1
|
Afonin AV, Rusinska-Roszak D. Evidence for the O-H⋅⋅⋅O=C Resonance-Assisted Hydrogen Bond in Tropolones and Quantification of its σ- and π-Components Using Molecular Tailoring Approach. Chemphyschem 2024:e202400698. [PMID: 39147713 DOI: 10.1002/cphc.202400698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/14/2024] [Accepted: 08/15/2024] [Indexed: 08/17/2024]
Abstract
For a series of tropolones, the nature of the intramolecular O-H⋅⋅⋅O=C hydrogen bond closing the five-membered quasi-cycle was studied. Enhancement of conjugation in the hydrogen-bonded rotamer was revealed. Quantification of hydrogen bond energy in tropolones via the molecular tailoring approach yields values in the range from 15 to 20 kcal/mol suggesting that the intramolecular interaction in tropolones has nature of the resonance-assisted hydrogen bond. The total resonance-assisted hydrogen bond energy in the tropolones was divided into σ- and π-components. The magnitudes of total energy of resonance-assisted hydrogen bond in the substituted tropolones can be controlled by the electronic properties of the substituents at the tropone ring. In 3-, 4-, and 5-substituted tropolones, the resonance-assisted hydrogen bond energy is raised due to electron-donating substituents and lowered due to electron-withdrawing ones. The opposite trend is observed in 7-substituted tropolones. The size of the π-shares plays a crucial role in establishing the total energy of resonance-assisted hydrogen bond. The reason for the occurrence of a resonance-assisted hydrogen bond in the tropolones is the molecular backbone aromaticity, since, in accordance with the Hückel rule, 10 π-electrons are delocalized.
Collapse
Affiliation(s)
- Andrei V Afonin
- A. E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of Russian Academy of Sciences, 1 Favorsky St., Irkutsk, 664033, Russian Federation
| | - Danuta Rusinska-Roszak
- Institute of Chemical Technology and Engineering, Poznan University of Technology, ul. Berdychowo 4, Poznan, 60-965, Poland
| |
Collapse
|
2
|
Tanaka K, Harada K, Watanabe Y, Endo Y. Fourier transform microwave spectroscopy of the 13C- and 18O-substituted tropolone. Proton tunneling effect for the isotopic species with the asymmetric potential wells. J Chem Phys 2024; 160:214311. [PMID: 38836453 DOI: 10.1063/5.0204891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 05/17/2024] [Indexed: 06/06/2024] Open
Abstract
Fourier-transform microwave spectroscopy has been applied for the 13C/18O-substituted tropolone to observe tunneling-rotation transitions as well as pure rotational transitions. The tunneling-rotation transitions were observed between the 13C-4 and -6 forms as well as between 13C-3 and -7, between 13C-1 and -2, and between 18O-8 and -9 (we denote these tunneling pairs as 13C-46, etc., below) although they have an asymmetric tunneling potential due to the difference in the zero point energy (ZPE). From the observed tunneling splittings ΔEij (0.9800-1.6824 cm-1), the differences in ZPE Δij for the 13C-46, -37, -12, and 18O-89 species are derived to be -0.1104, 0.5652, -1.3682, and 1.3897 cm-1 to agree well with the DFT calculation. The state mixing ratio of the tunneling states decreases drastically from (44%:56%) to (8.7%:91.3%) for 13C-46 and 18O-89 with an increase in the asymmetry Δij of the tunneling potential function. The observed tunneling-rotation interaction constants Fij decrease from 16.001 to 9.224 cm-1 as the differences in ZPE Δij increase, while the diagonal tunneling-rotation interaction constants Fu increase from 1.767 to 13.70 cm-1, explained well by the mixing ratio of the tunneling states.
Collapse
Affiliation(s)
- Keiichi Tanaka
- Department of Chemistry, Faculty of Science, Kyushu University, Motooka, Nishiku, Fukuoka 819-0395, Japan
- International Research Center for Space and Planetary Environmental Science, Kyushu University, Motooka, Nishiku, Fukuoka 819-0395, Japan
| | - Kensuke Harada
- Department of Chemistry, Faculty of Science, Kyushu University, Motooka, Nishiku, Fukuoka 819-0395, Japan
- International Research Center for Space and Planetary Environmental Science, Kyushu University, Motooka, Nishiku, Fukuoka 819-0395, Japan
| | - Yoshihiro Watanabe
- Department of Chemistry, Faculty of Science, Kyushu University, Motooka, Nishiku, Fukuoka 819-0395, Japan
| | - Yasuki Endo
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, 1001 Ta-Hsueh Rd., Hsinchu 30093, Taiwan
| |
Collapse
|
3
|
Bowman JM, Qu C, Conte R, Nandi A, Houston PL, Yu Q. Δ-Machine Learned Potential Energy Surfaces and Force Fields. J Chem Theory Comput 2023; 19:1-17. [PMID: 36527383 DOI: 10.1021/acs.jctc.2c01034] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
There has been great progress in developing machine-learned potential energy surfaces (PESs) for molecules and clusters with more than 10 atoms. Unfortunately, this number of atoms generally limits the level of electronic structure theory to less than the "gold standard" CCSD(T) level. Indeed, for the well-known MD17 dataset for molecules with 9-20 atoms, all of the energies and forces were obtained with DFT calculations (PBE). This Perspective is focused on a Δ-machine learning method that we recently proposed and applied to bring DFT-based PESs to close to CCSD(T) accuracy. This is demonstrated for hydronium, N-methylacetamide, acetyl acetone, and ethanol. For 15-atom tropolone, it appears that special approaches (e.g., molecular tailoring, local CCSD(T)) are needed to obtain the CCSD(T) energies. A new aspect of this approach is the extension of Δ-machine learning to force fields. The approach is based on many-body corrections to polarizable force field potentials. This is examined in detail using the TTM2.1 water potential. The corrections make use of our recent CCSD(T) datasets for 2-b, 3-b, and 4-b interactions for water. These datasets were used to develop a new fully ab initio potential for water, termed q-AQUA.
Collapse
Affiliation(s)
- Joel M Bowman
- Department of Chemistry and Cherry L. Emerson Center for Scientific Computation, Emory University, Atlanta, Georgia 30322, United States
| | - Chen Qu
- Independent Researcher, Toronto, Canada 66777
| | - Riccardo Conte
- Dipartimento di Chimica, Università Degli Studi di Milano, via Golgi 19, 20133 Milano, Italy
| | - Apurba Nandi
- Department of Chemistry and Cherry L. Emerson Center for Scientific Computation, Emory University, Atlanta, Georgia 30322, United States
| | - Paul L Houston
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States.,Department of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Qi Yu
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| |
Collapse
|
4
|
Nunes CM, Pereira NAM, Reva I, Amado PSM, Cristiano MLS, Fausto R. Bond-Breaking/Bond-Forming Reactions by Vibrational Excitation: Infrared-Induced Bidirectional Tautomerization of Matrix-Isolated Thiotropolone. J Phys Chem Lett 2020; 11:8034-8039. [PMID: 32869645 DOI: 10.1021/acs.jpclett.0c02272] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Infrared vibrational excitation is a promising approach for gaining exceptional control of chemical reactions, in ways that cannot be attained via thermal or electronic excitation. Here, we report an unprecedented example of a bond-breaking/bond-forming reaction by vibrational excitation under matrix isolation conditions. Thiotropolone monomers were isolated in cryogenic argon matrices and characterized by infrared spectroscopy and vibrational computations (harmonic and anharmonic). Narrowband near-infrared irradiations tuned at frequencies of first CH stretching overtone (5940 cm-1) or combination modes (5980 cm-1) of the OH tautomer, the sole form of the compound that exists in the as-deposited matrices, led to its conversion into the SH tautomer. The tautomerization in the reverse direction was achieved by vibrational excitation of the SH tautomer with irradiation at 5947 or 5994 cm-1, corresponding to the frequencies of its CH stretching combination and overtone modes. This pioneer demonstration of bidirectional hydroxyl ↔ thiol tautomerization controlled by vibrational excitation creates prospects for new advances in vibrationally induced chemistry.
Collapse
Affiliation(s)
- Cláudio M Nunes
- University of Coimbra, CQC, Department of Chemistry, 3004-535 Coimbra, Portugal
| | - Nelson A M Pereira
- University of Coimbra, CQC, Department of Chemistry, 3004-535 Coimbra, Portugal
| | - Igor Reva
- University of Coimbra, CQC, Department of Chemistry, 3004-535 Coimbra, Portugal
| | - Patrícia S M Amado
- Centre of Marine Sciences, CCMAR, and Department of Chemistry and Pharmacy, University of Algarve, 8005-139 Faro, Portugal
| | - Maria L S Cristiano
- Centre of Marine Sciences, CCMAR, and Department of Chemistry and Pharmacy, University of Algarve, 8005-139 Faro, Portugal
| | - Rui Fausto
- University of Coimbra, CQC, Department of Chemistry, 3004-535 Coimbra, Portugal
| |
Collapse
|
5
|
Nag P, Vennapusa SR. Multiple ESIPT pathways originating from three-state conical intersections in tropolone. J Chem Phys 2020; 153:084306. [PMID: 32872848 DOI: 10.1063/5.0020132] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Internal conversion decay dynamics associated with the potential energy surfaces of three low-lying singlet excited electronic states, S1 (ππ*, A'), S2 (ππ*, A'), and S3 (nπ*, A″), of tropolone are investigated theoretically. Energetic and spatial aspects of conical intersections of these electronic states are explored with the aid of the linear vibronic coupling approach. Symmetry selection rules suggest that non-totally symmetric modes would act as coupling modes between S1 and S3 as well as between S2 and S3. We found that the S1-S2 interstate coupling via totally symmetric modes is very weak. A diabatic vibronic Hamiltonian consisting of 32 vibrational degrees of freedom is constructed to simulate the photoinduced dynamics of S0 → S1 and S0 → S2 transitions. We observe a direct nonadiabatic population transfer from S1 to S3, bypassing S2, during the initial wavepacket propagation on S1. On the other hand, the initial wavepacket evolving on S2 would pass through the S2-S3 and S1-S3 conical intersections before reaching S1. The presence of multiple proton transfer channels on the S1-S2-S3 coupled potential energy surfaces of tropolone is analyzed. Our findings necessitate the treatment of proton tunneling dynamics of tropolone beyond the adiabatic symmetric double well potentials.
Collapse
Affiliation(s)
- Probal Nag
- Indian Institute of Science Education and Research Thiruvananthapuram, Maruthamala PO, Vithura, Thiruvananthapuram 695551, Kerala, India
| | - Sivaranjana Reddy Vennapusa
- Indian Institute of Science Education and Research Thiruvananthapuram, Maruthamala PO, Vithura, Thiruvananthapuram 695551, Kerala, India
| |
Collapse
|
6
|
Houston P, Conte R, Qu C, Bowman JM. Permutationally invariant polynomial potential energy surfaces for tropolone and H and D atom tunneling dynamics. J Chem Phys 2020; 153:024107. [DOI: 10.1063/5.0011973] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Affiliation(s)
- Paul Houston
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, USA and Department of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | - Riccardo Conte
- Dipartimento di Chimica, Università Degli Studi di Milano, via Golgi 19, 20133 Milano, Italy
| | - Chen Qu
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, USA
| | - Joel M. Bowman
- Department of Chemistry and Cherry L. Emerson Center for Scientific Computation, Emory University, Atlanta, Georgia 30322, USA
| |
Collapse
|
7
|
Góbi S, Nunes CM, Reva I, Tarczay G, Fausto R. S–H rotamerizationviatunneling in a thiol form of thioacetamide. Phys Chem Chem Phys 2019; 21:17063-17071. [DOI: 10.1039/c9cp03417j] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Rotamerization of the S–H groupviahydrogen tunneling is reported for the first time.
Collapse
Affiliation(s)
- Sándor Góbi
- CQC
- Department of Chemistry
- University of Coimbra
- Coimbra
- Portugal
| | | | - Igor Reva
- CQC
- Department of Chemistry
- University of Coimbra
- Coimbra
- Portugal
| | - György Tarczay
- Laboratory of Molecular Spectroscopy
- Institute of Chemistry
- ELTE Eötvös Loránd University
- H-1518 Budapest
- Hungary
| | - Rui Fausto
- CQC
- Department of Chemistry
- University of Coimbra
- Coimbra
- Portugal
| |
Collapse
|
8
|
Brela MZ, Wójcik MJ, Boczar M, Witek ŁJ, Yonehara T, Nakajima T, Ozaki Y. Proton dynamics in crystalline tropolone studied by Born-Oppenheimer molecular simulations. Chem Phys Lett 2018. [DOI: 10.1016/j.cplett.2018.07.026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
9
|
Theoretical Modeling of Vibrational Spectra and Proton Tunneling in Hydrogen-Bonded Systems. ADVANCES IN CHEMICAL PHYSICS 2016. [DOI: 10.1002/9781119165156.ch6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register]
|
10
|
Matsui H, Iwamoto K, Mochizuki D, Osada S, Asakura Y, Kuroda K. Proton tunneling in low dimensional cesium silicate LDS-1. J Chem Phys 2015; 143:024503. [DOI: 10.1063/1.4926445] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Affiliation(s)
- Hiroshi Matsui
- Department of Physics, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan
| | - Kei Iwamoto
- Department of Physics, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan
| | - Dai Mochizuki
- Interdisciplinary Cluster for Cutting Edge Research, Center for Energy and Environmental Science, Shinshu University, 3-15-1 Tokida, Ueda, Nagano 386-8567, Japan
| | - Shimon Osada
- Department of Applied Chemistry, Faculty of Science and Engineering, Waseda University, Tokyo 169-8555, Japan
| | - Yusuke Asakura
- Department of Applied Chemistry, Faculty of Science and Engineering, Waseda University, Tokyo 169-8555, Japan
| | - Kazuyuki Kuroda
- Department of Applied Chemistry, Faculty of Science and Engineering, Waseda University, Tokyo 169-8555, Japan
- Kagami Memorial Research Institute for Material Science and Technology, Waseda University, Tokyo 169-0051, Japan
| |
Collapse
|
11
|
Mengesha ET, Sepioł J, Borowicz P, Waluk J. Vibrations of porphycene in the S0 and S1 electronic states: Single vibronic level dispersed fluorescence study in a supersonic jet. J Chem Phys 2013; 138:174201. [DOI: 10.1063/1.4802769] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
|
12
|
Chew K, Nemchick DJ, Vaccaro PH. Isotopic Dependence of Excited-State Proton-Tunneling Dynamics in Tropolone Probed by Polarization-Resolved Degenerate Four-Wave Mixing Spectroscopy. J Phys Chem A 2013; 117:6126-42. [DOI: 10.1021/jp400160z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Kathryn Chew
- Department of Chemistry, Yale University, P.O. Box 208107, New Haven, Connecticut 06520-8107, United States
| | - Deacon J. Nemchick
- Department of Chemistry, Yale University, P.O. Box 208107, New Haven, Connecticut 06520-8107, United States
| | - Patrick H. Vaccaro
- Department of Chemistry, Yale University, P.O. Box 208107, New Haven, Connecticut 06520-8107, United States
| |
Collapse
|
13
|
Tadić JM, Xu L. Ab initio and density functional theory study of keto-enol equilibria of deltic acid in gas and aqueous solution phase: a bimolecular proton transfer mechanism. J Org Chem 2012; 77:8621-6. [PMID: 22954314 DOI: 10.1021/jo301575c] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Keto-enol tautomerism in deltic acid (2,3-dihydroxycycloprop-2-en-1-one) has been studied using ab initio methods and the B3LYP functional of density functional theory, as well as complete basis set (CBS-QB3 and CBS-APNO) and G4 methods. Relative and absolute energies were calculated with each of the methods, whereas computations of geometries and harmonic frequencies for dihydroxycyclopropenone and hydroxycyclopropanedione were computed in the gas phase but were limited to HF, MP2, and the B3LYP functional, in combination with the 6-31++G(3df,3pd) basis set. Using the MP2/6-31++G(3df,3pd) gas phase optimized structure, each species was then optimized fully in aqueous solution by using the polarizable continuum model (PCM) self-consistent reaction field approach, in which HF, MP2, and B3LYP levels of theory were utilized, with the same 6-31++G(3df,3pd) basis set. In both gas and aqueous solution phases, the keto form is higher in energy for all of the model chemistries considered. From the B3LYP/6-31++G(3df,3pd) Gibbs free energy, the keto-enol tautomeric equilibrium constant for 2,3-dihydroxycycloprop-2-en-1-one/3-hydroxy-1,2-cyclopropanedione is computed to be K(T)(gas) = 2.768 × 10(-12) and K(T)(aq) = 5.469 × 10(-14). It is concluded that the enol form is overwhelmingly predominant in both environments.
Collapse
Affiliation(s)
- Jovan M Tadić
- NASA Ames Research Center, Moffett Field, California 94035, United States.
| | | |
Collapse
|
14
|
GIESE KAI, LAHAV DORON, KÜHN OLIVER. ON THE MULTIDIMENSIONALITY OF INTRAMOLECULAR HYDROGEN BOND DYNAMICS: HYDROGEN TRANSFER AND IVR IN 3,7-DICHLOROTROPOLONE. JOURNAL OF THEORETICAL & COMPUTATIONAL CHEMISTRY 2011. [DOI: 10.1142/s0219633604001264] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In this work, we investigate the intramolecular vibrational energy redistribution associated with the hydrogen transfer in a derivative of tropolone, namely 3,7-dichlorotropolone. Our quantum simulation is based on the Cartesian reaction surface Hamiltonian together with the multi-configurational time-dependent Hartree approach for the wave-packet propagation. We compare results for two model systems with 6 and 14 dimensions, respectively. The 6D model accounts for the most strongly coupled modes, whereas the 14D model includes further modes with significantly weaker couplings. The linear absorption spectrum of both models shows the development of an OH-stretching band. Furthermore the results show that despite the fact, that the additional modes in the 14D system couple significantly weaker, there are qualitative differences in the decay behavior of an OH-stretching excitation. Limitations of the present reaction surface approach are also discussed.
Collapse
Affiliation(s)
- KAI GIESE
- Institut für Chemie, Physikalische und Theoretische Chemie, Freie Universität Berlin, Takustr. 3, D-14195 Berlin, Germany
| | - DORON LAHAV
- Institut für Chemie, Physikalische und Theoretische Chemie, Freie Universität Berlin, Takustr. 3, D-14195 Berlin, Germany
| | - OLIVER KÜHN
- Institut für Chemie, Physikalische und Theoretische Chemie, Freie Universität Berlin, Takustr. 3, D-14195 Berlin, Germany
| |
Collapse
|
15
|
Murdock D, Burns LA, Vaccaro PH. Vibrational specificity of proton-transfer dynamics in ground-state tropolone. Phys Chem Chem Phys 2010; 12:8285-99. [DOI: 10.1039/c003140b] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
16
|
Redington RL, Redington TE, Sams RL. Infrared Absorption Spectra in the Hydroxyl Stretching Regions of Gaseous Tropolone OHO Isotopomers. ACTA ACUST UNITED AC 2009. [DOI: 10.1524/zpch.2008.5383] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Abstract
Fourier transform infrared (FTIR) absorption spectra in the 2000 to 3500 cm–1 range are reported for the gaseous 16
O,
16
O- and 18
O,
18
O-isotopomers of tropolone[OH(OD)] at 25 oC. The spectral doublet component separations are near 20 and 19 cm–1 for 16
O,
16
O- and 18
O,
18
O-Tp(OH), respectively, and near 7 and 6.5 cm–1 for 16
O,
16
O- and 18
O,
18
O-Tp(OD). The spectra suggest the tautomerization tunneling mechanisms in these states are complex multidimensional processes including the participation of IVR. In general, the OHO isotope effects demonstrate a mixing of O atom displacement coordinates into the intramolecular dynamics for most of the vibrational states observed in the fundamental CH/OH(OD) stretching regions.
Collapse
|
17
|
Burns LA, Murdock D, Vaccaro PH. An exploration of electronic structure and nuclear dynamics in tropolone: II. The à B12 (π∗π) excited state. J Chem Phys 2009; 130:144304. [DOI: 10.1063/1.3089722] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
18
|
Redington RL, Redington TE, Sams RL. Tunneling Splittings for “O···O Stretching” and Other Vibrations of Tropolone Isotopomers Observed in the Infrared Spectrum Below 800 cm-1. J Phys Chem A 2008; 112:1480-92. [DOI: 10.1021/jp0757255] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Richard L. Redington
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409
| | - Theresa E. Redington
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409
| | - Robert L. Sams
- Wiley Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99352
| |
Collapse
|
19
|
Murdock D, Burns LA, Vaccaro PH. Mode-specific tunneling dynamics in the ground electronic state of tropolone. J Chem Phys 2007; 127:081101. [PMID: 17764221 DOI: 10.1063/1.2771142] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The mode specificity of proton-transfer dynamics in the ground electronic state (X (1)A(1)) of tropolone has been explored at near-rotational resolution by implementing a fully coherent variant of stimulated emission pumping within the framework of two-color resonant four-wave mixing spectroscopy. Three low-lying (E(vib) approximately 550-750 cm(-1)) vibrational features, assigned to nu(30)(a(1)), nu(32)(b(2)), and nu(31)nu(38)(a(1)), have been interrogated under ambient, bulk-gas conditions, with term energies determined for the symmetric and antisymmetric (tunneling) components of each enabling the attendant tunneling-induced bifurcations of 1.070(9), 0.61(3), and 0.07(2) cm(-1) to be extracted. The dependence of tunneling rate (or hydron migration efficiency) on vibrational motion is discussed in terms of corresponding atomic displacements and permutation-inversion symmetries for the tropolone skeleton.
Collapse
Affiliation(s)
- Daniel Murdock
- Department of Chemistry, Yale University, P.O. Box 208107, New Haven, Connecticut 06520-8107, USA
| | | | | |
Collapse
|
20
|
|
21
|
Redington RL, Redington TE, Sams RL. Quantum Tunneling in the Midrange Vibrational Fundamentals of Tropolone. J Phys Chem A 2006; 110:9633-42. [PMID: 16884197 DOI: 10.1021/jp062068s] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The Fourier transform infrared spectrum of tropolone(OH) vapor in the 1175-1700 cm(-1) region is reported at 0.0025 and 0.10 cm(-1) spectral resolutions. The 12 vibrational fundamentals in this region of rapidly rising vibrational state density are dominated by mixtures of the CC, CO, CCH, and COH internal coordinates. Estimates based on the measurement of sharp Q branch peaks are reported for 11 of the spectral doublet component separations DS(v) = |Delta(v) +/- Delta(0)|. Delta(0) = 0.974 cm(-1) is the known zero-point splitting, and three a(1) modes show tunneling splittings Delta(v) approximately Delta(0), four b(2) modes show splittings Delta(v) approximately 0.90Delta(0), and the remaining four modes show splittings Delta(v) falling 5-14% from Delta(0.) Significantly, the splitting for the nominal COH bending mode nu(8) (a(1)) is small, that is, 10% from Delta(0). Many of the vibrational excited states demonstrate strong anharmonic behavior, but there are only mild perturbations on the tautomerization mechanism driving Delta(0). The data suggest, especially for the higher frequency a(1) fundamentals, the onset of selective intramolecular vibrational energy redistribution processes that are fast on the time scale of the tautomerization process. These appear to delocalize and smooth out the topographical modifications of the zero-point potential energy surface that are anticipated to follow absorption of the nu(v) photon. Further, the spectra show the propensity for the Delta(v) splittings of b(2) and other complex vibrations to be damped relative to Delta(0).
Collapse
Affiliation(s)
- Richard L Redington
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409, USA
| | | | | |
Collapse
|
22
|
Jianlin Y, Yaxian Y, Renao G. Raman spectroscopic studies on tropolone complexes with La, Nd, Sm, Yb. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2006; 64:1072-6. [PMID: 16458049 DOI: 10.1016/j.saa.2005.09.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2005] [Accepted: 09/16/2005] [Indexed: 05/06/2023]
Abstract
The complexes of tropolone (HL) with different lanthanide metals of lanthanum (La), neodymium (Nd), samarium (Sm), ytterbium (Yb) have been prepared respectively in the non-aqueous solution by the direct electrochemical oxidation of sacrificial metal anodes, and characterized by normal Raman spectroscopy. By comparing the spectra of the ligands and their complexes, the stretching vibrational band of OH disappeared in complexes, and the frequencies shifts of some relevant bands were observed, particularly for the stretching vibration of CO. In the low frequency region, new metal ion sensitive bands at 400-700 cm(-1) were observed, which could be assigned to the stretching vibrational mode of the bonding of lanthanide with oxygen. The stretching vibration of lanthanide-oxygen of tropolonate complexes showed a metal ion sensitivity. All the obvious change in spectral feature of Raman spectra revealed that CO and OH were coordinated with the center metal ions through oxygen atoms. Based on Raman results, the structures of the above complexes were proposed.
Collapse
Affiliation(s)
- Yao Jianlin
- Department of Chemistry, Suzhou University, 1 Shizi Street, Suzhou 215006, China.
| | | | | |
Collapse
|
23
|
Burns LA, Murdock D, Vaccaro PH. An exploration of electronic structure and nuclear dynamics in tropolone. I. The X̃A11 ground state. J Chem Phys 2006; 124:204307. [PMID: 16774332 DOI: 10.1063/1.2200343] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The ground electronic state (X 1A1) of tropolone has been examined theoretically by exploiting extensive sets of basis functions [e.g., 6-311++G(d,p) and aug-cc-pVDZ] in conjunction with the high levels of electron correlation made possible by density functional (DFT/B3LYP), Moller-Plesset perturbation (MP2), and coupled-cluster [CCSD and CCSD(T)] methods. Unconstrained MP2 and CCSD optimization procedures performed with the reference 6-311++G(d,p) basis predict a slightly nonplanar equilibrium structure characterized by a small barrier to skeletal inversion (< or =10 cm(-1) magnitude). Complementary harmonic frequency analyses have shown this nonplanarity to be a computational artifact arising from adversely tuned carbon d-orbital exponents embodied in the standard definitions of several Pople-type basis sets. Correlation-consistent bases such as Dunning's aug-cc-pVDZ are less susceptible to these effects and were employed to confirm that the X 1A1 hypersurface supports a rigorously planar global minimum. The fully optimized geometries and vibrational force fields obtained by applying potent coupled-cluster schemes to the relaxed-equilibrium (Cs) and transition-state (C2v) conformers of tropolone afford a trenchant glimpse of the key features that mediate intramolecular hydron exchange in this model system. By incorporating perturbative triples corrections at the substantial CCSD(T) level of theory, an interoxygen distance of r(O...O)=2.528 A was determined for the minimum-energy configuration, with the accompanying proton-transfer reaction being hindered by a barrier of 2557.0 cm(-1) height. The potential energy landscape in tropolone, as well as the nature of the attendant hydron migration process, is discussed within the framework of the encompassing G4 molecular symmetry group.
Collapse
Affiliation(s)
- Lori A Burns
- Department of Chemistry, Yale University, New Haven, Connecticut 06520-8107, USA
| | | | | |
Collapse
|
24
|
Keske JC, Lin W, Pringle WC, Novick SE, Blake TA, Plusquellic DF. High-resolution studies of tropolone in the S0 and S1 electronic states: Isotope driven dynamics in the zero-point energy levels. J Chem Phys 2006; 124:74309. [PMID: 16497038 DOI: 10.1063/1.2165652] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Rotationally resolved microwave (MW) and ultraviolet (UV) spectra of jet-cooled tropolone have been obtained in S(0) and S(1) electronic states using Fourier-transform microwave and UV-laser/molecular-beam spectrometers. In the ground electronic state, the MW spectra of all heavy-atom isotopomers including one (18)O and four (13)C isotopomers were observed in natural abundance. The OD isotopomer was obtained from isotopically enriched samples. The two lowest tunneling states of each isotopomer except (18)O have been assigned. The observed inversion splitting for the OD isotopomer is 1523.227(5) MHz. For the asymmetric (13)C structures, the magnitudes of tunneling-rotation interactions are found to diminish with decreasing distance between the heavy atom and the tunneling proton. In the limit of closest approach, the 0(+) state of (18)O was well fitted to an asymmetric rotor Hamiltonian, reflecting significant changes in the tautomerization dynamics. Comparisons of the substituted atom coordinates with theoretical predictions at the MP2/aug-cc-pVTZ level of theory suggest the localized 0(+) and 0(-) wave functions of the heavier isotopes favor the C-OH and C=O forms of tropolone, respectively. The only exception occurs for the (13)C-OH and (13)C[Double Bond]O structures which correlate to the 0(-) and 0(+) states, respectively. These preferences reflect kinetic isotope effects as quantitatively verified by the calculated zero-point energy differences between members of the asymmetric atom pairs. From rotationally resolved data of the 0(+) <--0(+) and 0(-) <--0(-) bands in S(1), line-shape fits have yielded Lorentzian linewidths that differ by 12.2(16) MHz over the 19.88(4) cm(-1) interval in S(1). The fluorescence decay rates together with previously reported quantum yield data give nonradiative decay rates of 7.7(5) x 10(8) and 8.5(5) x 10(8) s(-1) for the 0(+) and 0(-) levels of the S(1) state of tropolone.
