. Uniwersytecka 4, 40-007 Katowice, Poland
| | - M Paluch
- Institute of Physics, University of Silesia, ul. Uniwersytecka 4, 40-007 Katowice, Poland
| |
Collapse
|
3
|
Roy D, Fragiadakis D, Roland CM, Dabrowski R, Dziaduszek J, Urban S. Phase behavior and dynamics of a cholesteric liquid crystal. J Chem Phys 2014; 140:074502. [PMID: 24559352 DOI: 10.1063/1.4865413] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The synthesis, equation of state, phase diagram, and dielectric relaxation properties are reported for a new liquid crystal, 4(')-butyl-4-(2-methylbutoxy)azoxybenzene (4ABO5*), which exhibits a cholesteric phase at ambient temperature. The steepness of the intermolecular potential was characterized from the thermodynamic potential parameter, Γ = 4.3 ± 0.1 and the dynamic scaling exponent, γ = 3.5 ± 0.2. The difference between them is similar to that seen previously for nematic and smectic liquid crystals, with the near equivalence of Γ and γ consistent with the near constancy of the relaxation time of 4ABO5* at the cholesteric to isotropic phase transition (i.e., the clearing line). Thus, chirality does not cause deviations from the general relationship between thermodynamics and dynamics in the ordered phase of liquid crystals. The ionic conductivity of 4ABO5* shows strong coupling to the reorientational dynamics.
Collapse
Affiliation(s)
- D Roy
- Naval Research Laboratory, Chemistry Division, Code 6120, Washington DC 20375-5342, USA
| | - D Fragiadakis
- Naval Research Laboratory, Chemistry Division, Code 6120, Washington DC 20375-5342, USA
| | - C M Roland
- Naval Research Laboratory, Chemistry Division, Code 6120, Washington DC 20375-5342, USA
| | - R Dabrowski
- Institute of Chemistry, Military University of Technology, 00-908 Warsaw, Poland
| | - J Dziaduszek
- Institute of Chemistry, Military University of Technology, 00-908 Warsaw, Poland
| | - S Urban
- Institute of Physics, Jagiellonian University, Krakow, Poland
| |
Collapse
|
4
|
Voyiatzis E, Müller-Plathe F, Böhm MC. Excess entropy scaling for the segmental and global dynamics of polyethylene melts. Phys Chem Chem Phys 2014; 16:24301-11. [DOI: 10.1039/c4cp03559c] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The range of validity of the Rosenfeld and Dzugutov excess entropy scaling laws is analyzed for unentangled linear polyethylene chains.
Collapse
Affiliation(s)
- Evangelos Voyiatzis
- Eduard-Zintl-Institut für Anorganische und Physikalische Chemie and Center of Smart Interfaces
- Technische Universität Darmstadt
- D-64287 Darmstadt, Germany
| | - Florian Müller-Plathe
- Eduard-Zintl-Institut für Anorganische und Physikalische Chemie and Center of Smart Interfaces
- Technische Universität Darmstadt
- D-64287 Darmstadt, Germany
| | - Michael C. Böhm
- Eduard-Zintl-Institut für Anorganische und Physikalische Chemie and Center of Smart Interfaces
- Technische Universität Darmstadt
- D-64287 Darmstadt, Germany
| |
Collapse
|