1
|
Abdelgawwad AMA, Roca-Sanjuán D, Francés-Monerris A. Electronic spectroscopy of gemcitabine and derivatives for possible dual-action photodynamic therapy applications. J Chem Phys 2023; 159:224106. [PMID: 38078522 DOI: 10.1063/5.0170949] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 11/12/2023] [Indexed: 12/18/2023] Open
Abstract
In this paper, we explore the molecular basis of combining photodynamic therapy (PDT), a light-triggered targeted anticancer therapy, with the traditional chemotherapeutic properties of the well-known cytotoxic agent gemcitabine. A photosensitizer prerequisite is significant absorption of biocompatible light in the visible/near IR range, ideally between 600 and 1000 nm. We use highly accurate multiconfigurational CASSCF/MS-CASPT2/MM and TD-DFT methodologies to determine the absorption properties of a series of gemcitabine derivatives with the goal of red-shifting the UV absorption band toward the visible region and facilitating triplet state population. The choice of the substitutions and, thus, the rational design is based on important biochemical criteria and on derivatives whose synthesis is reported in the literature. The modifications tackled in this paper consist of: (i) substitution of the oxygen atom at O2 position with heavier atoms (O → S and O → Se) to red shift the absorption band and increase the spin-orbit coupling, (ii) addition of a lipophilic chain at the N7 position to enhance transport into cancer cells and slow down gemcitabine metabolism, and (iii) attachment of aromatic systems at C5 position to enhance red shift further. Results indicate that the combination of these three chemical modifications markedly shifts the absorption spectrum toward the 500 nm region and beyond and drastically increases spin-orbit coupling values, two key PDT requirements. The obtained theoretical predictions encourage biological studies to further develop this anticancer approach.
Collapse
Affiliation(s)
| | - Daniel Roca-Sanjuán
- Institut de Ciència Molecular, Universitat de València, 46071 València, Spain
| | | |
Collapse
|
2
|
Sarkar R, Loos PF, Boggio-Pasqua M, Jacquemin D. Assessing the Performances of CASPT2 and NEVPT2 for Vertical Excitation Energies. J Chem Theory Comput 2022; 18:2418-2436. [PMID: 35333060 DOI: 10.1021/acs.jctc.1c01197] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Methods able to simultaneously account for both static and dynamic electron correlations have often been employed, not only to model photochemical events but also to provide reference values for vertical transition energies, hence allowing benchmarking of lower-order models. In this category, both the complete-active-space second-order perturbation theory (CASPT2) and the N-electron valence state second-order perturbation theory (NEVPT2) are certainly popular, the latter presenting the advantage of not requiring the application of the empirical ionization-potential-electron-affinity (IPEA) and level shifts. However, the actual accuracy of these multiconfigurational approaches is not settled yet. In this context, to assess the performances of these approaches, the present work relies on highly accurate (±0.03 eV) aug-cc-pVTZ vertical transition energies for 284 excited states of diverse character (174 singlet, 110 triplet, 206 valence, 78 Rydberg, 78 n → π*, 119 π → π*, and 9 double excitations) determined in 35 small- to medium-sized organic molecules containing from three to six non-hydrogen atoms. The CASPT2 calculations are performed with and without IPEA shift and compared to the partially contracted (PC) and strongly contracted (SC) variants of NEVPT2. We find that both CASPT2 with IPEA shift and PC-NEVPT2 provide fairly reliable vertical transition energy estimates, with slight overestimations and mean absolute errors of 0.11 and 0.13 eV, respectively. These values are found to be rather uniform for the various subgroups of transitions. The present work completes our previous benchmarks focused on single-reference wave function methods ( J. Chem. Theory Comput. 2018, 14, 4360; J. Chem. Theory Comput. 2020, 16, 1711), hence allowing for a fair comparison between various families of electronic structure methods. In particular, we show that ADC(2), CCSD, and CASPT2 deliver similar accuracies for excited states with a dominant single-excitation character.
Collapse
Affiliation(s)
| | - Pierre-François Loos
- Laboratoire de Chimie et Physique Quantiques, CNRS, UPS, Université de Toulouse, Toulouse 31062, France
| | - Martial Boggio-Pasqua
- Laboratoire de Chimie et Physique Quantiques, CNRS, UPS, Université de Toulouse, Toulouse 31062, France
| | - Denis Jacquemin
- Université de Nantes, CNRS, CEISAM UMR 6230, F-44000 Nantes, France
| |
Collapse
|
3
|
Borrego-Sánchez A, Zemmouche M, Carmona-García J, Francés-Monerris A, Mulet P, Navizet I, Roca-Sanjuán D. Multiconfigurational Quantum Chemistry Determinations of Absorption Cross Sections (σ) in the Gas Phase and Molar Extinction Coefficients (ε) in Aqueous Solution and Air-Water Interface. J Chem Theory Comput 2021; 17:3571-3582. [PMID: 33974417 PMCID: PMC8444339 DOI: 10.1021/acs.jctc.0c01083] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Indexed: 11/29/2022]
Abstract
Theoretical determinations of absorption cross sections (σ) in the gas phase and molar extinction coefficients (ε) in condensed phases (water solution, interfaces or surfaces, protein or nucleic acids embeddings, etc.) are of interest when rates of photochemical processes, J = ∫ ϕ(λ) σ(λ) I(λ) dλ, are needed, where ϕ(λ) and I(λ) are the quantum yield of the process and the irradiance of the light source, respectively, as functions of the wavelength λ. Efficient computational strategies based on single-reference quantum-chemistry methods have been developed enabling determinations of line shapes or, in some cases, achieving rovibrational resolution. Developments are however lacking for strongly correlated problems, with many excited states, high-order excitations, and/or near degeneracies between states of the same and different spin multiplicities. In this work, we define and compare the performance of distinct computational strategies using multiconfigurational quantum chemistry, nuclear sampling of the chromophore (by means of molecular dynamics, ab initio molecular dynamics, or Wigner sampling), and conformational and statistical sampling of the environment (by means of molecular dynamics). A new mathematical approach revisiting previous absolute orientation algorithms is also developed to improve alignments of geometries. These approaches are benchmarked through the nπ* band of acrolein not only in the gas phase and water solution but also in a gas-phase/water interface, a common situation for instance in atmospheric chemistry. Subsequently, the best strategy is used to compute the absorption band for the adduct formed upon addition of an OH radical to the C6 position of uracil and compared with the available experimental data. Overall, quantum Wigner sampling of the chromophore with molecular dynamics sampling of the environment with CASPT2 electronic-structure determinations arise as a powerful methodology to predict meaningful σ(λ) and ε(λ) band line shapes with accurate absolute intensities.
Collapse
Affiliation(s)
- Ana Borrego-Sánchez
- Instituto
Andaluz de Ciencias de la Tierra, CSIC-University
of Granada, Av. de las
Palmeras 4, 18100 Armilla, Granada, Spain
| | - Madjid Zemmouche
- MSME,
Univ Gustave Eiffel, CNRS UMR 8208, Univ Paris-Est Créteil 8208, F-77454 Marne-la-Vallée, France
| | - Javier Carmona-García
- Instituto
de Ciencia Molecular, Universitat de València, P.O. Box 22085, València, Spain
| | - Antonio Francés-Monerris
- Université
de Lorraine and CNRS, LPCT UMR 7019, F-54000 Nancy, France
- Departamento
de Química Física, Universitat
de València, C/Dr.
Moliner 50, 46100 Burjassot, Spain
| | - Pep Mulet
- Departamento
de Matemáticas Área de Matemática Aplicada Facultad
de Matemáticas C/Dr. Moliner, 50 46100 Burjassot, Spain
| | - Isabelle Navizet
- MSME,
Univ Gustave Eiffel, CNRS UMR 8208, Univ Paris-Est Créteil 8208, F-77454 Marne-la-Vallée, France
| | - Daniel Roca-Sanjuán
- Instituto
de Ciencia Molecular, Universitat de València, P.O. Box 22085, València, Spain
| |
Collapse
|
4
|
Skotnicki K, Taras-Goslinska K, Janik I, Bobrowski K. Radiation Induced One-Electron Oxidation of 2-Thiouracil in Aqueous Solutions. Molecules 2019; 24:E4402. [PMID: 31810289 PMCID: PMC6930642 DOI: 10.3390/molecules24234402] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Revised: 11/27/2019] [Accepted: 11/27/2019] [Indexed: 11/17/2022] Open
Abstract
Oxidative damage to 2-thiouracil (2-TU) by hydroxyl (•OH) and azide (●N3) radicals produces various primary reactive intermediates. Their optical absorption spectra and kinetic characteristics were studied by pulse radiolysis with UV-vis spectrophotometric and conductivity detection and by time-dependent density functional theory (TD-DFT) method. The transient absorption spectra recorded in the reactions of •OH with 2-TU depend on the concentration of 2-TU, however, only slightly on pH. At low concentrations, they are characterized by a broad absorption band with a weakly pronounced maxima located at λ = 325, 340 and 385 nm, whereas for high concentrations, they are dominated by an absorption band with λmax ≈ 425 nm. Based on calculations using TD-DFT method, the transient absorption spectra at low concentration of 2-TU were assigned to the ●OH-adducts to the double bond at C5 and C6 carbon atoms (3●, 4●) and 2c-3e bonded ●OH adduct to sulfur atom (1…●OH) and at high concentration of 2-TU also to the dimeric 2c-3e S-S-bonded radical in neutral form (2●). The dimeric radical (2●) is formed in the reaction of thiyl-type radical (6●) with 2-TU and both radicals are in an equilibrium with Keq = 4.2 × 103 M-1. Similar equilibrium (with Keq = 4.3 × 103 M-1) was found for pH above the pKa of 2-TU which involves admittedly the same radical (6●) but with the dimeric 2c-3e S-S bonded radical in anionic form (2●-). In turn, ●N3-induced oxidation of 2-TU occurs via radical cation with maximum spin location on the sulfur atom which subsequently undergoes deprotonation at N1 atom leading again to thiyl-type radical (6●). This radical is a direct precursor of dimeric radical (2●).
Collapse
Affiliation(s)
- Konrad Skotnicki
- Centre of Radiation Research and Technology, Institute of Nuclear Chemistry and Technology, 03-195 Warsaw, Poland;
| | | | - Ireneusz Janik
- Notre Dame Radiation Laboratory, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Krzysztof Bobrowski
- Centre of Radiation Research and Technology, Institute of Nuclear Chemistry and Technology, 03-195 Warsaw, Poland;
| |
Collapse
|
5
|
Borràs VJ, Francés‐Monerris A, Roca‐Sanjuán D. Hydroxyl Radical Addition to Thymine and Cytosine and Photochemistry of the Adducts at the C6 Position. CHEMPHOTOCHEM 2019. [DOI: 10.1002/cptc.201900087] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Vicent J. Borràs
- Institut de Ciència MolecularUniversitat de València P.O. Box 22085 46071 Valencia Spain
- Departamento de QuímicaUniversidad Autónoma de Madrid 28049 Madrid Spain
| | - Antonio Francés‐Monerris
- Laboratoire de Physique et Chimie Théoriques (LPCT)Université de Lorraine, CNRS 54000 Nancy France
| | - Daniel Roca‐Sanjuán
- Institut de Ciència MolecularUniversitat de València P.O. Box 22085 46071 Valencia Spain
| |
Collapse
|
6
|
Aranda J, Francés-Monerris A, Tuñón I, Roca-Sanjuán D. Regioselectivity of the OH Radical Addition to Uracil in Nucleic Acids. A Theoretical Approach Based on QM/MM Simulations. J Chem Theory Comput 2017; 13:5089-5096. [PMID: 28901132 DOI: 10.1021/acs.jctc.7b00610] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Oxidation of nucleic acids is ubiquitous in living beings under metabolic impairments and/or exposed to external agents such as radiation, pollutants, or drugs, playing a central role in the development of many diseases mediated by DNA/RNA degeneration. Great efforts have been devoted to unveil the molecular mechanisms behind the OH radical additions to the double bonds of nucleobases; however, the specific role of the biological environment remains relatively unexplored. The present contribution tackles the study of the OH radical addition to uracil from the gas phase to a full RNA macromolecule by means of quantum-chemistry methods combined with molecular dynamics simulations. It is shown that, in addition to the intrinsic reactivity of each position driven by the electronic effects, the presence of bridge water molecules intercalated into the RNA structure favors the addition to the C5 position of uracil in biological conditions. The results also suggest that diffusion of the OH radical does not play a relevant role in the regioselectivity of the reaction, which is mainly controlled at the chemical stage of the addition process.
Collapse
Affiliation(s)
- Juan Aranda
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology , Baldiri Reixac 10-12, Barcelona 08028, Spain
| | | | - Iñaki Tuñón
- Departamento de Química Física, Universitat de València , Burjassot 46100, Spain
| | - Daniel Roca-Sanjuán
- Instituto de Ciencia Molecular, Universitat de València , P.O. Box 22085, València 46071, Spain
| |
Collapse
|
7
|
|
8
|
Zobel JP, Nogueira JJ, González L. The IPEA dilemma in CASPT2. Chem Sci 2017; 8:1482-1499. [PMID: 28572908 PMCID: PMC5452265 DOI: 10.1039/c6sc03759c] [Citation(s) in RCA: 169] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 09/23/2016] [Indexed: 12/22/2022] Open
Abstract
Multi-configurational second order perturbation theory (CASPT2) has become a very popular method for describing excited-state properties since its development in 1990. To account for systematic errors found in the calculation of dissociation energies, an empirical correction applied to the zeroth-order Hamiltonian, called the IPEA shift, was introduced in 2004. The errors were attributed to an unbalanced description of open-shell versus closed-shell electronic states and is believed to also lead to an underestimation of excitation energies. Here we show that the use of the IPEA shift is not justified and the IPEA should not be used to calculate excited states, at least for organic chromophores. This conclusion is the result of three extensive analyses. Firstly, we survey the literature for excitation energies of organic molecules that have been calculated with the unmodified CASPT2 method. We find that the excitation energies of 356 reference values are negligibly underestimated by 0.02 eV. This value is an order of magnitude smaller than the expected error based on the calculation of dissociation energies. Secondly, we perform benchmark full configuration interaction calculations on 137 states of 13 di- and triatomic molecules and compare the results with CASPT2. Also in this case, the excited states are underestimated by only 0.05 eV. Finally, we perform CASPT2 calculations with different IPEA shift values on 309 excited states of 28 organic small and medium-sized organic chromophores. We demonstrate that the size of the IPEA correction scales with the amount of dynamical correlation energy (and thus with the size of the system), and gets immoderate already for the molecules considered here, leading to an overestimation of the excitation energies. It is also found that the IPEA correction strongly depends on the size of the basis set. The dependency on both the size of the system and of the basis set, contradicts the idea of a universal IPEA shift which is able to compensate for systematic CASPT2 errors in the calculation of excited states.
Collapse
Affiliation(s)
- J Patrick Zobel
- Institute of Theoretical Chemistry , Faculty of Chemistry , University of Vienna , Währinger Straße 17 , 1090 Vienna , Austria . ;
| | - Juan J Nogueira
- Institute of Theoretical Chemistry , Faculty of Chemistry , University of Vienna , Währinger Straße 17 , 1090 Vienna , Austria . ;
| | - Leticia González
- Institute of Theoretical Chemistry , Faculty of Chemistry , University of Vienna , Währinger Straße 17 , 1090 Vienna , Austria . ;
| |
Collapse
|
9
|
Francés-Monerris A, Merchán M, Roca-Sanjuán D. Mechanism of the OH Radical Addition to Adenine from Quantum-Chemistry Determinations of Reaction Paths and Spectroscopic Tracking of the Intermediates. J Org Chem 2016; 82:276-288. [PMID: 27957829 DOI: 10.1021/acs.joc.6b02393] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The OH radical is a well-known mediator in the oxidation of biological structures like DNA. Over the past decades, the precise events taking place after reaction of DNA nucleobases with OH radical have been widely investigated by the scientific community. Thirty years after the proposal of the main routes for the reaction of •OH with adenine ( Vieira , A. ; Steenken , S. J. Am. Chem. Soc. 1990 , 112 , 6986 - 6994 ), the present work demonstrates that the OH radical addition to C4 position is a minor pathway. Instead, the dehydration process is mediated by the A5OH adduct. Conclusions are based on density functional theory calculations for the ground-state reactivity and highly accurate multiconfigurational computations for the excited states of the radical intermediates. The methodology has been also used to study the mechanism giving rise to the mutagens 8-oxoA and FAPyA. Taking into account the agreement between the experimental data and the theoretical results, it is concluded that addition to the C5 and C8 positions accounts for at least ∼44.5% of the total •OH reaction in water solution. Finally, the current findings suggest that hydrophobicity in the DNA/RNA surroundings facilitates the formation of 8-oxoA and FAPyA.
Collapse
Affiliation(s)
| | - Manuela Merchán
- Instituto de Ciencia Molecular, Universitat de València , P.O. Box 22085, 46071 València, Spain
| | - Daniel Roca-Sanjuán
- Instituto de Ciencia Molecular, Universitat de València , P.O. Box 22085, 46071 València, Spain
| |
Collapse
|
10
|
Francés-Monerris A, Segarra-Martí J, Merchán M, Roca-Sanjuán D. Complete-active-space second-order perturbation theory (CASPT2//CASSCF) study of the dissociative electron attachment in canonical DNA nucleobases caused by low-energy electrons (0-3 eV). J Chem Phys 2016; 143:215101. [PMID: 26646889 DOI: 10.1063/1.4936574] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Low-energy (0-3 eV) ballistic electrons originated during the irradiation of biological material can interact with DNA/RNA nucleobases yielding transient-anion species which undergo decompositions. Since the discovery that these reactions can eventually lead to strand breaking of the DNA chains, great efforts have been dedicated to their study. The main fragmentation at the 0-3 eV energy range is the ejection of a hydrogen atom from the specific nitrogen positions. In the present study, the methodological approach introduced in a previous work on uracil [I. González-Ramírez et al., J. Chem. Theory Comput. 8, 2769-2776 (2012)] is employed to study the DNA canonical nucleobases fragmentations of N-H bonds induced by low-energy electrons. The approach is based on minimum energy path and linear interpolation of internal coordinates computations along the N-H dissociation channels carried out at the complete-active-space self-consistent field//complete-active-space second-order perturbation theory level. On the basis of the calculated theoretical quantities, new assignations for the adenine and cytosine anion yield curves are provided. In addition, the π1 (-) and π2 (-) states of the pyrimidine nucleobases are expected to produce the temporary anions at electron energies close to 1 and 2 eV, respectively. Finally, the present theoretical results do not allow to discard neither the dipole-bound nor the valence-bound mechanisms in the range of energies explored, suggesting that both possibilities may coexist in the experiments carried out with the isolated nucleobases.
Collapse
Affiliation(s)
| | - Javier Segarra-Martí
- Instituto de Ciencia Molecular, Universitat de València, P.O. Box 22085, 46071 València, Spain
| | - Manuela Merchán
- Instituto de Ciencia Molecular, Universitat de València, P.O. Box 22085, 46071 València, Spain
| | - Daniel Roca-Sanjuán
- Instituto de Ciencia Molecular, Universitat de València, P.O. Box 22085, 46071 València, Spain
| |
Collapse
|
11
|
Aparici-Espert I, Francés-Monerris A, Rodríguez-Muñiz GM, Roca-Sanjuán D, Lhiaubet-Vallet V, Miranda MA. A Combined Experimental and Theoretical Approach to the Photogeneration of 5,6-Dihydropyrimidin-5-yl Radicals in Nonaqueous Media. J Org Chem 2016; 81:4031-8. [DOI: 10.1021/acs.joc.6b00314] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Isabel Aparici-Espert
- Instituto
Universitario Mixto de Tecnología Química UPV-CSIC, Universitat Politècnica de València, Avda de los Naranjos s/n, 46022 València, Spain
| | | | - Gemma M. Rodríguez-Muñiz
- Instituto
Universitario Mixto de Tecnología Química UPV-CSIC, Universitat Politècnica de València, Avda de los Naranjos s/n, 46022 València, Spain
| | - Daniel Roca-Sanjuán
- Instituto
de Ciencia Molecular, Universitat de València, P.O. Box 22085, 46071 València, Spain
| | - Virginie Lhiaubet-Vallet
- Instituto
Universitario Mixto de Tecnología Química UPV-CSIC, Universitat Politècnica de València, Avda de los Naranjos s/n, 46022 València, Spain
| | - Miguel A. Miranda
- Instituto
Universitario Mixto de Tecnología Química UPV-CSIC, Universitat Politècnica de València, Avda de los Naranjos s/n, 46022 València, Spain
| |
Collapse
|
12
|
Dumont E, Monari A. Understanding DNA under oxidative stress and sensitization: the role of molecular modeling. Front Chem 2015; 3:43. [PMID: 26236706 PMCID: PMC4500984 DOI: 10.3389/fchem.2015.00043] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 06/29/2015] [Indexed: 12/12/2022] Open
Abstract
DNA is constantly exposed to damaging threats coming from oxidative stress, i.e., from the presence of free radicals and reactive oxygen species. Sensitization from exogenous and endogenous compounds that strongly enhance the frequency of light-induced lesions also plays an important role. The experimental determination of DNA lesions, though a difficult subject, is somehow well established and allows to elucidate even extremely rare DNA lesions. In parallel, molecular modeling has become fundamental to clearly understand the fine mechanisms related to DNA defects induction. Indeed, it offers an unprecedented possibility to get access to an atomistic or even electronic resolution. Ab initio molecular dynamics may also describe the time-evolution of the molecular system and its reactivity. Yet the modeling of DNA (photo-)reactions does necessitate elaborate multi-scale methodologies to tackle a damage induction reactivity that takes place in a complex environment. The double-stranded DNA environment is first characterized by a very high flexibility, but also a strongly inhomogeneous electrostatic embedding. Additionally, one aims at capturing more subtle effects, such as the sequence selectivity which is of critical important for DNA damage. The structure and dynamics of the DNA/sensitizers complexes, as well as the photo-induced electron- and energy-transfer phenomena taking place upon sensitization, should be carefully modeled. Finally the factors inducing different repair ratios for different lesions should also be rationalized. In this review we will critically analyze the different computational strategies used to model DNA lesions. A clear picture of the complex interplay between reactivity and structural factors will be sketched. The use of proper multi-scale modeling leads to the in-depth comprehension of DNA lesions mechanisms and also to the rational design of new chemo-therapeutic agents.
Collapse
Affiliation(s)
- Elise Dumont
- Laboratoire de Chimie, UMR 5182 Centre National de la Recherche Scientifique, École Normale Supérieure de Lyon Lyon, France
| | - Antonio Monari
- Université de Lorraine - Nancy, Theory-Modeling-Simulation, Structure et Réactivité des Systèmes Moléculaires Complexes (SRSMC) Vandoeuvre-les-Nancy, France ; Centre National de la Recherche Scientifique, Theory-Modeling-Simulation, Structure et Réactivité des Systèmes Moléculaires Complexes (SRSMC) Vandoeuvre-les-Nancy, France
| |
Collapse
|
13
|
Li M, Diao L, Liao X, Kou L, Lu W. DFT study on addition reaction mechanism of guanine-cytosine base pair with OH radical. J PHYS ORG CHEM 2015. [DOI: 10.1002/poc.3434] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Minjie Li
- Department of Chemistry, Innovative Drug Research Center, College of Sciences; Shanghai University; Shanghai 200444 China
| | - Ling Diao
- Department of Chemistry, Innovative Drug Research Center, College of Sciences; Shanghai University; Shanghai 200444 China
| | - Xiaofei Liao
- School of Information Science and Technology; Donghua University; Shanghai 201620 China
| | - Li Kou
- Department of Chemistry, Innovative Drug Research Center, College of Sciences; Shanghai University; Shanghai 200444 China
| | - Wencong Lu
- Department of Chemistry, Innovative Drug Research Center, College of Sciences; Shanghai University; Shanghai 200444 China
| |
Collapse
|
14
|
Francés-Monerris A, Merchán M, Roca-Sanjuán D. Theoretical study of the hydroxyl radical addition to uracil and photochemistry of the formed U6OH• adduct. J Phys Chem B 2014; 118:2932-9. [PMID: 24571272 DOI: 10.1021/jp412347k] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Hydroxyl radical ((•)OH) is produced in biological systems by external or endogenous agents. It can damage DNA/RNA by attacking pyrimidine nucleobases through the addition to the C5═C6 double bond. The adduct resulting from the attachment at the C5 position prevails in the experimental measurements, although the reasons for this preference remain unclear. The first aim of this work is therefore to shed light on the comprehension of this important process. Thus, the thermal (•)OH addition to the C5═C6 double bond of uracil has been studied theoretically by using DFT, MP2, and the multiconfigurational CASPT2//CASSCF methodologies. The in-vacuo results obtained with the latter protocol plus the analysis of solvent effects support the experimental observation. A significant lower barrier height is predicted for the C5 pathway with respect to that of the C6 route. In contrast to the C5 adduct, the C6 adduct is able to absorb visible light. Hence, the second aim of the work is to study the photochemistry of this species using the CASPT2//CASSCF methodology within the framework of the photochemical reaction path approach (PRPA). The nonradiative decay to the ground state of this compound has been characterized. A photoreactive character is predicted for the C6 adduct in the excited states according to the presence of excited-state minima along the main decay channel. Finally, a new mechanism of photodissociation has been explored, which implies the photoinduced regeneration of the canonical nucleobase by irradiating with visible light, being therefore relevant in RNA protection against damage by reactive oxygen species.
Collapse
|