• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (4625215)   Today's Articles (4761)   Subscriber (49472)
For: Moučka F, Nezbeda I, Smith WR. Molecular simulation of aqueous electrolytes: Water chemical potential results and Gibbs-Duhem equation consistency tests. J Chem Phys 2013;139:124505. [DOI: 10.1063/1.4821153] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]  Open
Number Cited by Other Article(s)
1
Finney AR, Salvalaglio M. Properties of aqueous electrolyte solutions at carbon electrodes: effects of concentration and surface charge on solution structure, ion clustering and thermodynamics in the electric double layer. Faraday Discuss 2024;249:334-362. [PMID: 37781909 DOI: 10.1039/d3fd00133d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
2
Hosseni A, Ashbaugh HS. Osmotic Force Balance Evaluation of Aqueous Electrolyte Osmotic Pressures and Chemical Potentials. J Chem Theory Comput 2023;19:8826-8838. [PMID: 37978934 PMCID: PMC10720338 DOI: 10.1021/acs.jctc.3c00982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/26/2023] [Accepted: 10/27/2023] [Indexed: 11/19/2023]
3
Reinhardt A, Chew PY, Cheng B. A streamlined molecular-dynamics workflow for computing solubilities of molecular and ionic crystals. J Chem Phys 2023;159:184110. [PMID: 37962445 DOI: 10.1063/5.0173341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 10/20/2023] [Indexed: 11/15/2023]  Open
4
Kim J, Belloni L, Rotenberg B. Grand-canonical molecular dynamics simulations powered by a hybrid 4D nonequilibrium MD/MC method: Implementation in LAMMPS and applications to electrolyte solutions. J Chem Phys 2023;159:144802. [PMID: 37819001 DOI: 10.1063/5.0168878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 09/19/2023] [Indexed: 10/13/2023]  Open
5
Schaefer D, Kohns M, Hasse H. Molecular modeling and simulation of aqueous solutions of alkali nitrates. J Chem Phys 2023;158:134508. [PMID: 37031112 DOI: 10.1063/5.0141331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]  Open
6
Kournopoulos S, Santos MS, Ravipati S, Haslam AJ, Jackson G, Economou IG, Galindo A. The Contribution of the Ion-Ion and Ion-Solvent Interactions in a Molecular Thermodynamic Treatment of Electrolyte Solutions. J Phys Chem B 2022;126:9821-9839. [PMID: 36395498 PMCID: PMC9720728 DOI: 10.1021/acs.jpcb.2c03915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 08/12/2022] [Indexed: 11/19/2022]
7
Cheng B. Computing chemical potentials of solutions from structure factors. J Chem Phys 2022;157:121101. [DOI: 10.1063/5.0107059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]  Open
8
Polarizable force fields for accurate molecular simulations of aqueous solutions of electrolytes, crystalline salts, and solubility: Li+, Na+, K+, Rb+, F−, Cl−, Br−, I−. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119659] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
9
Dabrowski W, Siwicka-Gieroba D, Robba C, Bielacz M, Sołek-Pastuszka J, Kotfis K, Bohatyrewicz R, Jaroszyński A, Malbrain MLNG, Badenes R. Potentially Detrimental Effects of Hyperosmolality in Patients Treated for Traumatic Brain Injury. J Clin Med 2021;10:4141. [PMID: 34575255 PMCID: PMC8467376 DOI: 10.3390/jcm10184141] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 09/03/2021] [Accepted: 09/07/2021] [Indexed: 02/06/2023]  Open
10
Finney AR, McPherson IJ, Unwin PR, Salvalaglio M. Electrochemistry, ion adsorption and dynamics in the double layer: a study of NaCl(aq) on graphite. Chem Sci 2021;12:11166-11180. [PMID: 34522314 PMCID: PMC8386640 DOI: 10.1039/d1sc02289j] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 07/14/2021] [Indexed: 12/18/2022]  Open
11
Finney A, Salvalaglio M. Multiple Pathways in NaCl Homogeneous Crystal Nucleation. Faraday Discuss 2021;235:56-80. [DOI: 10.1039/d1fd00089f] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
12
Panagiotopoulos AZ. Simulations of activities, solubilities, transport properties, and nucleation rates for aqueous electrolyte solutions. J Chem Phys 2020;153:010903. [DOI: 10.1063/5.0012102] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]  Open
13
Dočkal J, Lísal M, Moučka F. Molecular Force Field Development for Aqueous Electrolytes: 2. Polarizable Models Incorporating Crystalline Chemical Potential and Their Accurate Simulations of Halite, Hydrohalite, Aqueous Solutions of NaCl, and Solubility. J Chem Theory Comput 2020;16:3677-3688. [DOI: 10.1021/acs.jctc.0c00161] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
14
Shilov IY, Lyashchenko AK. Anion-Specific Effects on Activity Coefficients in Aqueous Solutions of Sodium Salts: Modeling with the Extended Debye–Hückel Theory. J SOLUTION CHEM 2019. [DOI: 10.1007/s10953-019-00860-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
15
Jiang H, Debenedetti PG, Panagiotopoulos AZ. Communication: Nucleation rates of supersaturated aqueous NaCl using a polarizable force field. J Chem Phys 2018;149:141102. [DOI: 10.1063/1.5053652] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]  Open
16
Di Pasquale N, Davie SJ, Popelier PLA. The accuracy of ab initio calculations without ab initio calculations for charged systems: Kriging predictions of atomistic properties for ions in aqueous solutions. J Chem Phys 2018;148:241724. [DOI: 10.1063/1.5022174] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]  Open
17
Moučka F, Kolafa J, Lísal M, Smith WR. Chemical potentials of alkaline earth metal halide aqueous electrolytes and solubility of their hydrates by molecular simulation: Application to CaCl2, antarcticite, and sinjarite. J Chem Phys 2018;148:222832. [DOI: 10.1063/1.5024212] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]  Open
18
Zimmermann NER, Vorselaars B, Espinosa JR, Quigley D, Smith WR, Sanz E, Vega C, Peters B. NaCl nucleation from brine in seeded simulations: Sources of uncertainty in rate estimates. J Chem Phys 2018;148:222838. [DOI: 10.1063/1.5024009] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]  Open
19
Heidari M, Kremer K, Cortes-Huerto R, Potestio R. Spatially Resolved Thermodynamic Integration: An Efficient Method To Compute Chemical Potentials of Dense Fluids. J Chem Theory Comput 2018;14:3409-3417. [DOI: 10.1021/acs.jctc.8b00002] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
20
Mamatkulov S, Schwierz N. Force fields for monovalent and divalent metal cations in TIP3P water based on thermodynamic and kinetic properties. J Chem Phys 2018;148:074504. [DOI: 10.1063/1.5017694] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]  Open
21
Young JM, Panagiotopoulos AZ. System-Size Dependence of Electrolyte Activity Coefficients in Molecular Simulations. J Phys Chem B 2018;122:3330-3338. [DOI: 10.1021/acs.jpcb.7b09861] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
22
Benavides AL, Portillo MA, Chamorro VC, Espinosa JR, Abascal JLF, Vega C. A potential model for sodium chloride solutions based on the TIP4P/2005 water model. J Chem Phys 2017;147:104501. [DOI: 10.1063/1.5001190] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]  Open
23
Shilov IY, Lyashchenko AK. Modeling activity coefficients in alkali iodide aqueous solutions using the extended Debye-Hückel theory. J Mol Liq 2017. [DOI: 10.1016/j.molliq.2017.05.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
24
Benavides A, Portillo M, Abascal J, Vega C. Estimating the solubility of 1:1 electrolyte aqueous solutions: the chemical potential difference rule. Mol Phys 2017. [DOI: 10.1080/00268976.2017.1288939] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
25
Benavides AL, Aragones JL, Vega C. Consensus on the solubility of NaCl in water from computer simulations using the chemical potential route. J Chem Phys 2016;144:124504. [PMID: 27036458 DOI: 10.1063/1.4943780] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]  Open
26
Nezbeda I, Moučka F, Smith WR. Recent progress in molecular simulation of aqueous electrolytes: force fields, chemical potentials and solubility. Mol Phys 2016. [DOI: 10.1080/00268976.2016.1165296] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
27
Kohns M, Reiser S, Horsch M, Hasse H. Solvent activity in electrolyte solutions from molecular simulation of the osmotic pressure. J Chem Phys 2016;144:084112. [DOI: 10.1063/1.4942500] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]  Open
28
Mester Z, Panagiotopoulos AZ. Mean ionic activity coefficients in aqueous NaCl solutions from molecular dynamics simulations. J Chem Phys 2015;142:044507. [PMID: 25637995 DOI: 10.1063/1.4906320] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]  Open
29
Mester Z, Panagiotopoulos AZ. Temperature-dependent solubilities and mean ionic activity coefficients of alkali halides in water from molecular dynamics simulations. J Chem Phys 2015;143:044505. [DOI: 10.1063/1.4926840] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]  Open
30
Shilov IY, Lyashchenko AK. The Role of Concentration Dependent Static Permittivity of Electrolyte Solutions in the Debye–Hückel Theory. J Phys Chem B 2015;119:10087-95. [DOI: 10.1021/acs.jpcb.5b04555] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
31
Jiang H, Mester Z, Moultos OA, Economou IG, Panagiotopoulos AZ. Thermodynamic and Transport Properties of H2O + NaCl from Polarizable Force Fields. J Chem Theory Comput 2015;11:3802-10. [DOI: 10.1021/acs.jctc.5b00421] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
32
Valiskó M, Boda D. The effect of concentration- and temperature-dependent dielectric constant on the activity coefficient of NaCl electrolyte solutions. J Chem Phys 2015;140:234508. [PMID: 24952553 DOI: 10.1063/1.4883742] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]  Open
33
Moučka F, Nezbeda I, Smith WR. Chemical Potentials, Activity Coefficients, and Solubility in Aqueous NaCl Solutions: Prediction by Polarizable Force Fields. J Chem Theory Comput 2015;11:1756-64. [DOI: 10.1021/acs.jctc.5b00018] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
34
Moucka F, Bratko D, Luzar A. Electrolyte pore/solution partitioning by expanded grand canonical ensemble Monte Carlo simulation. J Chem Phys 2015;142:124705. [DOI: 10.1063/1.4914461] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]  Open
35
Li P, Song LF, Merz KM. Systematic Parameterization of Monovalent Ions Employing the Nonbonded Model. J Chem Theory Comput 2015;11:1645-57. [PMID: 26574374 DOI: 10.1021/ct500918t] [Citation(s) in RCA: 256] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
36
Vega C. Water: one molecule, two surfaces, one mistake. Mol Phys 2015. [DOI: 10.1080/00268976.2015.1005191] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
37
Khalansky D, Popova E, Gladyshev P, Dushanov E, Kholmurodov K. A molecular dynamic model for analyzing concentrations of electrolytes: Fractional molar dependences of microstructure properties. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A 2014. [DOI: 10.1134/s0036024414120139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
PrevPage 1 of 1 1Next
© 2004-2024 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA