• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (4604948)   Today's Articles (2095)   Subscriber (49371)
For: Kobori T, Sodeyama K, Otsuka T, Tateyama Y, Tsuneyuki S. Trimer effects in fragment molecular orbital-linear combination of molecular orbitals calculation of one-electron orbitals for biomolecules. J Chem Phys 2013;139:094113. [DOI: 10.1063/1.4818599] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]  Open
Number Cited by Other Article(s)
1
Bhat V, Ganapathysubramanian B, Risko C. Rapid Estimation of the Intermolecular Electronic Couplings and Charge-Carrier Mobilities of Crystalline Molecular Organic Semiconductors through a Machine Learning Pipeline. J Phys Chem Lett 2024:7206-7213. [PMID: 38973725 DOI: 10.1021/acs.jpclett.4c01309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/09/2024]
2
Nakata H, Kitoh-Nishioka H, Sakai W, Choi CH. Toward Accurate Prediction of Ion Mobility in Organic Semiconductors by Atomistic Simulation. J Chem Theory Comput 2023;19:1517-1528. [PMID: 36757219 DOI: 10.1021/acs.jctc.2c01221] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
3
Fujita T, Noguchi Y. Fragment-Based Excited-State Calculations Using the GW Approximation and the Bethe-Salpeter Equation. J Phys Chem A 2021;125:10580-10592. [PMID: 34871000 DOI: 10.1021/acs.jpca.1c07337] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
4
Kitoh-Nishioka H, Shigeta Y, Ando K. Tunneling matrix element and tunneling pathways of protein electron transfer calculated with a fragment molecular orbital method. J Chem Phys 2020;153:104104. [PMID: 32933280 DOI: 10.1063/5.0018423] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]  Open
5
Sato R, Kitoh-Nishioka H, Ando K, Yamato T. Electron Transfer Pathways of Cyclobutane Pyrimidine Dimer Photolyase Revisited. J Phys Chem B 2018;122:6912-6921. [PMID: 29890068 DOI: 10.1021/acs.jpcb.8b04333] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
6
Fujita T, Mochizuki Y. Development of the Fragment Molecular Orbital Method for Calculating Nonlocal Excitations in Large Molecular Systems. J Phys Chem A 2018;122:3886-3898. [DOI: 10.1021/acs.jpca.8b00446] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
7
Fedorov DG, Kitaura K. Many-body expansion of the Fock matrix in the fragment molecular orbital method. J Chem Phys 2017;147:104106. [DOI: 10.1063/1.5001018] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]  Open
8
Fedorov DG. The fragment molecular orbital method: theoretical development, implementation in GAMESS , and applications. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE 2017. [DOI: 10.1002/wcms.1322] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
9
Kitoh-Nishioka H, Ando K. FMO3-LCMO study of electron transfer coupling matrix element and pathway: Application to hole transfer between two tryptophans through cis- and trans-polyproline-linker systems. J Chem Phys 2016. [DOI: 10.1063/1.4962626] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]  Open
10
Fedorov DG, Kitaura K. Subsystem Analysis for the Fragment Molecular Orbital Method and Its Application to Protein-Ligand Binding in Solution. J Phys Chem A 2016;120:2218-31. [PMID: 26949816 DOI: 10.1021/acs.jpca.6b00163] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
11
Otsuka T, Okimoto N, Taiji M. Assessment and acceleration of binding energy calculations for protein-ligand complexes by the fragment molecular orbital method. J Comput Chem 2015;36:2209-18. [DOI: 10.1002/jcc.24055] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Revised: 07/17/2015] [Accepted: 07/30/2015] [Indexed: 12/16/2022]
12
Tanaka S, Mochizuki Y, Komeiji Y, Okiyama Y, Fukuzawa K. Electron-correlated fragment-molecular-orbital calculations for biomolecular and nano systems. Phys Chem Chem Phys 2015;16:10310-44. [PMID: 24740821 DOI: 10.1039/c4cp00316k] [Citation(s) in RCA: 189] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
13
Akimov AV, Prezhdo OV. Large-Scale Computations in Chemistry: A Bird’s Eye View of a Vibrant Field. Chem Rev 2015;115:5797-890. [DOI: 10.1021/cr500524c] [Citation(s) in RCA: 159] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
14
Kitoh-Nishioka H, Ando K. Charge-transfer matrix elements by FMO-LCMO approach: Hole transfer in DNA with parameter tuned range-separated DFT. Chem Phys Lett 2015. [DOI: 10.1016/j.cplett.2014.12.057] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
15
Fedorov DG, Asada N, Nakanishi I, Kitaura K. The use of many-body expansions and geometry optimizations in fragment-based methods. Acc Chem Res 2014;47:2846-56. [PMID: 25144610 DOI: 10.1021/ar500224r] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
16
Shimojo F, Hattori S, Kalia RK, Kunaseth M, Mou W, Nakano A, Nomura KI, Ohmura S, Rajak P, Shimamura K, Vashishta P. A divide-conquer-recombine algorithmic paradigm for large spatiotemporal quantum molecular dynamics simulations. J Chem Phys 2014;140:18A529. [DOI: 10.1063/1.4869342] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]  Open
17
Fukuzawa K, Watanabe C, Kurisaki I, Taguchi N, Mochizuki Y, Nakano T, Tanaka S, Komeiji Y. Accuracy of the fragment molecular orbital (FMO) calculations for DNA: Total energy, molecular orbital, and inter-fragment interaction energy. COMPUT THEOR CHEM 2014. [DOI: 10.1016/j.comptc.2014.02.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
PrevPage 1 of 1 1Next
© 2004-2024 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA