1
|
Jimenez LN, Martínez Narváez CDV, Sharma V. Solvent Properties Influence the Rheology and Pinching Dynamics of Polyelectrolyte Solutions: Thickening the Pot with Glycerol and Cellulose Gum. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Leidy Nallely Jimenez
- Department of Chemical Engineering, University of Illinois at Chicago, Chicago, Illinois 60607, United States
| | | | - Vivek Sharma
- Department of Chemical Engineering, University of Illinois at Chicago, Chicago, Illinois 60607, United States
| |
Collapse
|
2
|
Jiao K, Zhang W, Chuan R, Yan H, Zou A, Wang Q, Yang C, Zhao C. Structural features and electrostatic energy storage of electric double layers in confined polyelectrolyte solutions under low-salt conditions. Phys Chem Chem Phys 2022; 24:27009-27022. [DOI: 10.1039/d2cp03576f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Self-consistent field theory is used to systematically study the characteristics and electrostatic energy storage of electric double layers in confined polyelectrolyte solutions for salt-free and low salt concentration systems.
Collapse
Affiliation(s)
- Kai Jiao
- MOE Key Laboratory of Thermo-Fluid Science and Engineering, School of Energy and Power Engineering, Xi’an Jiaotong University, Xi’an 710049, China
| | - Wenyao Zhang
- MOE Key Laboratory of Thermo-Fluid Science and Engineering, School of Energy and Power Engineering, Xi’an Jiaotong University, Xi’an 710049, China
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Rui Chuan
- MOE Key Laboratory of Thermo-Fluid Science and Engineering, School of Energy and Power Engineering, Xi’an Jiaotong University, Xi’an 710049, China
- Shanghai Marine Diesel Engine Research Institute, Shanghai 201108, China
| | - Huilong Yan
- MOE Key Laboratory of Thermo-Fluid Science and Engineering, School of Energy and Power Engineering, Xi’an Jiaotong University, Xi’an 710049, China
| | - Anqi Zou
- MOE Key Laboratory of Thermo-Fluid Science and Engineering, School of Energy and Power Engineering, Xi’an Jiaotong University, Xi’an 710049, China
| | - Qiuwang Wang
- MOE Key Laboratory of Thermo-Fluid Science and Engineering, School of Energy and Power Engineering, Xi’an Jiaotong University, Xi’an 710049, China
| | - Chun Yang
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Cunlu Zhao
- MOE Key Laboratory of Thermo-Fluid Science and Engineering, School of Energy and Power Engineering, Xi’an Jiaotong University, Xi’an 710049, China
| |
Collapse
|
3
|
Buyukdagli S. Nanofluidic Charge Transport under Strong Electrostatic Coupling Conditions. J Phys Chem B 2020; 124:11299-11309. [PMID: 33231451 DOI: 10.1021/acs.jpcb.0c09638] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The comprehensive depiction of the many-body effects governing nanoconfined electrolytes is an essential step for the conception of nanofluidic devices with optimized performance. By incorporating self-consistently multivalent charges into the Poisson-Boltzmann equation dressed by a background monovalent salt, we investigate the impact of strong-coupling electrostatics on the nanofluidic transport of electrolyte mixtures. We find that the experimentally observed negative streaming currents in anionic nanochannels originate from the collective effect of Cl- attraction by the interfacially adsorbed multivalent cations and the no-slip layer reducing the hydrodynamic contribution of these cations to the net current. The like-charge current condition emerging from this collective mechanism is shown to be the reversal of the average potential within the no-slip zone. Applying the formalism to surface-coated membrane nanoslits located in the giant dielectric permittivity regime, we reveal a new type of streaming current activated by attractive polarization forces. Under the effect of these forces, multivalent ions added to the KCl solution set a charge separation and generate a counterion current between the neutral slit walls where the pure KCl conductivity vanishes. The adjustability of the current characteristics solely via the valency and amount of the added multivalent ions identifies the underlying process as a promising mechanism for nanofluidic ion separation purposes.
Collapse
|
4
|
Uematsu Y, Netz RR, Bonthuis DJ. Analytical Interfacial Layer Model for the Capacitance and Electrokinetics of Charged Aqueous Interfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:9097-9113. [PMID: 29495657 DOI: 10.1021/acs.langmuir.7b04171] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
We construct an analytical model to account for the influence of the subnanometer-wide interfacial layer on the differential capacitance and the electro-osmotic mobility of solid-electrolyte interfaces. The interfacial layer is incorporated into the Poisson-Boltzmann and Stokes equations using a box model for the dielectric properties, the viscosity, and the ionic potential of mean force. We calculate the differential capacitance and the electro-osmotic mobility as a function of the surface charge density and the salt concentration, both with and without steric interactions between the ions. We compare the results from our theoretical model with experimental data on a variety of systems (graphite and metallic silver for capacitance and titanium oxide and silver iodide for electro-osmotic data). The differential capacitance of silver as a function of salinity and surface charge density is well reproduced by our theory, using either the width of the interfacial layer or the ionic potential of mean force as the only fitting parameter. The differential capacitance of graphite, however, needs an additional carbon capacitance to explain the experimental data. Our theory yields a power-law dependence of the electro-osmotic mobility on the surface charge density for high surface charges, reproducing the experimental data using both the interfacial parameters extracted from molecular dynamics simulations and fitted interfacial parameters. Finally, we examine different types of hydrodynamic boundary conditions for the power-law behavior of the electro-osmotic mobility, showing that a finite-viscosity layer explains the experimental data better than the usual hydrodynamic slip boundary condition. Our analytical model thus allows us to extract the properties of the subnanometer-wide interfacial layer by fitting to macroscopic experimental data.
Collapse
Affiliation(s)
- Yuki Uematsu
- Department of Chemistry , Kyushu University , Fukuoka 819-0395 , Japan
- Fachbereich Physik , Freie Universität Berlin , 14195 Berlin , Germany
| | - Roland R Netz
- Fachbereich Physik , Freie Universität Berlin , 14195 Berlin , Germany
| | | |
Collapse
|
5
|
Jimenez LN, Dinic J, Parsi N, Sharma V. Extensional Relaxation Time, Pinch-Off Dynamics, and Printability of Semidilute Polyelectrolyte Solutions. Macromolecules 2018. [DOI: 10.1021/acs.macromol.8b00148] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Leidy Nallely Jimenez
- Department of Chemical Engineering, University of Illinois at Chicago, Chicago, Illinois 60607, United States
| | - Jelena Dinic
- Department of Chemical Engineering, University of Illinois at Chicago, Chicago, Illinois 60607, United States
| | - Nikhila Parsi
- Department of Chemical Engineering, University of Illinois at Chicago, Chicago, Illinois 60607, United States
| | - Vivek Sharma
- Department of Chemical Engineering, University of Illinois at Chicago, Chicago, Illinois 60607, United States
| |
Collapse
|
6
|
Uematsu Y, Netz RR, Bonthuis DJ. Power-law electrokinetic behavior as a direct probe of effective surface viscosity. Chem Phys Lett 2017. [DOI: 10.1016/j.cplett.2016.12.056] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
7
|
Araki T. Conformational changes of polyelectrolyte chains in solvent mixtures. SOFT MATTER 2016; 12:6111-6119. [PMID: 27352249 DOI: 10.1039/c6sm00352d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
We numerically investigate the behaviors of polyelectrolyte chains in solvent mixtures, taking into account the effects of the concentration inhomogeneity and the degree of the ionization. When changing the interaction parameters between the solvent components, we found a first order transition of the polymer conformation. In the mixing state far from the coexistence curve, the polymers behave as semi-flexible chains. In the phase-separated state, on the other hand, they show compact conformations included in the droplets. As the interaction parameters of the mixture are increased, an inhomogeneous concentration field develops around the polymer and induces critical Casimir attractive interactions among the monomers. The competition between the electrostatic interactions and the critical Casimir ones gives rise to drastic changes in the conformation.
Collapse
Affiliation(s)
- Takeaki Araki
- Department of Physics, Kyoto University, Sakyo-ku, Kyoto 606-8505, Japan.
| |
Collapse
|
8
|
Uematsu Y. Nonlinear electro-osmosis of dilute non-adsorbing polymer solutions with low ionic strength. SOFT MATTER 2015; 11:7402-7411. [PMID: 26274546 DOI: 10.1039/c5sm01507c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Nonlinear electro-osmotic behaviour of dilute non-adsorbing polymer solutions with low salinity is investigated using Brownian dynamics simulations and a kinetic theory. In the Brownian simulations, the hydrodynamic interaction between the polymers and a no-slip wall is considered using the Rotne-Prager approximation of the Blake tensor. In a plug flow under a sufficiently strong applied electric field, the polymer migrates toward the bulk, forming a depletion layer thicker than the equilibrium one. Consequently, the electro-osmotic mobility increases nonlinearly with increasing electric field and becomes saturated. This nonlinear mobility does not depend qualitatively on the details of the rheological properties of the polymer solution. Analytical calculations using the kinetic theory for the same system quantitatively reproduce the results of the Brownian dynamics simulation well.
Collapse
Affiliation(s)
- Yuki Uematsu
- Department of Physics, Kyoto University, Kyoto 606-8502, Japan.
| |
Collapse
|