1
|
Vloemans D, Van Hileghem L, Ordutowski H, Dal Dosso F, Spasic D, Lammertyn J. Self-Powered Microfluidics for Point-of-Care Solutions: From Sampling to Detection of Proteins and Nucleic Acids. Methods Mol Biol 2024; 2804:3-50. [PMID: 38753138 DOI: 10.1007/978-1-0716-3850-7_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2024]
Abstract
Self-powered microfluidics presents a revolutionary approach to address the challenges of healthcare in decentralized and point-of-care settings where limited access to resources and infrastructure prevails or rapid clinical decision-making is critical. These microfluidic systems exploit physical and chemical phenomena, such as capillary forces and surface tension, to manipulate tiny volumes of fluids without the need for external power sources, making them cost-effective and highly portable. Recent technological advancements have demonstrated the ability to preprogram complex multistep liquid operations within the microfluidic circuit of these standalone systems, which enabled the integration of sensitive detection and readout principles. This chapter first addresses how the accessibility to in vitro diagnostics can be improved by shifting toward decentralized approaches like remote microsampling and point-of-care testing. Next, the crucial role of self-powered microfluidic technologies to enable this patient-centric healthcare transition is emphasized using various state-of-the-art examples, with a primary focus on applications related to biofluid collection and the detection of either proteins or nucleic acids. This chapter concludes with a summary of the main findings and our vision of the future perspectives in the field of self-powered microfluidic technologies and their use for in vitro diagnostics applications.
Collapse
Affiliation(s)
- Dries Vloemans
- Department of Biosystems - Biosensors Group, KU Leuven, Leuven, Belgium
| | | | - Henry Ordutowski
- Department of Biosystems - Biosensors Group, KU Leuven, Leuven, Belgium
| | | | - Dragana Spasic
- Department of Biosystems - Biosensors Group, KU Leuven, Leuven, Belgium
| | - Jeroen Lammertyn
- Department of Biosystems - Biosensors Group, KU Leuven, Leuven, Belgium.
| |
Collapse
|
2
|
Deliorman M, Ali DS, Qasaimeh MA. Next-Generation Microfluidics for Biomedical Research and Healthcare Applications. Biomed Eng Comput Biol 2023; 14:11795972231214387. [PMID: 38033395 PMCID: PMC10683381 DOI: 10.1177/11795972231214387] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 10/30/2023] [Indexed: 12/02/2023] Open
Abstract
Microfluidic systems offer versatile biomedical tools and methods to enhance human convenience and health. Advances in these systems enables next-generation microfluidics that integrates automation, manipulation, and smart readout systems, as well as design and three-dimensional (3D) printing for precise production of microchannels and other microstructures rapidly and with great flexibility. These 3D-printed microfluidic platforms not only control the complex fluid behavior for various biomedical applications, but also serve as microconduits for building 3D tissue constructs-an integral component of advanced drug development, toxicity assessment, and accurate disease modeling. Furthermore, the integration of other emerging technologies, such as advanced microscopy and robotics, enables the spatiotemporal manipulation and high-throughput screening of cell physiology within precisely controlled microenvironments. Notably, the portability and high precision automation capabilities in these integrated systems facilitate rapid experimentation and data acquisition to help deepen our understanding of complex biological systems and their behaviors. While certain challenges, including material compatibility, scaling, and standardization still exist, the integration with artificial intelligence, the Internet of Things, smart materials, and miniaturization holds tremendous promise in reshaping traditional microfluidic approaches. This transformative potential, when integrated with advanced technologies, has the potential to revolutionize biomedical research and healthcare applications, ultimately benefiting human health. This review highlights the advances in the field and emphasizes the critical role of the next generation microfluidic systems in advancing biomedical research, point-of-care diagnostics, and healthcare systems.
Collapse
Affiliation(s)
| | - Dima Samer Ali
- Division of Engineering, New York University Abu Dhabi (NYUAD), Abu Dhabi, UAE
- Department of Mechanical and Aerospace Engineering, New York University, New York, NY, USA
| | - Mohammad A Qasaimeh
- Division of Engineering, New York University Abu Dhabi (NYUAD), Abu Dhabi, UAE
- Department of Mechanical and Aerospace Engineering, New York University, New York, NY, USA
| |
Collapse
|
3
|
Min S, Zhan T, Lu Y, Pan D, Chen X, Xu B. Rapid and easily identifiable blood typing on microfluidic cotton thread-based analytical devices. LAB ON A CHIP 2023; 23:4680-4689. [PMID: 37817672 DOI: 10.1039/d3lc00501a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2023]
Abstract
In this study, we present a novel swing-elution-based method to achieve rapid, cost-effective, and easily identifiable blood typing assays. Specifically, the method aims to swing the microfluidic cotton thread-based analytical devices (μCTADs) in PBS solution to effectively elute free red blood cells (RBCs) and allow large agglutinated RBCs to remain to precisely determine the blood type. In order to ensure an easily identifiable blood typing assay, fast swing mode needs to be used, and the elution time is evaluated to be >50 seconds. The created μCTADs have been used to successfully classify ABO and RhD blood types in 56 blood samples. Finally, in order to enhance the convenience and portability of blood typing, a blood-typing chip that utilizes a PBS liquid bridge to effectively elute the free RBCs is designed and fabricated based on the above swing-elution principle. Compared with the traditional wicking-elution methods that rely on the wicking effect to weakly elute the RBCs, our method possesses a stronger elution effect to remove the free RBCs inside the inter-fiber gaps or adhered to the fiber surface, resulting in effectively enhancing the identifiability of the elution results and minimizing user interpretation error. Given the simplicity of the blood typing method, we believe that our blood typing method has great potential to be widely applied in resource-limited and developing regions.
Collapse
Affiliation(s)
- Shuqiang Min
- School of Mechanical Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China.
| | - Tonghuan Zhan
- School of Mechanical Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China.
| | - Yang Lu
- Department of spinal surgery, Affiliated hospital of Nantong University, Nantong, 226001, China.
| | - Deng Pan
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Anhui University, Hefei, 230601 China
| | - Xiaoqing Chen
- Department of spinal surgery, Affiliated hospital of Nantong University, Nantong, 226001, China.
| | - Bing Xu
- School of Mechanical Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China.
| |
Collapse
|
4
|
Kuswandi B, Irsyad LH, Puspaningtyas AR. Cloth-based microfluidic devices integrated onto the patch as wearable colorimetric sensors for simultaneous sweat analysis. BIOIMPACTS : BI 2023; 13:347-353. [PMID: 37645027 PMCID: PMC10460771 DOI: 10.34172/bi.2023.24195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 02/15/2022] [Accepted: 03/07/2022] [Indexed: 08/31/2023]
Abstract
Introduction In this work, a flexible, and wearable point-of-care (POC) device integrated on a pain relief patch as wearable colorimetric sensors have been developed for sweat analysis, such as lactic acid, sodium ions, and pH simultaneously. Herein, the patch has still functioned as pain relief, while it allows for sweat monitoring during exercise, and in daily activities. Methods It was constructed on cotton cloth using wax printing technology (batik stamp) as cloth-based microfluidic devices (CMDs). Here, it uses micro volumes of samples to perform the reaction in the sensing zones, where the sensitive reagents are immobilized so that it can collect and analyze the sweat (lactic acid, sodium ions, and pH) as the model for sweat analytes. The colorimetric analysis was conducted via a smartphone camera by using a free app (Color Grab) for a color image analysis that uses for quantitative analysis or naked eye for semi-qualitative analysis. Results The ∆RGB value of the CMDS shows the excellent linear correlation vs analytes concentration, where the coefficient of correlations was found for lactic acid (R2 = 0.994), sodium ion (R2 = 0.998), and pH (R2 = 0.994). The ∆RGB value shows the appropriate color value for the linear correlation of the analyte target concentrations in the sweat samples. Here, the limit of detection (LOD) was found at 45.73 µg/mL for lactic acid and 56.46 µg/mL for sodium ions. The reproducibility was found at 0.79% and 0.89%, for lactic acid and sodium ions respectively. Conclusion It was applied for sweat analysis during exercise, and the results show in agreement with the standard methods used in a clinical laboratory.
Collapse
Affiliation(s)
- Bambang Kuswandi
- Chemo and Biosensors Group, Faculty of Pharmacy, University of Jember, Jl. Kalimantan 37, Jember, East Java, 68121, Indonesia
| | - Lukman H Irsyad
- Chemo and Biosensors Group, Faculty of Pharmacy, University of Jember, Jl. Kalimantan 37, Jember, East Java, 68121, Indonesia
| | - Ayik R. Puspaningtyas
- Chemo and Biosensors Group, Faculty of Pharmacy, University of Jember, Jl. Kalimantan 37, Jember, East Java, 68121, Indonesia
| |
Collapse
|
5
|
Kashaninejad N, Nguyen NT. Microfluidic solutions for biofluids handling in on-skin wearable systems. LAB ON A CHIP 2023; 23:913-937. [PMID: 36628970 DOI: 10.1039/d2lc00993e] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
On-skin wearable systems for biofluid sampling and biomarker sensing can revolutionize the current practices in healthcare monitoring and personalized medicine. However, there is still a long path toward complete market adoption and acceptance of this fascinating technology. Accordingly, microfluidic science and technology can provide excellent solutions for bridging the gap between basic research and clinical research. The research gap has led to the emerging field of epidermal microfluidics. Moreover, recent advances in the fabrication of highly flexible and stretchable microfluidic systems have revived the concept of micro elastofluidics, which can provide viable solutions for on-skin wearable biofluid handling. In this context, this review highlights the current state-of-the-art platforms in this field and discusses the potential technologies that can be used for on-skin wearable devices. Toward this aim, we first compare various microfluidic platforms that could be used for on-skin wearable devices. These platforms include semiconductor-based, polymer-based, liquid metal-based, paper-based, and textile-based microfluidics. Next, we discuss how these platforms can enhance the stretchability of on-skin wearable biosensors at the device level. Next, potential microfluidic solutions for collecting, transporting, and controlling the biofluids are discussed. The application of finger-powered micropumps as a viable solution for precise and on-demand biofluid pumping is highlighted. Finally, we present the future directions of this field by emphasizing the applications of droplet-based microfluidics, stretchable continuous-flow micro elastofluidics, stretchable superhydrophobic surfaces, liquid beads as a form of digital micro elastofluidics, and topological liquid diodes that received less attention but have enormous potential to be integrated into on-skin wearable devices.
Collapse
Affiliation(s)
- Navid Kashaninejad
- Queensland Micro- and Nanotechnology Centre, Griffith University, 170 Kessels Road, Nathan, QLD 4111, Australia.
| | - Nam-Trung Nguyen
- Queensland Micro- and Nanotechnology Centre, Griffith University, 170 Kessels Road, Nathan, QLD 4111, Australia.
| |
Collapse
|
6
|
Saiboh T, Malahom N, Prakobkij A, Seebunrueng K, Amatatongchai M, Chairam S, Sameenoi Y, Jarujamrus P. Visual detection of formalin in food samples by using a microfluidic thread-based analytical device. Microchem J 2023. [DOI: 10.1016/j.microc.2023.108685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
|
7
|
Zhao Z, Xiao J, Zhang X, Jiang J, Zhang M, Li Y, Li T, Wang J. A Thread-based Micro Device for Continuous Electrochemical Detection of Saliva Urea. Microchem J 2023. [DOI: 10.1016/j.microc.2023.108634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
|
8
|
Chen L, Guo X, Sun X, Zhang S, Wu J, Yu H, Zhang T, Cheng W, Shi Y, Pan L. Porous Structural Microfluidic Device for Biomedical Diagnosis: A Review. MICROMACHINES 2023; 14:547. [PMID: 36984956 PMCID: PMC10051279 DOI: 10.3390/mi14030547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 02/21/2023] [Accepted: 02/22/2023] [Indexed: 06/18/2023]
Abstract
Microfluidics has recently received more and more attention in applications such as biomedical, chemical and medicine. With the development of microelectronics technology as well as material science in recent years, microfluidic devices have made great progress. Porous structures as a discontinuous medium in which the special flow phenomena of fluids lead to their potential and special applications in microfluidics offer a unique way to develop completely new microfluidic chips. In this article, we firstly introduce the fabrication methods for porous structures of different materials. Then, the physical effects of microfluid flow in porous media and their related physical models are discussed. Finally, the state-of-the-art porous microfluidic chips and their applications in biomedicine are summarized, and we present the current problems and future directions in this field.
Collapse
Affiliation(s)
| | | | - Xidi Sun
- Correspondence: (X.S.); (Y.S.); (L.P.)
| | | | | | | | | | | | - Yi Shi
- Correspondence: (X.S.); (Y.S.); (L.P.)
| | - Lijia Pan
- Correspondence: (X.S.); (Y.S.); (L.P.)
| |
Collapse
|
9
|
Chen L, Ghiasvand A, Paull B. Applications of thread-based microfluidics: Approaches and options for detection. Trends Analyt Chem 2023. [DOI: 10.1016/j.trac.2023.117001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
|
10
|
Abrishamkar A, Nilghaz A, Saadatmand M, Naeimirad M, deMello AJ. Microfluidic-assisted fiber production: Potentials, limitations, and prospects. BIOMICROFLUIDICS 2022; 16:061504. [PMID: 36406340 PMCID: PMC9674390 DOI: 10.1063/5.0129108] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/21/2022] [Accepted: 11/02/2022] [Indexed: 05/24/2023]
Abstract
Besides the conventional fiber production methods, microfluidics has emerged as a promising approach for the engineered spinning of fibrous materials and offers excellent potential for fiber manufacturing in a controlled and straightforward manner. This method facilitates low-speed prototype synthesis of fibers for diverse applications while providing superior control over reaction conditions, efficient use of precursor solutions, reagent mixing, and process parameters. This article reviews recent advances in microfluidic technology for the fabrication of fibrous materials with different morphologies and a variety of properties aimed at various applications. First, the basic principles, as well as the latest developments and achievements of microfluidic-based techniques for fiber production, are introduced. Specifically, microfluidic platforms made of glass, polymers, and/or metals, including but not limited to microfluidic chips, capillary-based devices, and three-dimensional printed devices are summarized. Then, fiber production from various materials, such as alginate, gelatin, silk, collagen, and chitosan, using different microfluidic platforms with a broad range of cross-linking agents and mechanisms is described. Therefore, microfluidic spun fibers with diverse diameters ranging from submicrometer scales to hundreds of micrometers and structures, such as cylindrical, hollow, grooved, flat, core-shell, heterogeneous, helical, and peapod-like morphologies, with tunable sizes and mechanical properties are discussed in detail. Subsequently, the practical applications of microfluidic spun fibers are highlighted in sensors for biomedical or optical purposes, scaffolds for culture or encapsulation of cells in tissue engineering, and drug delivery. Finally, different limitations and challenges of the current microfluidic technologies, as well as the future perspectives and concluding remarks, are presented.
Collapse
Affiliation(s)
| | - Azadeh Nilghaz
- Institute for Frontier Materials, Deakin University, Waurn Ponds, Victoria 3216, Australia
| | - Maryam Saadatmand
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, 11155-9465 Tehran, Iran
| | - Mohammadreza Naeimirad
- Department of Materials and Textile Engineering, Faculty of Engineering, Razi University, 67144-14971 Kermanshah, Iran
| | - Andrew J. deMello
- Department of Chemistry and Applied Biosciences, Institute for Chemical and Bioengineering, ETH Zurich, Vladimir-Prelog-Weg1, 8049 Zurich, Switzerland
| |
Collapse
|
11
|
Goel S, Amreen K. Laser induced graphanized microfluidic devices. BIOMICROFLUIDICS 2022; 16:061505. [PMID: 36483020 PMCID: PMC9726225 DOI: 10.1063/5.0111867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 11/16/2022] [Indexed: 06/17/2023]
Abstract
With the advent of cyber-physical system-based automation and intelligence, the development of flexible and wearable devices has dramatically enhanced. Evidently, this has led to the thrust to realize standalone and sufficiently-self-powered miniaturized devices for a variety of sensing and monitoring applications. To this end, a range of aspects needs to be carefully and synergistically optimized. These include the choice of material, micro-reservoir to suitably place the analytes, integrable electrodes, detection mechanism, microprocessor/microcontroller architecture, signal-processing, software, etc. In this context, several researchers are working toward developing novel flexible devices having a micro-reservoir, both in flow-through and stationary phases, integrated with graphanized zones created by simple benchtop lasers. Various substrates, like different kinds of cloths, papers, and polymers, have been harnessed to develop laser-ablated graphene regions along with a micro-reservoir to aptly place various analytes to be sensed/monitored. Likewise, similar substrates have been utilized for energy harvesting by fuel cell or solar routes and supercapacitor-based energy storage. Overall, realization of a prototype is envisioned by integrating various sub-systems, including sensory, energy harvesting, energy storage, and IoT sub-systems, on a single mini-platform. In this work, the diversified work toward developing such prototypes will be showcased and current and future commercialization potential will be projected.
Collapse
Affiliation(s)
- Sanket Goel
- MEMS, Microfluidics and Nanoelectronics (MMNE) Lab, Birla Institute of Technology and Science (BITS) Pilani, Hyderabad Campus, Hyderabad 500078, India
| | - Khairunnisa Amreen
- MEMS, Microfluidics and Nanoelectronics (MMNE) Lab, Birla Institute of Technology and Science (BITS) Pilani, Hyderabad Campus, Hyderabad 500078, India
| |
Collapse
|
12
|
Yadav S, Tawade P, Bachal K, Rakshe MA, Pundlik Y, Gandhi PS, Majumder A. Scalable large-area mesh-structured microfluidic gradient generator for drug testing applications. BIOMICROFLUIDICS 2022; 16:064103. [PMID: 36483022 PMCID: PMC9726219 DOI: 10.1063/5.0126616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 11/10/2022] [Indexed: 06/17/2023]
Abstract
Microfluidic concentration gradient generators are useful in drug testing, drug screening, and other cellular applications to avoid manual errors, save time, and labor. However, expensive fabrication techniques make such devices prohibitively costly. Here, in the present work, we developed a microfluidic concentration gradient generator (μCGG) using a recently proposed non-conventional photolithography-less method. In this method, ceramic suspension fluid was shaped into a square mesh by controlling Saffman Taylor instability in a multiport lifted Hele-Shaw cell (MLHSC). Using the shaped ceramic structure as the template, μCGG was prepared by soft lithography. The concentration gradient was characterized and effect of the flow rates was studied using COMSOL simulations. The simulation result was further validated by creating a fluorescein dye (fluorescein isothiocanate) gradient in the fabricated μCGG. To demonstrate the use of this device for drug testing, we created various concentrations of an anticancer drug-curcumin-using the device and determined its inhibitory concentration on cervical cancer cell-line HeLa. We found that the IC50 of curcumin for HeLa matched well with the conventional multi-well drug testing method. This method of μCGG fabrication has multiple advantages over conventional photolithography such as: (i) the channel layout and inlet-outlet arrangements can be changed by simply wiping the ceramic fluid before it solidifies, (ii) it is cost effective, (iii) large area patterning is easily achievable, and (iv) the method is scalable. This technique can be utilized to achieve a broad range of concentration gradient to be used for various biological and non-biological applications.
Collapse
Affiliation(s)
- Shital Yadav
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Pratik Tawade
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Ketaki Bachal
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Makrand A. Rakshe
- Department of Mechanical Engineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Yash Pundlik
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Prasanna S. Gandhi
- Department of Mechanical Engineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Abhijit Majumder
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai, India
| |
Collapse
|
13
|
Zare Harofte S, Soltani M, Siavashy S, Raahemifar K. Recent Advances of Utilizing Artificial Intelligence in Lab on a Chip for Diagnosis and Treatment. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2203169. [PMID: 36026569 DOI: 10.1002/smll.202203169] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 07/16/2022] [Indexed: 05/14/2023]
Abstract
Nowadays, artificial intelligence (AI) creates numerous promising opportunities in the life sciences. AI methods can be significantly advantageous for analyzing the massive datasets provided by biotechnology systems for biological and biomedical applications. Microfluidics, with the developments in controlled reaction chambers, high-throughput arrays, and positioning systems, generate big data that is not necessarily analyzed successfully. Integrating AI and microfluidics can pave the way for both experimental and analytical throughputs in biotechnology research. Microfluidics enhances the experimental methods and reduces the cost and scale, while AI methods significantly improve the analysis of huge datasets obtained from high-throughput and multiplexed microfluidics. This review briefly presents a survey of the role of AI and microfluidics in biotechnology. Also, the incorporation of AI with microfluidics is comprehensively investigated. Specifically, recent studies that perform flow cytometry cell classification, cell isolation, and a combination of them by gaining from both AI methods and microfluidic techniques are covered. Despite all current challenges, various fields of biotechnology can be remarkably affected by the combination of AI and microfluidic technologies. Some of these fields include point-of-care systems, precision, personalized medicine, regenerative medicine, prognostics, diagnostics, and treatment of oncology and non-oncology-related diseases.
Collapse
Affiliation(s)
- Samaneh Zare Harofte
- Department of Mechanical Engineering, K. N. Toosi University of Technology, Tehran, 19967-15433, Iran
| | - Madjid Soltani
- Department of Mechanical Engineering, K. N. Toosi University of Technology, Tehran, 19967-15433, Iran
- Department of Electrical and Computer Engineering, Faculty of Engineering, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
- Centre for Biotechnology and Bioengineering (CBB), University of Waterloo, Waterloo, ON, N2L 3G1, Canada
- Advanced Bioengineering Initiative Center, Multidisciplinary International Complex, K. N. Toosi University of Technology, Tehran, 14176-14411, Iran
- Cancer Biology Research Center, Cancer Institute of Iran, Tehran University of Medical Sciences, Tehran, 14197-33141, Iran
| | - Saeed Siavashy
- Department of Mechanical Engineering, K. N. Toosi University of Technology, Tehran, 19967-15433, Iran
| | - Kaamran Raahemifar
- Data Science and Artificial Intelligence Program, College of Information Sciences and Technology (IST), Penn State University, State College, PA, 16801, USA
- School of Optometry and Vision Science, Faculty of Science, University of Waterloo, 200 University Ave. W, Waterloo, ON, N2L 3G1, Canada
- Department of Chemical Engineering, Faculty of Engineering, University of Waterloo, 200 University Ave. W, Waterloo, ON, N2L 3G1, Canada
| |
Collapse
|
14
|
Oliveira ACM, Araújo DAG, Pradela-Filho LA, Takeuchi RM, Trindade MAG, Dos Santos AL. Threads in tubing: an innovative approach towards improved electrochemical thread-based microfluidic devices. LAB ON A CHIP 2022; 22:3045-3054. [PMID: 35833547 DOI: 10.1039/d2lc00387b] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Thread-based microfluidic analytical devices have received growing attention since threads have some advantages over other materials. Compared to paper, threads are also capable of spontaneously transporting fluid due to capillary action, but they have superior mechanical strength and do not require hydrophobic barriers. Therefore, thread-based microfluidic devices can be inexpensively fabricated with no need for external pumps or sophisticated microfabrication apparatus. Despite these outstanding features, achieving a controlled and continuous flow rate is still a challenging task, mainly due to fluid evaporation. Here, we overcome this challenge by inserting a cotton thread into a polyethylene tube aiming to minimize fluid evaporation. Also, a cotton piece was inserted into the outlet reservoir to improve the wicking ability of the device. This strategy enabled the fabrication of an innovative electrochemical thread in a tubing microfluidic device that was capable to hold a consistent flow rate (0.38 μL s-1) for prolonged periods, allowing up to 100 injections in a single device by simply replacing the cotton piece in the outlet reservoir. The proposed device displayed satisfactory analytical performance for selected model analytes (dopamine, hydrogen peroxide, and tert-butylhydroquinone), in addition to being successfully used for quantification of nitrite in spiked artificial saliva samples. Beyond the flow rate improvement, this "thread-in-tube" strategy ensured the protection of the fluid from external contamination while making it easier to connect the electrode array to the microchannels. Thus, we envision that the thread in a tube strategy could bring interesting improvements to thread-based microfluidic analytical devices.
Collapse
Affiliation(s)
- Ana Clara Maia Oliveira
- Instituto de Ciências Exatas e Naturais do Pontal, Universidade Federal de Uberlândia, 38304-402, Ituiutaba, Brazil.
- Instituto de Química, Universidade Federal de Uberlândia, 38400-902, Uberlândia, Brazil
| | - Diele Aparecida Gouveia Araújo
- Instituto de Ciências Exatas e Naturais do Pontal, Universidade Federal de Uberlândia, 38304-402, Ituiutaba, Brazil.
- Instituto de Química, Universidade Federal de Uberlândia, 38400-902, Uberlândia, Brazil
| | - Lauro Antonio Pradela-Filho
- Instituto de Ciências Exatas e Naturais do Pontal, Universidade Federal de Uberlândia, 38304-402, Ituiutaba, Brazil.
- Instituto de Química, Universidade Federal de Uberlândia, 38400-902, Uberlândia, Brazil
| | - Regina Massako Takeuchi
- Instituto de Ciências Exatas e Naturais do Pontal, Universidade Federal de Uberlândia, 38304-402, Ituiutaba, Brazil.
- Instituto de Química, Universidade Federal de Uberlândia, 38400-902, Uberlândia, Brazil
| | - Magno Aparecido Gonçalves Trindade
- Faculdade de Ciências Exatas e Tecnologia, Universidade Federal da Grande Dourados, Rodovia Dourados-Itahum, km 12, 79804-970 Dourados, Mato Grosso do Sul, Brazil
| | - André Luiz Dos Santos
- Instituto de Ciências Exatas e Naturais do Pontal, Universidade Federal de Uberlândia, 38304-402, Ituiutaba, Brazil.
- Instituto de Química, Universidade Federal de Uberlândia, 38400-902, Uberlândia, Brazil
| |
Collapse
|
15
|
Selvam G, Dheivasigamani T, Prabhu A, Mani NK. Embellishing 2-D MoS 2 Nanosheets on Lotus Thread Devices for Enhanced Hydrophobicity and Antimicrobial Activity. ACS OMEGA 2022; 7:24606-24613. [PMID: 35874217 PMCID: PMC9301725 DOI: 10.1021/acsomega.2c02337] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Herein, we report cellulose-based threads from Indian sacred Lotus (Nelumbo nucifera) of the Nymphaceae family embellished with MoS2 nanosheets for its enhanced hydrophobic and antimicrobial properties. MoS2 nanosheets synthesized by a coprecipitation method using sodium molybdate dihydrate (Na2MoO4·2H2O) and thioacetamide (CH3CSNH2) were used as a sourse for MoS2 particle growth with cellulose threads extracted from lotus peduncles. The size, crystallinity, and morphology of pure and MoS2-coated fibers were studied using X-ray diffractometry (XRD) and scanning electron microscopy (SEM). the XRD pattern of pure lotus threads showed a semicrystalline nature, and the threads@MoS2 composite showed more crystallinity than the pure threads. SEM depicts that pure lotus threads possess a smooth surface, and the MoS2 nanosheets growth can be easily identified on the threads@MoS2. Further, the presence of MoS2 nanosheets on threads was confirmed with EDX elemental analysis. Antimicrobial studies with Escherichia coli and Candida albicans reveal that threads@MoS2 have better resistance than its counterpart, i.e., pure threads. MoS2 sheets play a predominant role in restricting the wicking capability of the pure threads due to their enhanced hydrophobic property. The water absorbency assay denotes the absorption rate of threads@MoS2 to 80%, and threads@MoS2 shows no penetration for the observed 60 min, thus confirming its wicking restriction. The contact angle for threads@MoS2 is 128°, indicating its improved hydrophobicity.
Collapse
Affiliation(s)
- Govarthini
Seerangan Selvam
- Nano-crystal
Design and Application Lab (n-DAL), Department of Physics, PSG Institute of Technology and Applied Research, Coimbatore-641062, Tamil Nadu India
| | - Thangaraju Dheivasigamani
- Nano-crystal
Design and Application Lab (n-DAL), Department of Physics, PSG Institute of Technology and Applied Research, Coimbatore-641062, Tamil Nadu India
| | - Anusha Prabhu
- Microfluidics,
Sensors and Diagnostics Laboratory (μSenD), Department of Biotechnology,
Manipal Institute of Technology, Manipal
Academy of Higher Education, Manipal 576104, Karnataka India
| | - Naresh Kumar Mani
- Microfluidics,
Sensors and Diagnostics Laboratory (μSenD), Department of Biotechnology,
Manipal Institute of Technology, Manipal
Academy of Higher Education, Manipal 576104, Karnataka India
| |
Collapse
|
16
|
Mao X, Zhang C. A microfluidic cloth-based photoelectrochemical analytical device for the detection of glucose in saliva. Talanta 2022; 238:123052. [PMID: 34808571 DOI: 10.1016/j.talanta.2021.123052] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 10/18/2021] [Accepted: 11/07/2021] [Indexed: 02/08/2023]
Abstract
Photoelectrochemical (PEC) detection is a widely used detection method that uses light to stimulate and photocurrent signals to detect the target. Due to the disengagement of the excitation unit and the detection unit, the PEC background signal is reduced, and the detection sensitivity is improved. In this work, we report the first demonstration of PEC detection for microfluidic cloth-based analytical devices (μCADs). Using PEC μCADs integrated with cadmium sulfide quantum dots (CdS QDs) and multiwalled carbon nanotubes (MWCNTs), the nonenzymatic, sensitive and rapid measurement of glucose in saliva has been achieved. For the cloth-based device, the PEC reaction zone and cloth-based electrodes can be fabricated by inexpensive wax-based and carbon ink-based screen-printing, respectively. By the layer-by-layer method, the as-prepared poly (dimethyl diadly ammonium chloride-functionalized) MWCNTs (PDDA-MWCNTs) and CdS QDs are successively adsorbed onto the working electrode surface of the cloth-based device. In the presence of an excitation source and glucose, the CdS QDs generate a strong oxidizing electron hole that can then continuously oxidize glucose to produce an electrical signal for glucose detection. Under optimized conditions, a linear dependence is obtained between the PEC signal and glucose concentrations in the range of 0.05-1000 μM with a detection limit of 15.99 nM. In the detection range, the cloth-based device also shows acceptable selectivity, reproducibility, and long-term stability. Moreover, the method has been implemented for the detection of glucose in real saliva samples, suggesting good potential for biochemical applications.
Collapse
Affiliation(s)
- Xinyuan Mao
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China; Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China
| | - Chunsun Zhang
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China; Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China.
| |
Collapse
|
17
|
Jeerapan I, Moonla C, Thavarungkul P, Kanatharana P. Lab on a body for biomedical electrochemical sensing applications: The next generation of microfluidic devices. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2022; 187:249-279. [PMID: 35094777 DOI: 10.1016/bs.pmbts.2021.07.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
This chapter highlights applications of microfluidic devices toward on-body biosensors. The emerging application of microfluidics to on-body bioanalysis is a new strategy to establish systems for the continuous, real-time, and on-site determination of informative markers present in biofluids, such as sweat, interstitial fluid, blood, saliva, and tear. Electrochemical sensors are attractive to integrate with such microfluidics due to the possibility to be miniaturized. Moreover, on-body microfluidics coupled with bioelectronics enable smart integration with modern information and communication technology. This chapter discusses requirements and several challenges when developing on-body microfluidics such as difficulties in manipulating small sample volumes while maintaining mechanical flexibility, power-consumption efficiency, and simplicity of total automated systems. We describe key components, e.g., microchannels, microvalves, and electrochemical detectors, used in microfluidics. We also introduce representatives of advanced lab-on-a-body microfluidics combined with electrochemical sensors for biomedical applications. The chapter ends with a discussion of the potential trends of research in this field and opportunities. On-body microfluidics as modern total analysis devices will continue to bring several fascinating opportunities to the field of biomedical and translational research applications.
Collapse
Affiliation(s)
- Itthipon Jeerapan
- Division of Physical Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, Thailand; Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai, Songkhla, Thailand.
| | - Chochanon Moonla
- School of Chemistry, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| | - Panote Thavarungkul
- Division of Physical Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, Thailand; Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Proespichaya Kanatharana
- Division of Physical Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, Thailand; Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| |
Collapse
|
18
|
Hasandka A, Singh AR, Prabhu A, Singhal HR, Nandagopal MSG, Mani NK. Paper and thread as media for the frugal detection of urinary tract infections (UTIs). Anal Bioanal Chem 2022; 414:847-865. [PMID: 34668042 PMCID: PMC8724062 DOI: 10.1007/s00216-021-03671-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/02/2021] [Accepted: 09/15/2021] [Indexed: 12/22/2022]
Abstract
Urinary tract infections (UTIs) make up a significant proportion of the global burden of disease in vulnerable groups and tend to substantially impair the quality of life of those affected, making timely detection of UTIs a priority for public health. However, economic and societal barriers drastically reduce accessibility of traditional lab-based testing methods for critical patient groups in low-resource areas, negatively affecting their overall healthcare outcomes. As a result, cellulose-based materials such as paper and thread have garnered significant interest among researchers as substrates for so-called frugal analytical devices which leverage the material's portability and adaptability for facile and reproducible diagnoses of UTIs. Although the field may be only in its infancy, strategies aimed at commercial penetration can appreciably increase access to more healthcare options for at-risk people. In this review, we catalogue recent advances in devices that use cellulose-based materials as the primary housing or medium for UTI detection and chart out trends in the field. We also explore different modalities employed for detection, with particular emphasis on their ability to be ported onto discreet casings such as sanitary products.
Collapse
Affiliation(s)
- Amrutha Hasandka
- Microfluidics, Sensors and Diagnostics Laboratory (μSenD), Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Ankita Ramchandran Singh
- Microfluidics, Sensors and Diagnostics Laboratory (μSenD), Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Anusha Prabhu
- Microfluidics, Sensors and Diagnostics Laboratory (μSenD), Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Hardik Ramesh Singhal
- Department of Chemical Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - M S Giri Nandagopal
- Department of Mechanical Engineering, Indian Institute of Technology, Kharagpur, Kharagpur, 721302, India
| | - Naresh Kumar Mani
- Microfluidics, Sensors and Diagnostics Laboratory (μSenD), Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
| |
Collapse
|
19
|
Piper A, Öberg Månsson I, Khaliliazar S, Landin R, Hamedi MM. A disposable, wearable, flexible, stitched textile electrochemical biosensing platform. Biosens Bioelectron 2021; 194:113604. [PMID: 34488171 DOI: 10.1016/j.bios.2021.113604] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/25/2021] [Accepted: 08/28/2021] [Indexed: 11/30/2022]
Abstract
Wearable sensors are a fast growing and exciting research area, the success of smart watches are a great example of the utility and demand for wearable sensing systems. The current state of the art routinely uses expensive and bulky equipment designed for long term use. There is a need for cheap and disposable wearable sensors to make single use measurements, primarily in the area of biomarker detection. Herein we report the ability to make cheap (0.22 USD/sensor), disposable, wearable sensors by stitching conductive gold coated threads into fabrics. These threads are easily functionalised with thiolate self-assembled monolayers which can be designed for the detection of a broad range of different biomarkers. This all textile sensing platform is ideally suited to be scaled up and has the added advantage of being stretchable with insignificant effect on the electrochemistry of the devices. As a proof of principle, the devices have been functionalised with a continuous glucose sensing system which was able to detect glucose in human sweat across the clinically relevant range (0.1-0.6 mM). The sensors have a sensitivity of 126 ± 14 nA/mM of glucose and a limit of detection of 301 ± 2 nM. This makes them ideally suited for biomarker detection in point-of-care sensing applications.
Collapse
Affiliation(s)
- Andrew Piper
- Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, Teknikringen 56, Stockholm, 10044, Sweden.
| | - Ingrid Öberg Månsson
- Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, Teknikringen 56, Stockholm, 10044, Sweden
| | - Shirin Khaliliazar
- Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, Teknikringen 56, Stockholm, 10044, Sweden
| | - Roman Landin
- Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, Teknikringen 56, Stockholm, 10044, Sweden
| | - Mahiar Max Hamedi
- Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, Teknikringen 56, Stockholm, 10044, Sweden.
| |
Collapse
|
20
|
Agustini D, Caetano FR, Quero RF, Fracassi da Silva JA, Bergamini MF, Marcolino-Junior LH, de Jesus DP. Microfluidic devices based on textile threads for analytical applications: state of the art and prospects. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:4830-4857. [PMID: 34647544 DOI: 10.1039/d1ay01337h] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Microfluidic devices based on textile threads have interesting advantages when compared to systems made with traditional materials, such as polymers and inorganic substrates (especially silicon and glass). One of these significant advantages is the device fabrication process, made more cheap and simple, with little or no microfabrication apparatus. This review describes the fundamentals, applications, challenges, and prospects of microfluidic devices fabricated with textile threads. A wide range of applications is discussed, integrated with several analysis methods, such as electrochemical, colorimetric, electrophoretic, chromatographic, and fluorescence. Additionally, the integration of these devices with different substrates (e.g., 3D printed components or fabrics), other devices (e.g., smartphones), and microelectronics is described. These combinations have allowed the construction of fully portable devices and consequently the development of point-of-care and wearable analytical systems.
Collapse
Affiliation(s)
- Deonir Agustini
- Laboratory of Electrochemical Sensors (LABSENSE), Federal University of Paraná (UFPR), Curitiba, PR, Brazil.
| | - Fábio Roberto Caetano
- Laboratory of Electrochemical Sensors (LABSENSE), Federal University of Paraná (UFPR), Curitiba, PR, Brazil.
| | - Reverson Fernandes Quero
- Institute of Chemistry, State University of Campinas (Unicamp), Campinas, SP, 13083-861, Brazil.
| | - José Alberto Fracassi da Silva
- Institute of Chemistry, State University of Campinas (Unicamp), Campinas, SP, 13083-861, Brazil.
- Instituto Nacional de Ciência e Tecnologia em Bioanalítica (INCTBio), Campinas, SP, Brazil
| | - Márcio Fernando Bergamini
- Laboratory of Electrochemical Sensors (LABSENSE), Federal University of Paraná (UFPR), Curitiba, PR, Brazil.
| | | | - Dosil Pereira de Jesus
- Institute of Chemistry, State University of Campinas (Unicamp), Campinas, SP, 13083-861, Brazil.
- Instituto Nacional de Ciência e Tecnologia em Bioanalítica (INCTBio), Campinas, SP, Brazil
| |
Collapse
|
21
|
Khan JU, Ruland A, Sayyar S, Paull B, Chen J, Innis PC. Wireless bipolar electrode-based textile electrofluidics: towards novel micro-total-analysis systems. LAB ON A CHIP 2021; 21:3979-3990. [PMID: 34636814 DOI: 10.1039/d1lc00538c] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Point of care testing using micro-total-analysis systems (μTAS) is critical to emergent healthcare devices with rapid and robust responses. However, two major barriers to the success of this approach are the prohibitive cost of microchip fabrication and poor sensitivity due to small sample volumes in a microfluidic format. Here, we aimed to replace the complex microchip format with a low-cost textile substrate with inherently built microchannels using the fibers' spaces. Secondly, by integrating this textile-based microfluidics with electrophoresis and wireless bipolar electrochemistry, we can significantly improve solute detection by focusing and concentrating the analytes of interest. Herein, we demonstrated that an in situ metal electrode simply inserted inside the textile-based electrophoretic system can act as a wireless bipolar electrode (BPE) that generates localized electric field and pH gradients adjacent to the BPE and extended along the length of the textile construct. As a result, charged analytes were not only separated electrophoretically but also focused where their electrophoretic migration and counter flow (EOF) balances due to redox reactions proceeding at the BPE edges. The developed wireless redox focusing technique on textile constructs was shown to achieve a 242-fold enrichment of anionically charged solute over an extended time of 3000 s. These findings suggest a simple route that achieves separation and analyte focusing on low-cost surface-accessible inverted substrates, which is far simpler than the more complex ITP on conventional closed and inaccessible capillary channels.
Collapse
Affiliation(s)
- Jawairia Umar Khan
- ARC Centre of Excellence for Electromaterials Science (ACES), AIIM Facility, University of Wollongong, Innovation Campus, New South Wales 2500, Australia.
- Department of Fibre and Textile Technology, University of Agriculture, Faisalabad 38000, Pakistan
| | - Andres Ruland
- ARC Centre of Excellence for Electromaterials Science (ACES), AIIM Facility, University of Wollongong, Innovation Campus, New South Wales 2500, Australia.
| | - Sepidar Sayyar
- ARC Centre of Excellence for Electromaterials Science (ACES), AIIM Facility, University of Wollongong, Innovation Campus, New South Wales 2500, Australia.
- Australian National Fabrication Facility - Materials Node, University of Wollongong, Innovation Campus, New South Wales 2500, Australia
| | - Brett Paull
- Australian Centre for Research on Separation Science (ACROSS) and, ARC Centre of Excellence for Electromaterials Science (ACES), School of Natural Sciences, University of Tasmania, Hobart, Tasmania 7005, Australia
| | - Jun Chen
- ARC Centre of Excellence for Electromaterials Science (ACES), AIIM Facility, University of Wollongong, Innovation Campus, New South Wales 2500, Australia.
| | - Peter C Innis
- ARC Centre of Excellence for Electromaterials Science (ACES), AIIM Facility, University of Wollongong, Innovation Campus, New South Wales 2500, Australia.
- Australian National Fabrication Facility - Materials Node, University of Wollongong, Innovation Campus, New South Wales 2500, Australia
| |
Collapse
|
22
|
Textiles in soft robots: Current progress and future trends. Biosens Bioelectron 2021; 196:113690. [PMID: 34653713 DOI: 10.1016/j.bios.2021.113690] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 09/29/2021] [Accepted: 10/03/2021] [Indexed: 12/19/2022]
Abstract
Soft robotics have substantial benefits of safety, adaptability, and cost efficiency compared to conventional rigid robotics. Textiles have applications in soft robotics either as an auxiliary material to reinforce the conventional soft material or as an active soft material. Textiles of various types and configurations have been fabricated into key components of soft robotics in adaptable formats. Despite significant advancements, the efficiency and characteristics of textile actuators in practical applications remain unsatisfactory. To address these issues, novel structural and material designs as well as new textile technologies have been introduced. Herein, we aim at giving an insight into the current state of the art in textile technology for soft robotic manufacturing. We firstly discuss the fundamental actuation mechanisms for soft robotics. We then provide a critical review on the recently developed functional textiles as reinforcements, sensors, and actuators in soft robotics. Finally, the future trends and current strategies that can be employed in textile-based actuator manufacturing process have been explored to address the critical challenges in soft robotics.
Collapse
|
23
|
Rovira M, Fernández-Sánchez C, Jiménez-Jorquera C. Hybrid Technologies Combining Solid-State Sensors and Paper/Fabric Fluidics for Wearable Analytical Devices. BIOSENSORS 2021; 11:303. [PMID: 34562893 PMCID: PMC8467283 DOI: 10.3390/bios11090303] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 08/25/2021] [Accepted: 08/26/2021] [Indexed: 01/03/2023]
Abstract
The development of diagnostic tools for measuring a wide spectrum of target analytes, from biomarkers to other biochemical parameters in biological fluids, has experienced a significant growth in the last decades, with a good number of such tools entering the market. Recently, a clear focus has been put on miniaturized wearable devices, which offer powerful capabilities for real-time and continuous analysis of biofluids, mainly sweat, and can be used in athletics, consumer wellness, military, and healthcare applications. Sweat is an attractive biofluid in which different biomarkers could be noninvasively measured to provide rapid information about the physical state of an individual. Wearable devices reported so far often provide discrete (single) measurements of the target analytes, most of them in the form of a yes/no qualitative response. However, quantitative biomarker analysis over certain periods of time is highly demanded for many applications such as the practice of sports or the precise control of the patient status in hospital settings. For this, a feasible combination of fluidic elements and sensor architectures has been sought. In this regard, this paper shows a concise overview of analytical tools based on the use of capillary-driven fluidics taking place on paper or fabric devices integrated with solid-state sensors fabricated by thick film technologies. The main advantages and limitations of the current technologies are pointed out together with the progress towards the development of functional devices. Those approaches reported in the last decade are examined in detail.
Collapse
Affiliation(s)
- Meritxell Rovira
- Instituto de Microelectrónica de Barcelona (IMB-CNM), CSIC, Campus UAB, Bellaterra, 08193 Barcelona, Spain; (M.R.); (C.F.-S.)
| | - César Fernández-Sánchez
- Instituto de Microelectrónica de Barcelona (IMB-CNM), CSIC, Campus UAB, Bellaterra, 08193 Barcelona, Spain; (M.R.); (C.F.-S.)
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Jordi Girona 18-26, 08034 Barcelona, Spain
| | - Cecilia Jiménez-Jorquera
- Instituto de Microelectrónica de Barcelona (IMB-CNM), CSIC, Campus UAB, Bellaterra, 08193 Barcelona, Spain; (M.R.); (C.F.-S.)
| |
Collapse
|
24
|
Kimani MK, Mwangi J, Goluch ED. Electrophoresis on a polyester thread coupled with an end-channel pencil electrode detector. Electrophoresis 2021; 42:1974-1982. [PMID: 34333778 DOI: 10.1002/elps.202100108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 07/05/2021] [Accepted: 07/27/2021] [Indexed: 11/07/2022]
Abstract
We present the design and characterization of a low cost, thread-based electrophoretic device with integrated electrochemical detection. The device has an end-channel pencil graphite electrode placement system for performing electrochemical detection on the thread electrophoresis platform with direct sample pipetting onto the thread. We also established the use of methylene blue and neutral red as a pair of reference migration markers for separation techniques coupled with electrochemical detection, as they have different colors for visual analysis and are both electroactive. Importantly, neutral red was also found to migrate at a similar rate to the EOF, indicating that it can be used as a visual identifier of EOF. The utility of our system was demonstrated by electrophoretic separation and electrochemical detection of physiologically relevant concentrations of pyocyanin in a solution containing multiple electroactive compounds. Pyocyanin is a biomarker for the detection of pathogenic Pseudomonas aeruginosa and has a redox potential that is similar to that of methylene blue. The system was able to effectively resolve methylene blue, neutral red, and pyocyanin in less than 7 min of electrophoretic separation. The theoretical limit of detection for pyocyanin was determined to be 559 nM. The electrophoretic mobilities of methylene blue (0.0236 ± 0.0007 mm2 /V·s), neutral red (0.0149 ± 0.0007 mm2 /V·s), and pyocyanin (0.0107 ± 0.0003 mm2 /V·s) were also determined.
Collapse
Affiliation(s)
- Martin K Kimani
- Department of Chemical Engineering, Northeastern University, Boston, MA, USA
| | - John Mwangi
- Department of Biology, Northeastern University, Boston, MA, USA
| | - Edgar D Goluch
- Department of Chemical Engineering, Northeastern University, Boston, MA, USA.,Department of Biology, Northeastern University, Boston, MA, USA.,Department of Bioengineering, Civil and Environmental Engineering, Northeastern University, Boston, MA, USA
| |
Collapse
|
25
|
|
26
|
Khaliliazar S, Öberg Månsson I, Piper A, Ouyang L, Réu P, Hamedi MM. Woven Electroanalytical Biosensor for Nucleic Acid Amplification Tests. Adv Healthc Mater 2021; 10:e2100034. [PMID: 33930257 DOI: 10.1002/adhm.202100034] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 03/14/2021] [Indexed: 01/07/2023]
Abstract
Fiber-based biosensors enable a new approach in analytical diagnostic devices. The majority of textile-based biosensors, however, rely on colorimetric detection. Here a woven biosensor that integrates microfluidics structures in combination with an electroanalytical readout based on a thiol-self-assembled monolayer (SAM) for Nucleic Acid Amplification Testing, NAATs is shown. Two types of fiber-based electrodes are systematically characterized: pure gold microwires (bond wire) and off-the-shelf plasma gold-coated polyester multifilament threads to evaluate their potential to form SAMs on their surface and their electrochemical performance in woven textile. A woven electrochemical DNA (E-DNA) sensor using a SAM-based stem-loop probe-modified gold microwire is fabricated. These sensors can specifically detect unpurified, isothermally amplified genomic DNA of Staphylococcus epidermidis (10 copies/µL) by recombinase polymerase amplification (RPA). This work demonstrates that textile-based biosensors have the potential for integrating and being employed as automated, sample-to-answer analytical devices for point-of-care (POC) diagnostics.
Collapse
Affiliation(s)
- Shirin Khaliliazar
- Department of Fibre and Polymer Technology School of Engineering Sciences in Chemistry, Biotechnology and Health KTH Royal Institute of Technology Tekninkringen 56‐58 Stockholm SE‐100 44 Sweden
| | - Ingrid Öberg Månsson
- Department of Fibre and Polymer Technology School of Engineering Sciences in Chemistry, Biotechnology and Health KTH Royal Institute of Technology Tekninkringen 56‐58 Stockholm SE‐100 44 Sweden
| | - Andrew Piper
- Department of Fibre and Polymer Technology School of Engineering Sciences in Chemistry, Biotechnology and Health KTH Royal Institute of Technology Tekninkringen 56‐58 Stockholm SE‐100 44 Sweden
| | - Liangqi Ouyang
- Department of Fibre and Polymer Technology School of Engineering Sciences in Chemistry, Biotechnology and Health KTH Royal Institute of Technology Tekninkringen 56‐58 Stockholm SE‐100 44 Sweden
| | - Pedro Réu
- Department of Fibre and Polymer Technology School of Engineering Sciences in Chemistry, Biotechnology and Health KTH Royal Institute of Technology Tekninkringen 56‐58 Stockholm SE‐100 44 Sweden
| | - Mahiar Max Hamedi
- Department of Fibre and Polymer Technology School of Engineering Sciences in Chemistry, Biotechnology and Health KTH Royal Institute of Technology Tekninkringen 56‐58 Stockholm SE‐100 44 Sweden
| |
Collapse
|
27
|
Prabhu A, Singhal H, Giri Nandagopal MS, Kulal R, Peralam Yegneswaran P, Mani NK. Knitting Thread Devices: Detecting Candida albicans Using Napkins and Tampons. ACS OMEGA 2021; 6:12667-12675. [PMID: 34056418 PMCID: PMC8154238 DOI: 10.1021/acsomega.1c00806] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Accepted: 04/22/2021] [Indexed: 05/14/2023]
Abstract
Reproducible and in situ microbial detection, particularly of microbes significant in urinary tract infections (UTIs) such as Candida albicans, provides a unique opportunity to bring equity in the healthcare outcomes of disenfranchised groups like women in low-resource settings. Here, we demonstrate a system to potentially detect vulvovaginal candidiasis by leveraging the properties of multifilament cotton threads in the form of microfluidic-thread-based analytical devices (μTADs) to develop a frugal microbial identification assay. A facile mercerization method using heptane wash to boost reagent absorption and penetration is also performed and is shown to be robust compared to other existing conventional mercerization methods. Furthermore, the twisted mercerized fibers are drop-cast with media consisting of l-proline β-naphthylamide, which undergoes hydrolysis by the enzyme l-proline aminopeptidase secreted by C. albicans, hence signaling the presence of the pathogen via simple color change with a limit of detection of 0.58 × 106 cfu/mL. The flexible and easily disposable thread-based detection device when integrated with menstrual hygiene products showed a detection time of 10 min using spiked vaginal discharge. The developed method boasts a long shelf life and high stability, making it a discreet detection device for testing, which provides new vistas for self-testing multiple diseases that are considered taboo in certain societies.
Collapse
Affiliation(s)
- Anusha Prabhu
- Department
of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Hardik Singhal
- Department
of Chemical Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - M. S. Giri Nandagopal
- Department
of Mechanical Engineering, Indian Institute
of Technology, Kharagpur, Kharagpur 721302, India
| | - Reshma Kulal
- Department
of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Prakash Peralam Yegneswaran
- Department
of Microbiology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
- Manipal
Centre for Infectious Diseases, Prasanna School of Public Health, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Naresh Kumar Mani
- Department
of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
- Manipal
Centre for Infectious Diseases, Prasanna School of Public Health, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| |
Collapse
|
28
|
Zhao Z, Li Q, Chen L, Zhao Y, Gong J, Li Z, Zhang J. A thread/fabric-based band as a flexible and wearable microfluidic device for sweat sensing and monitoring. LAB ON A CHIP 2021; 21:916-932. [PMID: 33438703 DOI: 10.1039/d0lc01075h] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Flexible biosensors for monitoring systems have emerged as a promising portable diagnostics platform due to their potential for in situ point-of-care (POC) analytic devices. Assessment of biological analytes in sweat can provide essential information for human physiology. Conventional measurements rely on laboratory equipment. This work exploits an alternative approach for epidermal sweat sensing and detection through a wearable microfluidic thread/fabric-based analytical device (μTFAD). This μTFAD is a flexible and skin-mounted band that integrates hydrophilic dot-patterns with a hydrophobic surface via embroidering thread into fabric. After chromogenic reaction treatment, the thread-embroidered patterns serve as the detection zones for sweat transferred by the hydrophilic threads, enabling precise analysis of local sweat loss, pH and concentrations of chloride and glucose in sweat. Colorimetric reference markers embroidered surrounding the working dots provide accurate data readout either by apparent color comparison or by digital acquirement through smartphone-assisted calibration plots. On-body tests were conducted on five healthy volunteers. Detection results of pH, chloride and glucose in sweat from the volunteers were 5.0-6.0, 25-80 mM and 50-200 μM by apparent color comparison with reference markers through direct visual observation. Similar results of 5.47-6.30, 50-77 mM and 47-66 μM for pH, chloride and glucose were obtained through calibration plots based on the RGB values from the smartphone app Lanse®. The limit of detection (LOD) is 10 mM for chloride concentration, 4.0-9.0 for pH and 10 μM for glucose concentration, respectively. For local sweat loss, it is found that the forehead is the region of heavy sweat loss. Sweat secretion is a cumulating process with a lower sweat rate at the beginning which increases as body movement continues along with increased heat production. These results demonstrate the capability and availability of our sensing device for quantitative detection of multiple biomarkers in sweat, suggesting the great potential for development of feasible non-invasive biosensors, with a similar performance to conventional measurements.
Collapse
Affiliation(s)
- Zhiqi Zhao
- School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China. and Key Laboratory of Advanced Textile Composites, Ministry of Education, Tiangong University, Tianjin 300387, China
| | - Qiujin Li
- School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China. and Key Laboratory of Advanced Textile Composites, Ministry of Education, Tiangong University, Tianjin 300387, China
| | - Linna Chen
- School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China. and Key Laboratory of Advanced Textile Composites, Ministry of Education, Tiangong University, Tianjin 300387, China
| | - Yu Zhao
- School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China. and Key Laboratory of Advanced Textile Composites, Ministry of Education, Tiangong University, Tianjin 300387, China
| | - Jixian Gong
- School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China. and Key Laboratory of Advanced Textile Composites, Ministry of Education, Tiangong University, Tianjin 300387, China
| | - Zheng Li
- School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China. and Key Laboratory of Advanced Textile Composites, Ministry of Education, Tiangong University, Tianjin 300387, China
| | - Jianfei Zhang
- School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China. and Key Laboratory of Advanced Textile Composites, Ministry of Education, Tiangong University, Tianjin 300387, China and Collaborative Innovation Center for Eco-Textiles of Shandong Province, Shandong, Qingdao 266071, China
| |
Collapse
|
29
|
Sachdeva S, Davis RW, Saha AK. Microfluidic Point-of-Care Testing: Commercial Landscape and Future Directions. Front Bioeng Biotechnol 2021; 8:602659. [PMID: 33520958 PMCID: PMC7843572 DOI: 10.3389/fbioe.2020.602659] [Citation(s) in RCA: 101] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 12/15/2020] [Indexed: 12/23/2022] Open
Abstract
Point-of-care testing (POCT) allows physicians to detect and diagnose diseases at or near the patient site, faster than conventional lab-based testing. The importance of POCT is considerably amplified in the trying times of the COVID-19 pandemic. Numerous point-of-care tests and diagnostic devices are available in the market including, but not limited to, glucose monitoring, pregnancy and infertility testing, infectious disease testing, cholesterol testing and cardiac markers. Integrating microfluidics in POCT allows fluid manipulation and detection in a singular device with minimal sample requirements. This review presents an overview of two technologies - (a.) Lateral Flow Assay (LFA) and (b.) Nucleic Acid Amplification - upon which a large chunk of microfluidic POCT diagnostics is based, some of their applications, and commercially available products. Apart from this, we also delve into other microfluidic-based diagnostics that currently dominate the in-vitro diagnostic (IVD) market, current testing landscape for COVID-19 and prospects of microfluidics in next generation diagnostics.
Collapse
Affiliation(s)
| | | | - Amit K. Saha
- Genome Technology Center, School of Medicine, Stanford University, Palo Alto, CA, United States
| |
Collapse
|
30
|
Suarez WT, Franco MO, Capitán-Vallvey LF, Erenas MM. Chitosan-modified cotton thread for the preconcentration and colorimetric trace determination of Co(II). Microchem J 2020. [DOI: 10.1016/j.microc.2020.105137] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
31
|
Dabbagh SR, Rabbi F, Doğan Z, Yetisen AK, Tasoglu S. Machine learning-enabled multiplexed microfluidic sensors. BIOMICROFLUIDICS 2020; 14:061506. [PMID: 33343782 PMCID: PMC7733540 DOI: 10.1063/5.0025462] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Accepted: 12/01/2020] [Indexed: 05/02/2023]
Abstract
High-throughput, cost-effective, and portable devices can enhance the performance of point-of-care tests. Such devices are able to acquire images from samples at a high rate in combination with microfluidic chips in point-of-care applications. However, interpreting and analyzing the large amount of acquired data is not only a labor-intensive and time-consuming process, but also prone to the bias of the user and low accuracy. Integrating machine learning (ML) with the image acquisition capability of smartphones as well as increasing computing power could address the need for high-throughput, accurate, and automatized detection, data processing, and quantification of results. Here, ML-supported diagnostic technologies are presented. These technologies include quantification of colorimetric tests, classification of biological samples (cells and sperms), soft sensors, assay type detection, and recognition of the fluid properties. Challenges regarding the implementation of ML methods, including the required number of data points, image acquisition prerequisites, and execution of data-limited experiments are also discussed.
Collapse
Affiliation(s)
| | - Fazle Rabbi
- Department of Mechanical Engineering, Koç University, Sariyer, Istanbul 34450, Turkey
| | | | - Ali Kemal Yetisen
- Department of Chemical Engineering, Imperial College London, London SW7 2AZ, United Kingdom
| | | |
Collapse
|
32
|
Uchida K, Duenas L, Gomez FA. Thread- and Capillary Tube-Based Electrodes for the Detection of Glucose and Acetylthiocholine. MICROMACHINES 2020; 11:E920. [PMID: 33023140 PMCID: PMC7599574 DOI: 10.3390/mi11100920] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 09/27/2020] [Accepted: 09/28/2020] [Indexed: 12/14/2022]
Abstract
An electrochemical sensor for the detection of glucose and acetylthiocholine (ATC) using thread- and capillary tube-based electrodes is described. Three nylon thread-based electrodes were fabricated by painting pieces of trifurcated nylon thread with conductive inks and threading the electrodes into capillary tubes. Two platforms, one paper-based and the other utilizing bubble wrap, were examined. For the glucose detection, a solution containing glucose oxidase (GOx), potassium ferricyanide (K3[Fe(CN)6]), and increasing concentrations of glucose (0-20 mM) in phosphate-buffered saline (PBS) was spotted onto the two platforms. Similarly, increasing concentrations of ATC (0-9.84 mg/mL) in acetylcholinesterase (AChE) (0.08 U/mL) and PBS solution were detected. Using cyclic voltammetry (CV), a scanning voltage was applied to yield a graph of voltage applied (V) vs. current output (A). For both platforms, both glucose and ATC concentrations were observed to be linearly proportional to the current output as demonstrated by the increased height of the oxidation peaks. The three-electrode system was simple to fabricate, inexpensive, and could be used for multiple readings.
Collapse
Affiliation(s)
| | | | - Frank A. Gomez
- Department of Chemistry and Biochemistry, California State University, Los Angeles, 5151 State University Drive, Los Angeles, CA 90032-8202, USA; (K.U.); (L.D.)
| |
Collapse
|
33
|
Ardalan S, Hosseinifard M, Vosough M, Golmohammadi H. Towards smart personalized perspiration analysis: An IoT-integrated cellulose-based microfluidic wearable patch for smartphone fluorimetric multi-sensing of sweat biomarkers. Biosens Bioelectron 2020; 168:112450. [PMID: 32877780 DOI: 10.1016/j.bios.2020.112450] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/06/2020] [Accepted: 07/13/2020] [Indexed: 01/30/2023]
Abstract
Practical obstacles, such as intricate designs and expensive equipment/materials, in the fabrication of wearable sweat sensors, have limited their feasibility as a personalized healthcare device. Herein, we have fabricated a cellulose-based wearable patch, which further paired with a smartphone-based fluorescence imaging module and a self-developed smartphone app for non-invasive and in situ multi-sensing of sweat biomarkers including glucose, lactate, pH, chloride, and volume. The developed Smart Wearable Sweat Patch (SWSP) sensor comprises highly fluorescent sensing probes embedded in paper substrates, and microfluidic channels consisted of cotton threads to harvest sweat from the skin surface and to transport it to the paper-based sensing probes. The imaging module was fabricated by a 3D printer, equipped with UV-LED lamps and an optical filter to provide the in situ capability of capturing digital images of the sensors via a smartphone. A smartphone app was also designed to quantify the concentration of the biomarkers via a detection algorithm. Additionally, we have recommended an Internet of Things (IoT)-based model for our developed SWSP sensor to promote its potential application for the future. The field studies on human subjects were also conducted to investigate the feasibility of our developed SWSP sensor for the analysis of sweat biomarkers. Our findings convincingly demonstrated the applicability of our developed SWSP sensor as a smart, user-friendly, ultra-low-cost (~0.03 $ per sweat patch), portable, selective, rapid, and non-invasive healthcare monitoring device for immense applications in health personalization, sports performance monitoring, and medical diagnostics.
Collapse
Affiliation(s)
- Sina Ardalan
- Chemistry and Chemical Engineering Research Center of Iran, 14335-186, Tehran, Iran
| | - Mohammad Hosseinifard
- Chemistry and Chemical Engineering Research Center of Iran, 14335-186, Tehran, Iran.
| | - Maryam Vosough
- Chemistry and Chemical Engineering Research Center of Iran, 14335-186, Tehran, Iran
| | - Hamed Golmohammadi
- Chemistry and Chemical Engineering Research Center of Iran, 14335-186, Tehran, Iran.
| |
Collapse
|
34
|
Öberg Månsson I, Piper A, Hamedi MM. Weaving Off-The-Shelf Yarns into Textile Micro Total Analysis Systems (μTAS). Macromol Biosci 2020; 20:e2000150. [PMID: 32686256 DOI: 10.1002/mabi.202000150] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 06/30/2020] [Indexed: 12/28/2022]
Abstract
Textile based biosensors have garnered much interest in recent years. Devices woven out of yarns have the ability to be incorporated into clothing and bandages. Most woven devices reported in the literature require yarns that are not available on an industrial scale or that require modifications which are not possible in large scale manufacturing. In this work, commercially produced yarns are taken without any modification or cleaning, and developed woven textile diagnostic devices out of them. The yarn properties that are important to their function within the device have been characterised and discussed. The wicking ability and analyte retention of Coolmax yarns, developed to wick sweat in mass produced sportswear, are determined. The electrochemistry and functionalizability of Au coated multifilament yarns are investigated with no cleaning or treatment and are found to have as good a thiolate self-assembled monolayer (SAM) coverage as cleaned Au disk electrodes. The feasibility of using these yarns is established off the shelf, with no cleaning, to make woven capillary force driven microfluidic devices and three electrode sensing devices. A proof of principle three electrode system capable of detecting clinically relevant concentrations of glucose in human sweat is reported.
Collapse
Affiliation(s)
- Ingrid Öberg Månsson
- Department of Fibre and Polymer technology, KTH Royal Institute of Technology, Teknikringen 56, Stockholm, 10044, Sweden
| | - Andrew Piper
- Department of Fibre and Polymer technology, KTH Royal Institute of Technology, Teknikringen 56, Stockholm, 10044, Sweden
| | - Mahiar Max Hamedi
- Department of Fibre and Polymer technology, KTH Royal Institute of Technology, Teknikringen 56, Stockholm, 10044, Sweden
| |
Collapse
|
35
|
Prabhu A, Nandagopal M S G, Peralam Yegneswaran P, Prabhu V, Verma U, Mani NK. Thread integrated smart-phone imaging facilitates early turning point colorimetric assay for microbes. RSC Adv 2020; 10:26853-26861. [PMID: 35515782 PMCID: PMC9055509 DOI: 10.1039/d0ra05190j] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 07/13/2020] [Indexed: 12/19/2022] Open
Abstract
This study employs a commercial multifilament cotton thread as a low-cost microbial identification assay integrated with smartphone-based imaging for high throughput and rapid detection of pathogens. The thread device with inter-twined fibers was drop-cast with test media and a pH indicator. The target pathogens scavenge the media components with different sugars and release acidic by-products, which in turn act as markers for pH-based color change. The developed thread-based proof-of-concept was demonstrated for the visual color detection (red to yellow) of Candida albicans (≈16 hours) and Escherichia coli (≈5 hours). Besides that, using a smart-phone to capture images of the thread-based colorimetric assay facilitates early detection of turning point of the pH-based color change and further reduces the detection time of pathogens viz. Candida albicans (≈10 hours) and Escherichia coli (≈1.5 hours). The reported thread and smartphone integrated image analysis works towards identifying the turning point of the colorimetric change rather than the end-point analysis. Using this approach, the interpretation time can be significantly reduced compared to the existing conventional microbial methods (≈24 hours). The thread-based colorimetric microbial assay represents a ready-to-use, low-cost and straightforward technology with applicability in resource-constrained environments, surpassing the need for frequent fresh media preparation, expensive instrumentation, complex fabrication techniques and expert intervention. The proposed method possesses high scalability and reproducibility, which can be further extended to bio(chemical) assays.
Collapse
Affiliation(s)
- Anusha Prabhu
- Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education Manipal 576104 Karnataka India
| | - Giri Nandagopal M S
- Department of Mechanical Engineering, Indian Institute of Technology Kharagpur 721302 India
| | - Prakash Peralam Yegneswaran
- Department of Microbiology, Kasturba Medical College Manipal, Manipal Academy of Higher Education Manipal 576104 Karnataka India
- Manipal Center for Infectious Diseases, Prasanna School of Public Health, Manipal Academy of Higher Education Manipal 576104 Karnataka India
| | - Vijendra Prabhu
- Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education Manipal 576104 Karnataka India
| | - Ujjwal Verma
- Department of Electronics & Communication, Manipal Institute of Technology, Manipal Academy of Higher Education Manipal 576104 Karnataka India
- Manipal Center for Infectious Diseases, Prasanna School of Public Health, Manipal Academy of Higher Education Manipal 576104 Karnataka India
| | - Naresh Kumar Mani
- Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education Manipal 576104 Karnataka India
- Manipal Center for Infectious Diseases, Prasanna School of Public Health, Manipal Academy of Higher Education Manipal 576104 Karnataka India
| |
Collapse
|
36
|
Abstract
The microfluidics field is at a critical crossroads. The vast majority of microfluidic devices are presently manufactured using micromolding processes that work very well for a reduced set of biocompatible materials, but the time, cost, and design constraints of micromolding hinder the commercialization of many devices. As a result, the dissemination of microfluidic technology-and its impact on society-is in jeopardy. Digital manufacturing (DM) refers to a family of computer-centered processes that integrate digital three-dimensional (3D) designs, automated (additive or subtractive) fabrication, and device testing in order to increase fabrication efficiency. Importantly, DM enables the inexpensive realization of 3D designs that are impossible or very difficult to mold. The adoption of DM by microfluidic engineers has been slow, likely due to concerns over the resolution of the printers and the biocompatibility of the resins. In this article, we review and discuss the various printer types, resolution, biocompatibility issues, DM microfluidic designs, and the bright future ahead for this promising, fertile field.
Collapse
Affiliation(s)
- Arman Naderi
- Department of Bioengineering, University of Washington, Seattle, Washington 98195, USA;
| | - Nirveek Bhattacharjee
- Department of Bioengineering, University of Washington, Seattle, Washington 98195, USA;
| | - Albert Folch
- Department of Bioengineering, University of Washington, Seattle, Washington 98195, USA;
| |
Collapse
|
37
|
Jarujamrus P, Prakobkij A, Puchum S, Chaisamdaeng S, Meelapsom R, Anutrasakda W, Amatatongchai M, Chairam S, Citterio D. Acid-base titration using a microfluidic thread-based analytical device (μTAD). Analyst 2020; 145:4457-4466. [PMID: 32378683 DOI: 10.1039/d0an00522c] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
This work presents the development and application of a novel analytical approach for the determination of acid and base concentrations by titration using a microfluidic thread-based analytical device (μTAD). This approach proved to be a simple to fabricate and to use, high precision, and cost-efficient means of acid-base quantification. The μTAD was fabricated by immobilizing the untreated cotton threads onto a wood frame, followed by pre-coating with an indicator (20 μL) and a primary standard solution (3 μL), and was tested using real samples including drug, food, and household products where 3 μL of each sample was dropped onto the center of a thread. Afterward, the distance of color change on the thread, easily observed and measured using the naked eye and a ruler, was used for analysis. The analysis using the μTAD, completed within 2 minutes and validated by the conventional titration, showed high accuracy and precision (RSD < 12.9%), good linearity ranges and low limit of quantification. The fabricated μTAD also remained stable for an extended period of time (>2 weeks under various storage conditions).
Collapse
Affiliation(s)
- Purim Jarujamrus
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Ubon Ratchathani University, Ubon Ratchathani, 34190, Thailand.
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Xu L, Wang A, Li X, Oh KW. Passive micropumping in microfluidics for point-of-care testing. BIOMICROFLUIDICS 2020; 14:031503. [PMID: 32509049 PMCID: PMC7263483 DOI: 10.1063/5.0002169] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 05/14/2020] [Indexed: 05/11/2023]
Abstract
Suitable micropumping methods for flow control represent a major technical hurdle in the development of microfluidic systems for point-of-care testing (POCT). Passive micropumping for point-of-care microfluidic systems provides a promising solution to such challenges, in particular, passive micropumping based on capillary force and air transfer based on the air solubility and air permeability of specific materials. There have been numerous developments and applications of micropumping techniques that are relevant to the use in POCT. Compared with active pumping methods such as syringe pumps or pressure pumps, where the flow rate can be well-tuned independent of the design of the microfluidic devices or the property of the liquids, most passive micropumping methods still suffer flow-control problems. For example, the flow rate may be set once the device has been made, and the properties of liquids may affect the flow rate. However, the advantages of passive micropumping, which include simplicity, ease of use, and low cost, make it the best choice for POCT. Here, we present a systematic review of different types of passive micropumping that are suitable for POCT, alongside existing applications based on passive micropumping. Future trends in passive micropumping are also discussed.
Collapse
Affiliation(s)
- Linfeng Xu
- Department of Bioengineering and Therapeutic
Sciences, Schools of Medicine and Pharmacy, University of California San
Francisco, 1700 4th Street, Byers Hall 304, San Francisco, California
94158, USA
| | - Anyang Wang
- SMALL (Sensors and MicroActuators Learning Lab),
Department of Electrical Engineering, University at Buffalo, The State University of New
York, Buffalo, New York 14260, USA
| | - Xiangpeng Li
- Department of Bioengineering and Therapeutic
Sciences, Schools of Medicine and Pharmacy, University of California San
Francisco, 1700 4th Street, Byers Hall 304, San Francisco, California
94158, USA
| | - Kwang W. Oh
- SMALL (Sensors and MicroActuators Learning Lab),
Department of Electrical Engineering, University at Buffalo, The State University of New
York, Buffalo, New York 14260, USA
| |
Collapse
|
39
|
Chen L, Cabot JM, Sanz Rodriguez E, Ghiasvand A, Innis PC, Paull B. Thread-based isoelectric focusing coupled with desorption electrospray ionization mass spectrometry. Analyst 2020; 145:6928-6936. [DOI: 10.1039/d0an01344g] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Efficient ‘on-thread’ isoelectric focusing of proteins, with direct on-thread detection using desorption electrospray ionisation mass spectrometry.
Collapse
Affiliation(s)
- Liang Chen
- ARC Centre of Excellence for Electromaterials Science (ACES)
- School of Natural Sciences
- University of Tasmania
- Sandy Bay
- Hobart
| | - Joan M. Cabot
- ARC Centre of Excellence for Electromaterials Science (ACES)
- School of Natural Sciences
- University of Tasmania
- Sandy Bay
- Hobart
| | - Estrella Sanz Rodriguez
- Australian Centre for Research on Separation Science (ACROSS)
- School of Natural Sciences
- University of Tasmania
- Sandy Bay
- Hobart
| | - Alireza Ghiasvand
- Australian Centre for Research on Separation Science (ACROSS)
- School of Natural Sciences
- University of Tasmania
- Sandy Bay
- Hobart
| | - Peter C. Innis
- ARC Centre of Excellence for Electromaterials Science (ACES)
- AIIM Facility
- Innovation campus
- University of Wollongong
- Australia
| | - Brett Paull
- ARC Centre of Excellence for Electromaterials Science (ACES)
- School of Natural Sciences
- University of Tasmania
- Sandy Bay
- Hobart
| |
Collapse
|
40
|
Mao N, Peng H, Quan Z, Zhang H, Wu D, Qin X, Wang R, Yu J. Wettability Control in Tree Structure-Based 1D Fiber Assemblies for Moisture Wicking Functionality. ACS APPLIED MATERIALS & INTERFACES 2019; 11:44682-44690. [PMID: 31596064 DOI: 10.1021/acsami.9b14370] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
One of the fundamental properties of natural systems is their water transport ability, and living systems have efficient moisture management features. Here, a unique structure, inspired by the water transfer behavior in trees, was designed for one-dimensional (1D) fiber assemblies. In this 1D fiber assembly structure, a differential capillary effect enabling rapid water transfer at the interface between traditional cotton fibers and electrospun nanofibers was explored. A tree-like structure yarn was constructed successfully by novel electrospinning technology, and the effect was quantitatively controlled by precisely regulating the fibers' wettability. Fabrics based on these tree-like core-spun yarns possessed advanced moisture-wicking performance, a high one-way transport index (R) of 1034.5%, and a desirable overall moisture management capability of 0.88, which are over two times higher than those of conventional fabrics. This moisture-wicking regime endowed these 1D fiber assemblies with unique water transfer channels, providing a new strategy for moisture-heat transmission, microfluidics, and biosensor applications.