Collapse
Affiliation(s)
- John C Keske
- Optical Technology Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899-8441, USA
| | | | | | | | | | | |
Collapse
|
25
|
Redington RL. Isoelectronic Homologues and Isomers: Tropolone, 5-Azatropolone, 1-H-Azepine-4,5-dione, Saddle Points, and Ions. J Phys Chem A 2005; 110:1600-7. [PMID: 16435822 DOI: 10.1021/jp053928s] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Computational studies of 12 64-electron homologues and isomers of tropolone in the S(0) electronic ground state are reported. Three minimum-energy structures, tropolone (Tp), 5-azatropolone (5Azt), and 5-H-5-azatropolonium (5AztH(+)), have an internal H-bond and planar C(s)) geometry, and three, tropolonate (TpO(-)), 5-azatropolonate (5AzO(-)), and 1-H-azepine-4,5-dione (45Di), lack the H-bond and have twisted C(2) geometry. All 6 substances have an equal double-minimum potential energy surface and a saddle point with planar C(2)(v) geometry. The energy for the gas-phase isomerization reaction 45Di --> 5Azt is near +4 kJ mol(-1) at the MP4(SDQ)/6-311++G(df,pd)//MP2/6-311++G(df,pd) (energy//geometry) theoretical level and around -20 kJ mol(-1) at lower theoretical levels. The dipole moments computed for 45Di and 5Azt are 9.6 and 2.1 D, respectively, and this large difference contributes to MO-computed free energies of solvation that strongly favor--as experimentally observed--45Di over 5Azt in chloroform solvent. The MO-computed energy for the gas-phase protonation reaction 45Di + H(+) --> 5AztH(+) is -956.4 kJ mol(-1), leading to 926.8 kJ mol(-1) as the estimated proton affinity for 45Di at 298 K and 1 atm. The intramolecular dynamical properties predicted for 5Azt and 5AztH(+) parallel those observed for tropolone. They are therefore expected to exhibit spectral tunneling doublets. Once they are synthesized, they should contribute importantly to the understanding of multidimensional intramolecular H transfer and dynamical coupling processes.
Collapse
Affiliation(s)
- Richard L Redington
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409, USA
| |
Collapse
|
26
|
Giese K, Kühn O. The all-Cartesian reaction plane Hamiltonian: Formulation and application to the H-atom transfer in tropolone. J Chem Phys 2005; 123:054315. [PMID: 16108647 DOI: 10.1063/1.1978869] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In this work we present an all-Cartesian reaction surface approach, where the large amplitude coordinates span the so-called reaction plane, that is, the unique plane defined by the two minima and the saddle-point structure of an isomerization reaction. Orthogonal modes are treated within harmonic approximation which gives the total Hamiltonian an almost separable form that is suitable for multidimensional quantum dynamics calculations. The reaction plane Hamiltonian is constructed for the H-atom transfer in tropolone as an example for a system with an intramolecular O...H-O hydrogen bond. We find ground-state tunneling splittings of 3.5 and 0.16 cm(-1) for the normal and deuterated species, respectively. We calculated infrared-absorption spectra for a four-dimensional model focusing on the low-frequency region. Here, we identify a reaction mode which is closely connected to the tautomerization that is reflected in the increase of tunneling splitting to 18 cm(-1) upon excitation.
Collapse
Affiliation(s)
- Kai Giese
- Institut für Chemie, Physikalische und Theoretische Chemie, Freie Universität Berlin, Takustrasse 3, D-14195 Berlin, Germany
| | | |
Collapse
|
27
|
Ishizaki A, Tanimura Y. Multidimensional vibrational spectroscopy for tunneling processes in a dissipative environment. J Chem Phys 2005; 123:014503. [PMID: 16035851 DOI: 10.1063/1.1906215] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Simulating tunneling processes as well as their observation are challenging problems for many areas. In this study, we consider a double-well potential system coupled to a heat bath with a linear-linear (LL) and square-linear (SL) system-bath interactions. The LL interaction leads to longitudinal (T1) and transversal (T2) homogeneous relaxations, whereas the SL interaction leads to the inhomogeneous dephasing (T2*) relaxation in the white noise limit with a rotating wave approximation. We discuss the dynamics of the double-well system under infrared (IR) laser excitations from a Gaussian-Markovian quantum Fokker-Planck equation approach, which was developed by generalizing Kubo's stochastic Liouville equation. Analytical expression of the Green function is obtained for a case of two-state-jump modulation by performing the Fourier-Laplace transformation. We then calculate a two-dimensional infrared signal, which is defined by the four-body correlation function of optical dipole, for various noise correlation time, system-bath coupling parameters, and temperatures. It is shown that the bath-induced vibrational excitation and relaxation dynamics between the tunneling splitting levels can be detected as the isolated off-diagonal peaks in the third-order two-dimensional infrared (2D-IR) spectroscopy for a specific phase matching condition. Furthermore, this spectroscopy also allows us to directly evaluate the rate constants for tunneling reactions, which relates to the coherence between the splitting levels; it can be regarded as a novel technique for measuring chemical reaction rates. We depict the change of reaction rates as a function of system-bath coupling strength and a temperature through the 2D-IR signal.
