1
|
Capobianco A, Landi A, Peluso A. Duplex DNA Retains the Conformational Features of Single Strands: Perspectives from MD Simulations and Quantum Chemical Computations. Int J Mol Sci 2022; 23:ijms232214452. [PMID: 36430930 PMCID: PMC9697240 DOI: 10.3390/ijms232214452] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 11/09/2022] [Accepted: 11/13/2022] [Indexed: 11/22/2022] Open
Abstract
Molecular dynamics simulations and geometry optimizations carried out at the quantum level as well as by quantum mechanical/molecular mechanics methods predict that short, single-stranded DNA oligonucleotides adopt conformations very similar to those observed in crystallographic double-stranded B-DNA, with rise coordinates close to ≈3.3 Å. In agreement with the experimental evidence, the computational results show that DNA single strands rich in adjacent purine nucleobases assume more regular arrangements than poly-thymine. The preliminary results suggest that single-stranded poly-cytosine DNA should also retain a substantial helical order in solution. A comparison of the structures of single and double helices confirms that the B-DNA motif is a favorable arrangement also for single strands. Indeed, the optimal geometry of the complementary single helices is changed to a very small extent in the formation of the duplex.
Collapse
|
2
|
Rieger M, Zacharias M. Nearest-Neighbor dsDNA Stability Analysis Using Alchemical Free-Energy Simulations. J Phys Chem B 2022; 126:3640-3647. [PMID: 35549273 DOI: 10.1021/acs.jpcb.2c01138] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The thermodynamic stability of double-stranded (ds)DNA depends on its sequence. It is influenced by the base pairing and stacking with neighboring bases along DNA molecules. Semiempirical schemes are available that allow us to predict the thermodynamic stability of DNA sequences based on empirically derived nearest-neighbor contributions of base pairs formed in the context of all possible nearest-neighbor base pairs. Current molecular dynamics (MD) simulations allow one to simulate the dynamics of DNA molecules in good agreement with experimentally obtained structures and available data on conformational flexibility. However, the suitability of current force field methods to reproduce dsDNA stability and its sequence dependence has been much less well tested. We have employed alchemical free-energy simulations of whole base pair transversions in dsDNA and in unbound single-stranded partner molecules. Such transversions change the sequence context but not the nucleotide content or base pairing in dsDNA and allow a direct comparison with the empirical nearest-neighbor dsDNA stability model. For the alchemical free-energy changes in the unbound single-stranded (ss)DNA partner molecules, we tested different setups assuming either complete unstacking or unrestrained simulations with partial stacking in the unbound ssDNA. The free-energy simulations predicted nearest-neighbor effects of similar magnitude, as observed experimentally but showed overall limited correlation with experimental data. An inaccurate description of stacking interactions and other possible reasons such as the neglect of electronic polarization effects are discussed. The results indicate the need to improve the realistic description of stacking interactions in current molecular mechanic force fields.
Collapse
Affiliation(s)
- Manuel Rieger
- Physics Department and Center of Protein Assemblies, Technical University of Munich, 85748 Garching, Germany
| | - Martin Zacharias
- Physics Department and Center of Protein Assemblies, Technical University of Munich, 85748 Garching, Germany
| |
Collapse
|
3
|
González-Olvera JC, Zamorano-Carrillo A, Arreola-Jardón G, Pless RC. Residue interactions affecting the deprotonation of internal guanine moieties in oligodeoxyribonucleotides, calculated by FMO methods. J Mol Model 2022; 28:43. [DOI: 10.1007/s00894-022-05033-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 01/18/2022] [Indexed: 11/24/2022]
|
4
|
Golyshev VM, Pyshnyi DV, Lomzov AA. Calculation of Energy for RNA/RNA and DNA/RNA Duplex Formation by Molecular Dynamics Simulation. Mol Biol 2021. [DOI: 10.1134/s002689332105006x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Abstract
The development of approaches for predictive calculation of hybridization properties of various nucleic acid (NA) derivatives is the basis for the rational design of the NA-based constructs. Modern advances in computer modeling methods provide the feasibility of these calculations. We have analyzed the possibility of calculating the energy of DNA/RNA and RNA/RNA duplex formation using representative sets of complexes (65 and 75 complexes, respectively). We used the classical molecular dynamics (MD) method, the MMPBSA or MMGBSA approaches to calculate the enthalpy (ΔH°) component, and the quasi-harmonic approximation (Q-Harm) or the normal mode analysis (NMA) methods to calculate the entropy (ΔS°) contribution to the Gibbs energy ($$\Delta G_{{37}}^{^\circ }$$ ) of the NA complex formation. We have found that the MMGBSA method in the analysis of the MD trajectory of only the NA duplex and the empirical linear approximation allow calculation of the enthalpy of formation of the DNA, RNA, and hybrid duplexes of various lengths and GC content with an accuracy of 8.6%. Within each type of complex, the combination of rather efficient MMGBSA and Q-Harm approaches being applied to the trajectory of only the bimolecular complex makes it possible to calculate the $$\Delta G_{{37}}^{^\circ }$$ of the duplex formation with an error value of 10%. The high accuracy of predictive calculation for different types of natural complexes (DNA/RNA, DNA/RNA, and RNA/RNA) indicates the possibility of extending the considered approach to analogs and derivatives of nucleic acids, which gives a fundamental opportunity in the future to perform rational design of new types of NA-targeted sequence-specific compounds.
Collapse
|
5
|
Beiranvand N, Freindorf M, Kraka E. Hydrogen Bonding in Natural and Unnatural Base Pairs-A Local Vibrational Mode Study. Molecules 2021; 26:2268. [PMID: 33919989 PMCID: PMC8071019 DOI: 10.3390/molecules26082268] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/08/2021] [Accepted: 04/09/2021] [Indexed: 12/13/2022] Open
Abstract
In this work hydrogen bonding in a diverse set of 36 unnatural and the three natural Watson Crick base pairs adenine (A)-thymine (T), adenine (A)-uracil (U) and guanine (G)-cytosine (C) was assessed utilizing local vibrational force constants derived from the local mode analysis, originally introduced by Konkoli and Cremer as a unique bond strength measure based on vibrational spectroscopy. The local mode analysis was complemented by the topological analysis of the electronic density and the natural bond orbital analysis. The most interesting findings of our study are that (i) hydrogen bonding in Watson Crick base pairs is not exceptionally strong and (ii) the N-H⋯N is the most favorable hydrogen bond in both unnatural and natural base pairs while O-H⋯N/O bonds are the less favorable in unnatural base pairs and not found at all in natural base pairs. In addition, the important role of non-classical C-H⋯N/O bonds for the stabilization of base pairs was revealed, especially the role of C-H⋯O bonds in Watson Crick base pairs. Hydrogen bonding in Watson Crick base pairs modeled in the DNA via a QM/MM approach showed that the DNA environment increases the strength of the central N-H⋯N bond and the C-H⋯O bonds, and at the same time decreases the strength of the N-H⋯O bond. However, the general trends observed in the gas phase calculations remain unchanged. The new methodology presented and tested in this work provides the bioengineering community with an efficient design tool to assess and predict the type and strength of hydrogen bonding in artificial base pairs.
Collapse
Affiliation(s)
| | | | - Elfi Kraka
- Computational and Theoretical Chemistry Group (CATCO), Department of Chemistry, Southern Methodist University, 3215 Daniel Ave, Dallas, TX 75275-0314, USA; (N.B.); (M.F.)
| |
Collapse
|
6
|
Zacharias M. Base-Pairing and Base-Stacking Contributions to Double-Stranded DNA Formation. J Phys Chem B 2020; 124:10345-10352. [PMID: 33156627 DOI: 10.1021/acs.jpcb.0c07670] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Double-stranded (ds)DNA formation and dissociation are of fundamental biological importance. The negative DNA charge influences the dsDNA stability. However, the base pairing and the stacking between neighboring bases are responsible for the sequence-dependent stability of dsDNA. The stability of a dsDNA molecule can be estimated from empirical nearest-neighbor models based on contributions assigned to base-pair steps along the DNA and additional parameters because of DNA termini. In efforts to separate contributions, it has been concluded that base stacking dominates dsDNA stability, whereas base pairing contributes negligibly. Using a different model for dsDNA formation, we reanalyze dsDNA stability contributions and conclude that base stacking contributes already at the level of separate ssDNAs but that pairing contributions drive the dsDNA formation. The theoretical model also predicts that stability contributions of base-pair steps that contain only guanine/cytosine, mixed steps, and steps with only adenine/thymine follow the order 6:5:4, respectively, as expected based on the formed hydrogen bonds. The model is fully consistent with the available stacking data and the nearest-neighbor dsDNA parameters. It allows assigning a narrowly distributed value for the effective free energy contribution per formed hydrogen bond during dsDNA formation of -0.72 kcal·mol-1 based entirely on the experimental data.
Collapse
Affiliation(s)
- Martin Zacharias
- Physics Department T38, Technical University of Munich, 85748 Garching, Germany
| |
Collapse
|
7
|
Oprzeska-Zingrebe EA, Smiatek J. Preferential Binding of Urea to Single-Stranded DNA Structures: A Molecular Dynamics Study. Biophys J 2019; 114:1551-1562. [PMID: 29642026 DOI: 10.1016/j.bpj.2018.02.013] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 01/12/2018] [Accepted: 02/12/2018] [Indexed: 01/06/2023] Open
Abstract
In nature, a wide range of biological processes such as transcription termination and intermolecular binding depend on the formation of specific DNA secondary and tertiary structures. These structures can be both stabilized or destabilized by different cosolutes coexisting with nucleic acids in the cellular environment. In our molecular dynamics simulation study, we investigate the binding of urea at different concentrations to short 7-nucleotide single-stranded DNA structures in aqueous solution. The local concentration of urea around a native DNA hairpin in comparison to an unfolded DNA conformation is analyzed by a preferential binding model in light of the Kirkwood-Buff theory. All our findings indicate a pronounced accumulation of urea around DNA that is driven by a combination of electrostatic and dispersion interactions and accomplished by a significant replacement of hydrating water molecules. The outcomes of our study can be regarded as a first step into a deeper mechanistic understanding toward cosolute-induced effects on nucleotide structures in general.
Collapse
Affiliation(s)
| | - Jens Smiatek
- Institute for Computational Physics, University of Stuttgart, Stuttgart, Germany; Helmholtz Institute Münster: Ionics in Energy Storage, Forschungszentrum Jülich, Münster, Germany.
| |
Collapse
|
8
|
Sarkar S, Maity A, Sarma Phukon A, Ghosh S, Chakrabarti R. Salt Induced Structural Collapse, Swelling, and Signature of Aggregation of Two ssDNA Strands: Insights from Molecular Dynamics Simulation. J Phys Chem B 2018; 123:47-56. [DOI: 10.1021/acs.jpcb.8b09098] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Soham Sarkar
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Atanu Maity
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Aditya Sarma Phukon
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Soumadwip Ghosh
- Beckman Research Institute of the City of Hope National Medical Center, 1500 East Duarte Road, Duarte, California 91010, United States
| | - Rajarshi Chakrabarti
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| |
Collapse
|
9
|
Ghoshdastidar D, Bansal M. Dynamics of physiologically relevant noncanonical DNA structures: an overview from experimental and theoretical studies. Brief Funct Genomics 2018; 18:192-204. [DOI: 10.1093/bfgp/ely026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 06/23/2018] [Accepted: 07/09/2018] [Indexed: 12/23/2022] Open
Abstract
Abstract
DNA is a complex molecule with phenomenal inherent plasticity and the ability to form different hydrogen bonding patterns of varying stabilities. These properties enable DNA to attain a variety of structural and conformational polymorphic forms. Structurally, DNA can exist in single-stranded form or as higher-order structures, which include the canonical double helix as well as the noncanonical duplex, triplex and quadruplex species. Each of these structural forms in turn encompasses an ensemble of dynamically heterogeneous conformers depending on the sequence composition and environmental context. In vivo, the widely populated canonical B-DNA attains these noncanonical polymorphs during important cellular processes. While several investigations have focused on the structure of these noncanonical DNA, studying their dynamics has remained nontrivial. Here, we outline findings from some recent advanced experimental and molecular simulation techniques that have significantly contributed toward understanding the complex dynamics of physiologically relevant noncanonical forms of DNA.
Collapse
Affiliation(s)
| | - Manju Bansal
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560 012, India
| |
Collapse
|
10
|
Krupa P, Wales DJ, Sieradzan AK. Computational Studies of the Mechanical Stability for Single-Strand Break DNA. J Phys Chem B 2018; 122:8166-8173. [DOI: 10.1021/acs.jpcb.8b05417] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Paweł Krupa
- Institute of Physics, Polish Academy of Sciences, Aleja Lotnikow 32/46, PL-02668 Warsaw, Poland
- Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - David J. Wales
- Department of Chemistry, Cambridge University, Lensfield Road, Cambridge CB2 1EW, U.K
| | - Adam K. Sieradzan
- Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland
| |
Collapse
|
11
|
Eisold A, Labudde D. Detailed Analysis of 17β-Estradiol-Aptamer Interactions: A Molecular Dynamics Simulation Study. Molecules 2018; 23:molecules23071690. [PMID: 29997341 PMCID: PMC6100600 DOI: 10.3390/molecules23071690] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 07/06/2018] [Accepted: 07/09/2018] [Indexed: 12/16/2022] Open
Abstract
Micro-pollutants such as 17β-Estradiol (E2) have been detected in different water resources and their negative effects on the environment and organisms have been observed. Aptamers are established as a possible detection tool, but the underlying ligand binding is largely unexplored. In this study, a previously described 35-mer E2-specific aptamer was used to analyse the binding characteristics between E2 and the aptamer with a MD simulation in an aqueous medium. Because there is no 3D structure information available for this aptamer, it was modeled using coarse-grained modeling method. The E2 ligand was positioned inside a potential binding area of the predicted aptamer structure, the complex was used for an 25 ns MD simulation, and the interactions were examined for each time step. We identified E2-specific bases within the interior loop of the aptamer and also demonstrated the influence of frequently underestimated water-mediated hydrogen bonds. The study contributes to the understanding of the behavior of ligands binding with aptamer structure in an aqueous solution. The developed workflow allows generating and examining further appealing ligand-aptamer complexes.
Collapse
Affiliation(s)
- Alexander Eisold
- Faculty of Applied Computer and Biosciences, University of Applied Sciences Mittweida, Technikumplatz 17, 09648 Mittweida, Germany.
- Institute for Organic Chemistry, Technische Universität Bergakademie Freiberg, Leipziger Straße 29, 09599 Freiberg, Germany.
| | - Dirk Labudde
- Faculty of Applied Computer and Biosciences, University of Applied Sciences Mittweida, Technikumplatz 17, 09648 Mittweida, Germany.
| |
Collapse
|
12
|
Tomobe K, Yamamoto E, Kojić D, Sato Y, Yasui M, Yasuoka K. Origin of the blueshift of water molecules at interfaces of hydrophilic cyclic compounds. SCIENCE ADVANCES 2017; 3:e1701400. [PMID: 29282448 PMCID: PMC5741398 DOI: 10.1126/sciadv.1701400] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Accepted: 11/17/2017] [Indexed: 05/29/2023]
Abstract
Water molecules at interfaces of materials exhibit enigmatic properties. A variety of spectroscopic studies have observed a high-frequency motion in these water molecules, represented by a blueshift, at both hydrophobic and hydrophilic interfaces. However, the molecular mechanism behind this blueshift has remained unclear. Using Raman spectroscopy and ab initio molecular dynamics simulations, we reveal the molecular mechanism of the blueshift of water molecules around six monosaccharide isomers. In the first hydration shell, we found weak hydrogen-bonded water molecules that cannot have a stable tetrahedral water network. In the water molecules, the vibrational state of the OH bond oriented toward the bulk solvent strongly contributes to the observed blueshift. Our work suggests that the blueshift in various solutions originates from the vibrational motions of these observed water molecules.
Collapse
Affiliation(s)
- Katsufumi Tomobe
- Department of Mechanical Engineering, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
| | - Eiji Yamamoto
- Graduate School of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
| | - Dušan Kojić
- Department of Pharmacology, School of Medicine, Keio University, Shinanomachi, Shinjuku-ku 160-8582, Japan
- Keio Advanced Research Institute for Water Biology and Medicine, Keio University, Shinanomachi, Shinjuku-ku 160-8582, Japan
| | - Yohei Sato
- Keio Advanced Research Institute for Water Biology and Medicine, Keio University, Shinanomachi, Shinjuku-ku 160-8582, Japan
- Department of System Design Engineering, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
| | - Masato Yasui
- Department of Pharmacology, School of Medicine, Keio University, Shinanomachi, Shinjuku-ku 160-8582, Japan
- Keio Advanced Research Institute for Water Biology and Medicine, Keio University, Shinanomachi, Shinjuku-ku 160-8582, Japan
- Keio University Global Research Institute, Keio University, Mita, Minato-ku 108-8345, Japan
| | - Kenji Yasuoka
- Department of Mechanical Engineering, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
- Keio Advanced Research Institute for Water Biology and Medicine, Keio University, Shinanomachi, Shinjuku-ku 160-8582, Japan
- Keio University Global Research Institute, Keio University, Mita, Minato-ku 108-8345, Japan
| |
Collapse
|
13
|
Pawłowska S, Nakielski P, Pierini F, Piechocka IK, Zembrzycki K, Kowalewski TA. Lateral migration of electrospun hydrogel nanofilaments in an oscillatory flow. PLoS One 2017; 12:e0187815. [PMID: 29141043 PMCID: PMC5687761 DOI: 10.1371/journal.pone.0187815] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 10/26/2017] [Indexed: 12/31/2022] Open
Abstract
The recent progress in bioengineering has created great interest in the dynamics and manipulation of long, deformable macromolecules interacting with fluid flow. We report experimental data on the cross-flow migration, bending, and buckling of extremely deformable hydrogel nanofilaments conveyed by an oscillatory flow into a microchannel. The changes in migration velocity and filament orientation are related to the flow velocity and the filament's initial position, deformation, and length. The observed migration dynamics of hydrogel filaments qualitatively confirms the validity of the previously developed worm-like bead-chain hydrodynamic model. The experimental data collected may help to verify the role of hydrodynamic interactions in molecular simulations of long molecular chains dynamics.
Collapse
Affiliation(s)
- Sylwia Pawłowska
- Department of Biosystems and Soft Matter, Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw, Poland
| | - Paweł Nakielski
- Department of Biosystems and Soft Matter, Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw, Poland
| | - Filippo Pierini
- Department of Biosystems and Soft Matter, Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw, Poland
| | - Izabela K. Piechocka
- Department of Biosystems and Soft Matter, Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw, Poland
| | - Krzysztof Zembrzycki
- Department of Biosystems and Soft Matter, Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw, Poland
| | - Tomasz A. Kowalewski
- Department of Biosystems and Soft Matter, Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
14
|
Wu Y, Liu J, Wang Y, Li K, Li L, Xu J, Wu D. Novel Ratiometric Fluorescent Nanothermometers Based on Fluorophores-Labeled Short Single-Stranded DNA. ACS APPLIED MATERIALS & INTERFACES 2017; 9:11073-11081. [PMID: 28263548 DOI: 10.1021/acsami.7b01554] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Novel ratiometric fluorescent short single-stranded DNA (ssDNA) nanothermometers (ssDNA FT) were developed using the fluorescence resonance energy transfer (FRET) effect of the ssDNA's end labeled fluorophores. An optimal ssDNA sequence and associated ssDNA FT were determined through combined MD simulation and temperature-related FRET analysis. Their fluorescence properties and thermo-responsivities were analyzed using fluorescence spectra. The influences of ssDNA' sequence length, sequence composition and fluorescent labels for temperature sensing were investigated. Results revealed the prepared, optimized ssDNA FT showed a high average temperature sensitivity of 7.04% °C1-, wide linear response range of 0-100 °C, and excellent stability with various environmental factors. Furthermore, this ssDNA FT was successfully used for intracellular temperature sensing in cancer cells and was used for in vivo thermos-imaging during microwave hyperthermia of tumor tissue. Advantages in size, sensitivity, and stability proved the feasibility of ssDNA FT in nanoscale thermometry applications, and this novel fluorescent thermometry mechanism is of large potential in the development of FTs. This investigation of ssDNA's molecular thermosensitivity could give rise to a new prospective in the nanothermometry field.
Collapse
Affiliation(s)
- Youshen Wu
- Department of Chemistry, School of Science, Xi'an Jiaotong University , Xi'an, 710049, China
| | - Jiajun Liu
- Key Laboratory of Biomedical Information Engineering of Education Ministry, School of Life Science and Technology, Xi'an Jiaotong University , Xi'an, 710049, China
| | - Ya Wang
- Key Laboratory of Biomedical Information Engineering of Education Ministry, School of Life Science and Technology, Xi'an Jiaotong University , Xi'an, 710049, China
| | - Ke Li
- Key Laboratory of Biomedical Information Engineering of Education Ministry, School of Life Science and Technology, Xi'an Jiaotong University , Xi'an, 710049, China
| | - Lei Li
- State Key Laboratory of Precision Spectroscopy, East China Normal University , Shanghai, 200062, China
| | - Jianhua Xu
- State Key Laboratory of Precision Spectroscopy, East China Normal University , Shanghai, 200062, China
| | - Daocheng Wu
- Key Laboratory of Biomedical Information Engineering of Education Ministry, School of Life Science and Technology, Xi'an Jiaotong University , Xi'an, 710049, China
| |
Collapse
|
15
|
Andrews CT, Campbell BA, Elcock AH. Direct Comparison of Amino Acid and Salt Interactions with Double-Stranded and Single-Stranded DNA from Explicit-Solvent Molecular Dynamics Simulations. J Chem Theory Comput 2017; 13:1794-1811. [PMID: 28288277 DOI: 10.1021/acs.jctc.6b00883] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Given the ubiquitous nature of protein-DNA interactions, it is important to understand the interaction thermodynamics of individual amino acid side chains for DNA. One way to assess these preferences is to perform molecular dynamics (MD) simulations. Here we report MD simulations of 20 amino acid side chain analogs interacting simultaneously with both a 70-base-pair double-stranded DNA and with a 70-nucleotide single-stranded DNA. The relative preferences of the amino acid side chains for dsDNA and ssDNA match well with values deduced from crystallographic analyses of protein-DNA complexes. The estimated apparent free energies of interaction for ssDNA, on the other hand, correlate well with previous simulation values reported for interactions with isolated nucleobases, and with experimental values reported for interactions with guanosine. Comparisons of the interactions with dsDNA and ssDNA indicate that, with the exception of the positively charged side chains, all types of amino acid side chain interact more favorably with ssDNA, with intercalation of aromatic and aliphatic side chains being especially notable. Analysis of the data on a base-by-base basis indicates that positively charged side chains, as well as sodium ions, preferentially bind to cytosine in ssDNA, and that negatively charged side chains, and chloride ions, preferentially bind to guanine in ssDNA. These latter observations provide a novel explanation for the lower salt dependence of DNA duplex stability in GC-rich sequences relative to AT-rich sequences.
Collapse
Affiliation(s)
- Casey T Andrews
- Department of Biochemistry, University of Iowa , Iowa City, Iowa 52242, United States
| | - Brady A Campbell
- Department of Biochemistry, University of Iowa , Iowa City, Iowa 52242, United States
| | - Adrian H Elcock
- Department of Biochemistry, University of Iowa , Iowa City, Iowa 52242, United States
| |
Collapse
|
16
|
Chakraborty K, Khatua P, Bandyopadhyay S. Exploring ion induced folding of a single-stranded DNA oligomer from molecular simulation studies. Phys Chem Chem Phys 2016; 18:15899-910. [PMID: 27241311 DOI: 10.1039/c6cp00663a] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
One crucial issue in DNA hydration is the effect of salts on its conformational features. This has relevance in biology as cations present in the cellular environment shield the negative charges on the DNA backbone, thereby reducing the repulsive force between them. By screening the negative charges along the backbone, cations stabilize the folded structure of DNA. To study the effect of the added salt on single-stranded DNA (ss-DNA) conformations, we have performed room temperature molecular dynamics simulations of an aqueous solution containing the ss-DNA dodecamer with the 5'-CGCGAATTCGCG-3' sequence in the presence of 0.2, 0.5, and 0.8 M NaCl. Our calculations reveal that in the presence of the salt, the DNA molecule forms more collapsed coil-like conformations due to the screening of negative charges along the backbone. Additionally, we demonstrated that the formation of an octahedral inner-sphere complex by the strongly bound ion plays an important role in the stabilization of such folded conformation of DNA. Importantly, it is found that ion-DNA interactions can also explain the formation of non-sequential base stackings with longer lifetimes. Such non-sequential base stackings further stabilize the collapsed coil-like folded form of the DNA oligomer.
Collapse
Affiliation(s)
- Kaushik Chakraborty
- Molecular Modeling Laboratory, Department of Chemistry, Indian Institute of Technology, Kharagpur - 721302, India.
| | | | | |
Collapse
|
17
|
Ghosh S, Patel N, Chakrabarti R. Probing the Salt Concentration Dependent Nucleobase Distribution in a Single-Stranded DNA–Single-Walled Carbon Nanotube Hybrid with Molecular Dynamics. J Phys Chem B 2016; 120:455-66. [DOI: 10.1021/acs.jpcb.5b12044] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Soumadwip Ghosh
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, 40076, India
| | - Nisheet Patel
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, 40076, India
| | - Rajarshi Chakrabarti
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, 40076, India
| |
Collapse
|
18
|
Schrodt MV, Andrews CT, Elcock AH. Large-Scale Analysis of 48 DNA and 48 RNA Tetranucleotides Studied by 1 μs Explicit-Solvent Molecular Dynamics Simulations. J Chem Theory Comput 2015; 11:5906-17. [PMID: 26580891 PMCID: PMC4806854 DOI: 10.1021/acs.jctc.5b00899] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
An understanding of how the conformational behavior of single-stranded DNAs and RNAs depend on sequence is likely to be important for attempts to rationalize the thermodynamics of nucleic acid folding. In an attempt to further our understanding of such sequence dependences, we report here the results of 192 (1 μs) explicit-solvent molecular dynamics (MD) simulations of 48 DNA and 48 RNA tetranucleotide sequences performed using recently reported modifications to the AMBER force field. Each tetranucleotide was simulated starting from two different conformations, a fully natively stacked and a completely unstacked conformation, and populations of the various possible base stacking arrangements were analyzed. The simulations indicate that, for both DNA and RNA, the populations of fully natively stacked conformations increase linearly with increasing numbers of purines in the sequence, while the conformational entropies, computed by two complementary methods, decrease. Despite the comparatively short simulation times, the computed free energies of stacking of the 16 possible combinations of bases in the middle of the sequences are found to be in good correspondence with values reported recently from simulations of dinucleoside monophosphates using the same force field. Finally, consistent with recent reports from other groups, non-native stacking interactions, i.e., between bases that are not adjacent in sequence, are shown to be a recurring feature of the simulations; in particular, stacking interactions of bases in a i:i+2 relationship are shown to occur significantly more frequently when the intervening base is a pyrimidine. Given that the high prevalence of non-native stacking interactions is thought to be unrealistic, it appears that further parametrization work will be required before accurate conformational descriptions of single-stranded nucleic acids can be obtained with current force fields.
Collapse
Affiliation(s)
| | - Casey T. Andrews
- Department of Biochemistry, University of Iowa, Iowa City, IA 52242
| | - Adrian H. Elcock
- Department of Biochemistry, University of Iowa, Iowa City, IA 52242
| |
Collapse
|
19
|
Nakano M, Tateishi-Karimata H, Tanaka S, Tama F, Miyashita O, Nakano SI, Sugimoto N. Thermodynamic properties of water molecules in the presence of cosolute depend on DNA structure: a study using grid inhomogeneous solvation theory. Nucleic Acids Res 2015; 43:10114-25. [PMID: 26538600 PMCID: PMC4666364 DOI: 10.1093/nar/gkv1133] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 10/14/2015] [Indexed: 01/11/2023] Open
Abstract
In conditions that mimic those of the living cell, where various biomolecules and other components are present, DNA strands can adopt many structures in addition to the canonical B-form duplex. Previous studies in the presence of cosolutes that induce molecular crowding showed that thermal stabilities of DNA structures are associated with the properties of the water molecules around the DNAs. To understand how cosolutes, such as ethylene glycol, affect the thermal stability of DNA structures, we investigated the thermodynamic properties of water molecules around a hairpin duplex and a G-quadruplex using grid inhomogeneous solvation theory (GIST) with or without cosolutes. Our analysis indicated that (i) cosolutes increased the free energy of water molecules around DNA by disrupting water–water interactions, (ii) ethylene glycol more effectively disrupted water–water interactions around Watson–Crick base pairs than those around G-quartets or non-paired bases, (iii) due to the negative electrostatic potential there was a thicker hydration shell around G-quartets than around Watson–Crick-paired bases. Our findings suggest that the thermal stability of the hydration shell around DNAs is one factor that affects the thermal stabilities of DNA structures under the crowding conditions.
Collapse
Affiliation(s)
- Miki Nakano
- Frontier Institute for Biomolecular Engineering Research (FIBER), Konan University, 7-1-20 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan Advanced Institute for Computational Sciences, RIKEN, 7-1-26, Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan
| | - Hisae Tateishi-Karimata
- Frontier Institute for Biomolecular Engineering Research (FIBER), Konan University, 7-1-20 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan
| | - Shigenori Tanaka
- Department of Computational Science, Graduate School of System Informatics, Kobe University, 1-1, Rokkodai, Nada-ku, Kobe 657-8501, Japan
| | - Florence Tama
- Advanced Institute for Computational Sciences, RIKEN, 7-1-26, Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan Department of Physics, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
| | - Osamu Miyashita
- Advanced Institute for Computational Sciences, RIKEN, 7-1-26, Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan
| | - Shu-Ichi Nakano
- Faculty of Frontiers of Innovative Research in Science and Technology (FIRST), Konan University, 7-1-20, Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan
| | - Naoki Sugimoto
- Frontier Institute for Biomolecular Engineering Research (FIBER), Konan University, 7-1-20 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan Graduate School of Frontiers of Innovative Research in Science and Technology (FIRST), Konan University, 7-1-20 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan
| |
Collapse
|
20
|
Ghosh S, Dixit H, Chakrabarti R. Ion assisted structural collapse of a single stranded DNA: A molecular dynamics approach. Chem Phys 2015. [DOI: 10.1016/j.chemphys.2015.07.038] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
21
|
González-Olvera JC, Martínez-Reyes J, González-Jasso E, Pless RC. Determination of pKa values for deprotonable nucleobases in short model oligonucleotides. Biophys Chem 2015; 206:58-65. [PMID: 26188860 DOI: 10.1016/j.bpc.2015.07.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Revised: 07/01/2015] [Accepted: 07/06/2015] [Indexed: 10/23/2022]
Abstract
The deprotonation of ionizable nucleobases centrally placed in short model oligonucleotides was examined under different physical conditions, using UV absorption spectroscopy. The oligonucleotide sequences were designed so that only the central base would be ionized over the pH range examined. pKa values of 9.90±0.01 and 9.34±0.04 were determined for the guanine group in the oligomer d-ACAGCAC and 2'-deoxyguanosine, respectively, both at 25°C and 0.1M NaCl. Lengthening the oligonucleotide up to the tridecamer stage further increases the pKa of the central guanine moiety. Electrolyte concentration, temperature, and mixed water-ethanol solvents affect the acidity of the central base. Changes in the sequence surrounding the central guanine can also have a significant effect, especially in the case of strongly stacking sequences. The pKa values were also determined for the hepta(2'-O-methyl)ribonucleotide and the heptamer PNA of identical sequence, as well as for oligodeoxyribonucleotides with different deprotonable bases, viz. thymine, uracil, or hypoxanthine, in the central position. The results are interpreted in terms of the electric-field effect exerted on the departing proton by the negative electric charges located on the internucleotide phosphate groups, and calculations show this effect to approximately explain the magnitude of the pKa difference observed between the deoxyriboheptanucleotide and its electroneutral PNA analogue.
Collapse
Affiliation(s)
- Julio C González-Olvera
- Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada, Instituto Politécnico Nacional, Querétaro, Querétaro 76090, Mexico
| | - José Martínez-Reyes
- Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada, Instituto Politécnico Nacional, Querétaro, Querétaro 76090, Mexico
| | - Eva González-Jasso
- Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada, Instituto Politécnico Nacional, Querétaro, Querétaro 76090, Mexico
| | - Reynaldo C Pless
- Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada, Instituto Politécnico Nacional, Querétaro, Querétaro 76090, Mexico.