Collapse
|
41
|
Elomaa J, Gallegos L, Gomez FA. Cord-Based Microfluidic Chips as A Platform for ELISA and Glucose Assays. MICROMACHINES 2019; 10:mi10090614. [PMID: 31540182 PMCID: PMC6780352 DOI: 10.3390/mi10090614] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Revised: 09/03/2019] [Accepted: 09/13/2019] [Indexed: 05/13/2023]
Abstract
This paper describes the development and application of microfluidic cord-based analytical devices (µCADs) in two enzyme-linked immunosorbent assays (ELISAs) and glucose assay. In this study, biotinylated goat anti-mouse immunoglobulin (IgG) antibody, rabbit IgG antibody, and glucose are quantitatively detected. In the ELISA systems, the antibody is spotted on the cord at the detection site and a series of washes, followed by streptavidin-alkaline phosphatase (Strep-ALP) or alkaline phosphatase (ALP)-conjugated secondary antibody and colorimetric substrate, completing the experiment. The devices are subsequently scanned and analyzed yielding a correlation between inverse yellow or inverse blue intensity and antibody concentration. For the first ELISA, a linear range of detection was observed at lower concentrations (2.50 × 10-4-1.75 × 10-3 mg/mL) of Strep-ALP with saturation of the enzyme achieved at higher concentrations (>2.50 × 10-4). For the second ELISA, the L50 was demonstrated to be 167.6 fmol/zone. The glucose assay consisted of spotting increasing concentrations of glucose on the analysis sites and transporting, via capillary action, a solution containing glucose oxidase (GOx), horseradish peroxidase (HRP), and potassium iodide (KI) to the detection sites realizing a yellow-brown color indicating oxidation of iodide to iodine. The device was then dried, scanned, and analyzed to show the correlation between yellow inverse intensity and glucose. Glucose in artificial urine showed good correlation using the devices.
Collapse
Affiliation(s)
- Jenny Elomaa
- Department of Chemistry and Biochemistry, California State University, Los Angeles, 5151 State University Drive, Los Angeles, CA 90032-8202, USA.
| | - Laura Gallegos
- Department of Chemistry and Biochemistry, California State University, Los Angeles, 5151 State University Drive, Los Angeles, CA 90032-8202, USA.
| | - Frank A Gomez
- Department of Chemistry and Biochemistry, California State University, Los Angeles, 5151 State University Drive, Los Angeles, CA 90032-8202, USA.
| |
Collapse
|
42
|
Abstract
Open microfluidic capillary systems are a rapidly evolving branch of microfluidics where fluids are manipulated by capillary forces in channels lacking physical walls on all sides. Typical channel geometries include grooves, rails, or beams and complex systems with multiple air-liquid interfaces. Removing channel walls allows access for retrieval (fluid sampling) and addition (pipetting reagents or adding objects like tissue scaffolds) at any point in the channel; the entire channel becomes a "device-to-world" interface, whereas such interfaces are limited to device inlets and outlets in traditional closed-channel microfluidics. Open microfluidic capillary systems are simple to fabricate and reliable to operate. Prototyping methods (e.g., 3D printing) and manufacturing methods (e.g., injection molding) can be used seamlessly, accelerating development. This Perspective highlights fundamentals of open microfluidic capillary systems including unique advantages, design considerations, fabrication methods, and analytical considerations for flow; device features that can be combined to create a "toolbox" for fluid manipulation; and applications in biology, diagnostics, chemistry, sensing, and biphasic applications.
Collapse
Affiliation(s)
- Erwin Berthier
- University of Washington, Department of Chemistry, Seattle, Washington 98195, USA
| | - Ashley M. Dostie
- University of Washington, Department of Chemistry, Seattle, Washington 98195, USA
| | - Ulri N. Lee
- University of Washington, Department of Chemistry, Seattle, Washington 98195, USA
| | - Jean Berthier
- University of Washington, Department of Chemistry, Seattle, Washington 98195, USA
| | - Ashleigh B. Theberge
- University of Washington, Department of Chemistry, Seattle, Washington 98195, USA
- University of Washington School of Medicine, Department of Urology, Seattle, Washington 98105, USA
| |
Collapse
|
43
|
A review on advances in methods for modification of paper supports for use in point-of-care testing. Mikrochim Acta 2019; 186:521. [DOI: 10.1007/s00604-019-3626-z] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 06/17/2019] [Indexed: 10/26/2022]
|
44
|
Real time monitoring of glucose in whole blood by smartphone. Biosens Bioelectron 2019; 136:47-52. [DOI: 10.1016/j.bios.2019.04.024] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 03/22/2019] [Accepted: 04/12/2019] [Indexed: 12/18/2022]
|
45
|
Naeimirad M, Abuzade R, Babaahmadi V, Dabirian F. Microfluidic through fibrous structures: Recent developments and future trends. ACTA ACUST UNITED AC 2019. [DOI: 10.1002/mdp2.78] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Mohammadreza Naeimirad
- Department of Materials and Textile Engineering, Faculty of EngineeringRazi University Kermanshah Iran
| | - RamazanAli Abuzade
- Department of Materials and Textile Engineering, Faculty of EngineeringRazi University Kermanshah Iran
| | - Vahid Babaahmadi
- Department of Materials and Textile Engineering, Faculty of EngineeringRazi University Kermanshah Iran
| | - Farzad Dabirian
- Department of Materials and Textile Engineering, Faculty of EngineeringRazi University Kermanshah Iran
| |
Collapse
|
46
|
Weng X, Kang Y, Guo Q, Peng B, Jiang H. Recent advances in thread-based microfluidics for diagnostic applications. Biosens Bioelectron 2019; 132:171-185. [PMID: 30875629 PMCID: PMC7127036 DOI: 10.1016/j.bios.2019.03.009] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 03/02/2019] [Accepted: 03/07/2019] [Indexed: 02/06/2023]
Abstract
Over the past decades, researchers have been seeking attractive substrate materials to keep microfluidics improving to outbalance the drawbacks and issues. Cellulose substrates, including thread, paper and hydrogels are alternatives due to their distinct structural and mechanical properties for a number of applications. Thread have gained considerable attention and become promising powerful tool due to its advantages over paper-based systems thus finds numerous applications in the development of diagnostic systems, smart bandages and tissue engineering. To the best of our knowledge, no comprehensive review articles on the topic of thread-based microfluidics have been published and it is of significance for many scientific communities working on Microfluidics, Biosensors and Lab-on-Chip. This review gives an overview of the advances of thread-based microfluidic diagnostic devices in a variety of applications. It begins with an overall introduction of the fabrication followed by an in-depth review on the detection techniques in such devices and various applications with respect to effort and performance to date. A few perspective directions of thread-based microfluidics in its development are also discussed. Thread-based microfluidics are still at an early development stage and further improvements in terms of fabrication, analytical strategies, and function to become low-cost, low-volume and easy-to-use point-of-care (POC) diagnostic devices that can be adapted or commercialized for real world applications.
Collapse
Affiliation(s)
- Xuan Weng
- School of Mechanical and Electrical Engineering, University of Electronic Science and Technology of China, Chengdu, Sichuan, 611731, China
| | - Yuejun Kang
- Institute for Clean Energy and Advanced Materials, Faculty of Materials and Energy, Southwest University, Chongqing 400715, China
| | - Qian Guo
- School of Mechanical and Electrical Engineering, University of Electronic Science and Technology of China, Chengdu, Sichuan, 611731, China
| | - Bei Peng
- School of Mechanical and Electrical Engineering, University of Electronic Science and Technology of China, Chengdu, Sichuan, 611731, China
| | - Hai Jiang
- School of Mechanical and Electrical Engineering, University of Electronic Science and Technology of China, Chengdu, Sichuan, 611731, China.
| |
Collapse
|
47
|
Nonenzymatic sensor for determination of glucose in blood plasma based on nickel oxyhydroxide in a microfluidic system of cotton thread. J Electroanal Chem (Lausanne) 2019. [DOI: 10.1016/j.jelechem.2019.03.038] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
48
|
Farajikhah S, Cabot JM, Innis PC, Paull B, Wallace G. Life-Saving Threads: Advances in Textile-Based Analytical Devices. ACS COMBINATORIAL SCIENCE 2019; 21:229-240. [PMID: 30640423 DOI: 10.1021/acscombsci.8b00126] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Novel approaches that incorporate electrofluidic and microfluidic technologies are reviewed to illustrate the translation of traditional enclosed structures into open and accessible textile based platforms. Through the utilization of on-fiber and on-textile microfluidics, it is possible to invert the typical enclosed capillary column or microfluidic "chip" platform, to achieve surface accessible efficient separations and fluid handling, while maintaining a microfluidic environment. The open fiber/textile based fluidics approach immediately provides new possibilities to interrogate, manipulate, redirect, extract, characterize, and quantify solutes and target species at any point in time during such processes as on-fiber electrodriven separations. This approach is revolutionary in its simplicity and provides many potential advantages not otherwise afforded by the more traditional enclosed platforms.
Collapse
Affiliation(s)
- Syamak Farajikhah
- ARC Centre of Excellence in Electromaterials Science (ACES), AIIM Facility, Innovation Campus, University of Wollongong, New South Wales 2500, Australia
| | - Joan M. Cabot
- Australian Centre for Research on Separation Science (ACROSS) and ARC Centre of Excellence for Electromaterials Science (ACES), School of Natural Sciences, Faculty of Chemistry, University of Tasmania, Tasmania 7005, Australia
| | - Peter C. Innis
- ARC Centre of Excellence in Electromaterials Science (ACES), AIIM Facility, Innovation Campus, University of Wollongong, New South Wales 2500, Australia
- Australian National Fabrication Facility − Materials Node, Innovation Campus, University of Wollongong, New South Wales 2522, Australia
| | - Brett Paull
- Australian Centre for Research on Separation Science (ACROSS) and ARC Centre of Excellence for Electromaterials Science (ACES), School of Natural Sciences, Faculty of Chemistry, University of Tasmania, Tasmania 7005, Australia
| | - Gordon Wallace
- ARC Centre of Excellence in Electromaterials Science (ACES), AIIM Facility, Innovation Campus, University of Wollongong, New South Wales 2500, Australia
- Australian National Fabrication Facility − Materials Node, Innovation Campus, University of Wollongong, New South Wales 2522, Australia
| |
Collapse
|
49
|
Oliveira NM, Vilabril S, Oliveira MB, Reis RL, Mano JF. Recent advances on open fluidic systems for biomedical applications: A review. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 97:851-863. [DOI: 10.1016/j.msec.2018.12.040] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 10/26/2018] [Accepted: 12/11/2018] [Indexed: 01/04/2023]
|
50
|
Biswas GC, Rana MM, Kazuhiro T, Suzuki H. A simple micropump based on a freeze-dried superabsorbent polymer for multiplex solution processing in disposable devices. ROYAL SOCIETY OPEN SCIENCE 2019; 6:182213. [PMID: 31032056 PMCID: PMC6458371 DOI: 10.1098/rsos.182213] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 02/27/2019] [Indexed: 06/09/2023]
Abstract
We describe a simple micropump for disposable microfluidic devices. The pump is constructed using a freeze-dried disc of a superabsorbent polymer (SAP). The disc absorbs a solution in a flow channel and swells upward in a pumping chamber. Despite the simple structure of this device, the rate of absorption remains constant and can be adjusted by changing the composition of the SAP, its size, the dimensions of the flow channel and the medium to be absorbed. The pumping action can be initiated by applying an electrical signal using a switchable hydrophobic valve. The integrated approach of the SAP pump and switchable valve could facilitate the automatic processing of many solutions required for bioassay.
Collapse
Affiliation(s)
- Gokul Chandra Biswas
- Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573, Japan
| | - Md. Mohosin Rana
- Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573, Japan
| | - Takekoshi Kazuhiro
- Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8675, Japan
| | - Hiroaki Suzuki
- Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573, Japan
| |
Collapse
|