Collapse
Affiliation(s)
- Akihito Ishizaki
- Department of Physics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan.
| | | |
Collapse
|
28
|
Ishimoto T, Tachikawa M, Tokiwa H, Nagashima U. Kinetic and geometrical isotope effects in hydrogen-atom transfer reaction, as calculated by the multi-component molecular orbital method. Chem Phys 2005. [DOI: 10.1016/j.chemphys.2005.03.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
29
|
Redington RL, Redington TE, Blake TA, Sams RL, Johnson TJ. O18 effects on the infrared spectrum and skeletal tunneling of tropolone. J Chem Phys 2005; 122:224311. [PMID: 15974672 DOI: 10.1063/1.1897367] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Infrared-absorption profiles observed for vibrational transitions of gaseous tropolone often show sharp Q branch peaks, some of them ultranarrow spikes, indicative of the band origins for vibrational state-specific spectral tunneling doublets. In this work oxygen isotope effects for two CH wagging fundamentals, the COH torsion fundamental, and the skeletal contortion fundamental are reported. They allow considerations to be given: (1) oxygen isotope effects on the vibrational frequencies and state-specific tunneling splittings; (2) the asymmetry offset of the potential-energy minima for 16O and 18O tropolone; and (3) additional details concerning previously proposed high J rotation-contortion resonances in the contortional fundamental. The new results help to characterize the skeletal contortion fundamental and support the joint participation of skeletal tunneling with H tunneling in the vibrational state-specific tautomerization processes of tropolone in its ground electronic state.
Collapse
Affiliation(s)
- Richard L Redington
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409, USA.
| | | | | | | | | |
Collapse
|
30
|
Paine SW, Kresge AJ, Salam A. An Ab Initio and Density Functional Theory Study of Keto−Enol Equilibria of Hydroxycyclopropenone in Gas and Aqueous Solution Phase. J Phys Chem A 2005; 109:4149-53. [PMID: 16833739 DOI: 10.1021/jp040513i] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Keto-enol tautomerism in hydroxycyclopropenone (2-hydroxy-2-cyclopropen-1-one) has been studied using ab initio methods, the B3LYP functional of density functional theory, as well as complete basis set (CBS-QB3 and CBS-APNO) and G3 methods. Absolute and relative energies were calculated with each of the methods, whereas computations of geometries and harmonic frequencies for hydroxycyclopropenone and 1,2-cyclopropanedione were computed in the gas phase but were limited to HF, MP2 and CCSD levels of theory, and the B3LYP functional, in combination with the 6-31++G** basis set. Using the MP2/6-31++G** gas phase optimized structure, each species was then optimized fully in aqueous solution by employing the polarizable continuum model (PCM) self-consistent reaction field approach, in which HF, MP2 and B3LYP levels of theory were utilized, with the same 6-31++G** basis set. In both gas and aqueous solution phases, the keto form is higher in energy for all of the model chemistries considered. The presence of the solvent, however, is found to have very little effect on the bond lengths, angles and harmonic frequencies. From the B3LYP/6-31++G** Gibbs free energy, the keto-enol tautomeric equilibrium constant for 2-hydroxy-2-cyclopropen-1-one <==> 1,2-cyclopropanedione is computed to be K(T)(gas) = 2.35 x 10(-6), K(T)(aq) = 5.61 x 10(-14). It is concluded that the enol form is overwhelmingly predominant in both environments, with the effect of the solvent shifting the direction of equilibrium even more strongly in the favor of hydroxycyclopropenone. The almost exclusive nature of this species is attributed to stabilization resulting from aromaticity. Confirmation is provided by comparison of the simulated vibrational spectra of hydroxycyclopropenone with the measured infrared spectrum in an argon matrix.
Collapse
Affiliation(s)
- S W Paine
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | | | | |
Collapse
|
31
|
Redington RL, Redington TE. Implications of comparative spectral doublets observed for neon-isolated and gaseous tropolone(OH) and tropolone(OD). J Chem Phys 2005; 122:124304. [PMID: 15836375 DOI: 10.1063/1.1860561] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Spectral doublet separations reported for gas phase and neon matrix-isolated samples of tropolone(OH) and tropolone(OD) are found to support recent work suggesting the possibility that tropolone has a slightly nonplanar geometry in the S1 (A 1B2) (pi*-pi) electronic state. Tautomerizations of gaseous tropolones in the S0 and S1 states are governed by equal double-minimum potential energy functions (PEFs), but interactions in the neon matrix environment transform the tautomerization PEFs of the slightly nonplanar S1 tropolones into unequal double-minimum PEFs. The spectral doublets reported for the zero-point S1-S0 transitions imply energy minima for the nonplanar S1 state in a neon matrix are offset by about 7 cm-1, and tunneling splittings in the symmetric double minimum PEFs of the gaseous molecules are damped about 2 cm-1 by the matrix environment. This means gas phase tunneling splittings smaller than 2 cm-1 are fully quenched in the neon matrix, and gas phase tunneling splittings near 20 cm-1 are damped by only 10%.
Collapse
Affiliation(s)
- Richard L Redington
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409, USA
| | | |
Collapse
|
32
|
Giese K, Ushiyama H, Takatsuka K, Kühn O. Dynamical hydrogen atom tunneling in dichlorotropolone: A combined quantum, semiclassical, and classical study. J Chem Phys 2005; 122:124307. [PMID: 15836378 DOI: 10.1063/1.1861888] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Based on the Cartesian Reaction Surface framework we construct a four-dimensional potential for the tropolone derivative 3,7-dichlorotropolone, a molecule with an intramolecular O-H...O hydrogen bond. The reduced configuration space involves the in-plane hydrogen atom coordinates, a symmetric O-O vibrational mode, and an antisymmetric mode related to deformations of the seven-membered ring. The system is characterized in terms of quantum mechanical computations of the low-lying eigenstates as well as a classical and semiclassical analysis of spectra obtained via Fourier transforming autocorrelation functions. For the semiclassical analysis we utilize the amplitude-free correlation function method [K. Hotta and K. Takatsuka, J. Phys. A 36, 4785 (2003)]. Our results demonstrate substantial anharmonic couplings leading to highly correlated wave functions even at moderate energies. Furthermore, the importance of dynamical tunneling in tropolone is suggested since many low-lying states--including the ground state--lie above the classical saddle point but nevertheless appear as split pairs.
Collapse
Affiliation(s)
- K Giese
- Institut für Chemie, Physikalische und Theoretische Chemie, Freie Universität Berlin, Takustrasse 3, D-14195 Berlin, Germany
| | | | | | | |
Collapse
|
33
|
Casadesús R, Vendrell O, Moreno M, Lluch JM. On the planarity of the tropolone molecule in the A˜1B2 excited state: A time dependent DFT geometry optimisation. Chem Phys Lett 2005. [DOI: 10.1016/j.cplett.2005.02.025] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
34
|
Ultrafast wave packet dynamics of an intramolecular hydrogen transfer system: from vibrational motion to reaction control. Chem Phys 2004. [DOI: 10.1016/j.chemphys.2004.06.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
35
|
Bracamonte AE, Vaccaro PH. Rotation–tunneling analysis of the origin band in the tropolone π*←π absorption system. J Chem Phys 2004; 120:4638-57. [PMID: 15267323 DOI: 10.1063/1.1645774] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The tunneling-split origin band of the tropolone A (1)B(2)-X (1)A(1) (pi(*)<--pi) absorption system was interrogated under ambient, bulk-gas conditions by exploiting high-resolution degenerate four-wave mixing techniques. The inherent complexity of this spectral region was alleviated by performing polarization-resolved measurements, with judicious selection of transverse characteristics for the incident and detected electromagnetic fields enabling rovibronic transitions to be discriminated according to their attendant changes in rotational angular momentum, DeltaJ. Quantitative simulation of recorded data sets showed the vibrationless level of the electronically excited state to be bifurcated by Delta(0) (A)=19.846(25) cm(-1), representing a factor of 20 increase in proton-transfer efficiency over the corresponding level of the ground electronic state. Spectroscopic parameters extracted for the 0(+) and 0(-) manifolds of A (1)B(2) tropolone yield unexpectedly large values of the inertial defect, DeltaI(0(+) ) (A)=-0.802(86) amu A(2) and DeltaI(0(-) ) (A)=-0.882(89) amu A(2), strongly suggesting that a loss of molecular planarity accompanies the pi(*)<--pi electron promotion. These results, as well as complementary information deduced for interloping hot-band resonances, are discussed in terms of the unique structural and dynamical properties exhibited by tropolone and related proton-transfer species.
Collapse
Affiliation(s)
- Alfredo E Bracamonte
- Department of Chemistry, Yale University, New Haven, Connecticut 06520-8107, USA
| | | |
Collapse
|
36
|
Rostkowska H, Lapinski L, Khvorostov A, Nowak MJ. Proton transfer processes in selenourea: UV-induced selenone→selenol photoreaction and ground state selenol→selenone proton tunneling. Chem Phys 2004. [DOI: 10.1016/j.chemphys.2003.11.024] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
37
|
Kühn O, Tanimura Y. Two-dimensional vibrational spectroscopy of a double minimum system in a dissipative environment. J Chem Phys 2003. [DOI: 10.1063/1.1582841] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|
38
|
Bracamonte AE, Vaccaro PH. Dissection of rovibronic band structure by polarization-resolved degenerate four-wave mixing spectroscopy. J Chem Phys 2003. [DOI: 10.1063/1.1579472] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
39
|
Akai N, Kudoh S, Nakata M. Methyl-Group Move in Low-Temperature Rare-Gas Matrixes and Conformational Analysis of 1,4-Dimethoxybenzene. J Phys Chem A 2003. [DOI: 10.1021/jp0215318] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Nobuyuki Akai
- Graduate School of BASE (Bio-Applications and Systems Engineering), Tokyo University of Agriculture and Technology, Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Satoshi Kudoh
- Graduate School of BASE (Bio-Applications and Systems Engineering), Tokyo University of Agriculture and Technology, Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Munetaka Nakata
- Graduate School of BASE (Bio-Applications and Systems Engineering), Tokyo University of Agriculture and Technology, Naka-cho, Koganei, Tokyo 184-8588, Japan
| |
Collapse
|
40
|
Hydrogen-Atom Tunneling of 2,5-Dichloro-3,6-dihydroxy-1,4-benzoquinone in a Low-Temperature Argon Matrix Studied by FTIR Spectroscopy. J Phys Chem A 2002. [DOI: 10.1021/jp021136h] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
41
|
Redington RL, Sams RL. N2 pressure broadened Q branch spikes and vibration–contortion–rotation effects in the high resolution FTIR spectrum of tropolone. Chem Phys 2002. [DOI: 10.1016/s0301-0104(02)00614-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
42
|
Redington RL, Sams RL. State-Specific Spectral Doublets in the FTIR Spectrum of Gaseous Tropolone. J Phys Chem A 2001. [DOI: 10.1021/jp0122631] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Richard L. Redington
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409
| | - Robert L. Sams
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99352
| |
Collapse
|
43
|
Hole-burning spectra of tropolone–(CO2)n (n=1,2) van der Waals complexes and density functional study. Chem Phys 2001. [DOI: 10.1016/s0301-0104(01)00399-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
44
|
|