| |
Collapse
|
22
|
Sebastiani F, Longo M, Orecchini A, Comez L, De Francesco A, Muthmann M, Teixeira SCM, Petrillo C, Sacchetti F, Paciaroni A. Hydration-dependent dynamics of human telomeric oligonucleotides in the picosecond timescale: A neutron scattering study. J Chem Phys 2015; 143:015102. [DOI: 10.1063/1.4923213] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Affiliation(s)
- F. Sebastiani
- Dipartimento di Fisica e Geologia, Università degli Studi di Perugia, Via A. Pascoli, 06123 Perugia, Italy
- CNR, Istituto Officina dei Materiali, Unità di Perugia, c/o Dipartimento di Fisica e Geologia, Università di Perugia, 06123 Perugia, Italy
| | - M. Longo
- Dipartimento di Fisica e Geologia, Università degli Studi di Perugia, Via A. Pascoli, 06123 Perugia, Italy
- Elettra—Sincrotrone Trieste, 34149 Basovizza, Trieste, Italy
| | - A. Orecchini
- Dipartimento di Fisica e Geologia, Università degli Studi di Perugia, Via A. Pascoli, 06123 Perugia, Italy
| | - L. Comez
- Dipartimento di Fisica e Geologia, Università degli Studi di Perugia, Via A. Pascoli, 06123 Perugia, Italy
- CNR, Istituto Officina dei Materiali, Unità di Perugia, c/o Dipartimento di Fisica e Geologia, Università di Perugia, 06123 Perugia, Italy
| | - A. De Francesco
- CNR-IOM OGG c/o Institut Laue-Langevin, 71 Avenue des Martyrs, CS20156, 38042 Grenoble Cedex 9, France
| | - M. Muthmann
- Jülich Centre for Neutron Science, Forschungszentrum Jülich GmbH, Outstation at Heinz Maier-Leibnitz Zentrum, Lichtenbergstrasse 1, 85747 Garching, Germany
| | - S. C. M. Teixeira
- EPSAM, Keele University, Staffordshire ST5 5BG, United Kingdom
- Institut Laue–Langevin, 71 Avenue des Martyrs, CS20156, 38042 Grenoble Cedex 9, France
| | - C. Petrillo
- Dipartimento di Fisica e Geologia, Università degli Studi di Perugia, Via A. Pascoli, 06123 Perugia, Italy
| | - F. Sacchetti
- Dipartimento di Fisica e Geologia, Università degli Studi di Perugia, Via A. Pascoli, 06123 Perugia, Italy
- CNR, Istituto Officina dei Materiali, Unità di Perugia, c/o Dipartimento di Fisica e Geologia, Università di Perugia, 06123 Perugia, Italy
| | - A. Paciaroni
- Dipartimento di Fisica e Geologia, Università degli Studi di Perugia, Via A. Pascoli, 06123 Perugia, Italy
| |
Collapse
|
23
|
Rani P, Biswas P. Local Structure and Dynamics of Hydration Water in Intrinsically Disordered Proteins. J Phys Chem B 2015; 119:10858-67. [DOI: 10.1021/jp511961c] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Pooja Rani
- Department of Chemistry, University of Delhi, Delhi - 110007, India
| | - Parbati Biswas
- Department of Chemistry, University of Delhi, Delhi - 110007, India
| |
Collapse
|
24
|
Chakraborty K, Bandyopadhyay S. Effect of temperature on the low-frequency vibrational spectrum and relative structuring of hydration water around a single-stranded DNA. J Chem Phys 2015; 142:015101. [PMID: 25573583 DOI: 10.1063/1.4904896] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Molecular dynamics simulations of the single-stranded DNA oligomer (5'-CGCGAAT TCGCG-3') in aqueous solution have been carried out at different temperatures between 160 K and 300 K. The effects of temperature on the low-frequency vibrational spectrum and local structural arrangements of water molecules hydrating the DNA strand have been explored in detail. The low-frequency density of states distributions reveal that increasingly trapped transverse water motions play a dominant role in controlling the band corresponding to O⋯O⋯O bending or transverse oscillations of hydration water at supercooled temperatures. In addition, presence of a broad band around 260 (±20) cm(-1) under supercooled conditions indicates transformation from high density liquid-like structuring of hydration water at higher temperatures to that of a low density liquid at lower temperatures. It is found that long-range correlations between the supercooled hydration water molecules arise due to such local structural transition around the DNA oligomer.
Collapse
Affiliation(s)
- Kaushik Chakraborty
- Molecular Modeling Laboratory, Department of Chemistry, Indian Institute of Technology, Kharagpur 721302, India
| | - Sanjoy Bandyopadhyay
- Molecular Modeling Laboratory, Department of Chemistry, Indian Institute of Technology, Kharagpur 721302, India
| |
Collapse
|
25
|
Chakraborty K, Bandyopadhyay S. Correlated Dynamical Crossovers of the Hydration Layer of a Single-Stranded DNA Oligomer. J Phys Chem B 2014; 118:413-22. [DOI: 10.1021/jp408234k] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Kaushik Chakraborty
- Molecular Modeling Laboratory, Department of Chemistry, Indian Institute of Technology, Kharagpur 721302, India
| | - Sanjoy Bandyopadhyay
- Molecular Modeling Laboratory, Department of Chemistry, Indian Institute of Technology, Kharagpur 721302, India
| |
Collapse
|
26
|
Nayar D, Chakravarty C. Sensitivity of local hydration behaviour and conformational preferences of peptides to choice of water model. Phys Chem Chem Phys 2014; 16:10199-213. [DOI: 10.1039/c3cp55147d] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Secondary structural preferences of the beta-hairpin of the 2GB1 protein in the folded and unfolded ensembles are shown to be sensitive to the choice of water model.
Collapse
Affiliation(s)
- Divya Nayar
- Department of Chemistry
- Indian Institute of Technology-Delhi
- New Delhi: 110016, India
| | | |
Collapse
|