1
|
Zhang X, Dumčius P, Mikhaylov R, Qi J, Stringer M, Sun C, Nguyen VD, Zhou Y, Sun X, Liang D, Liu D, Yan B, Feng X, Mei C, Xu C, Feng M, Fu Y, Clayton A, Zhi R, Tian L, Dong Z, Yang X. Surface Acoustic Wave-Enhanced Multi-View Acoustofluidic Rotation Cytometry (MARC) for Pre-Cytopathological Screening. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2403574. [PMID: 39136049 PMCID: PMC11497091 DOI: 10.1002/advs.202403574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 07/20/2024] [Indexed: 10/25/2024]
Abstract
Cytopathology, crucial in disease diagnosis, commonly uses microscopic slides to scrutinize cellular abnormalities. However, processing high volumes of samples often results in numerous negative diagnoses, consuming significant time and resources in healthcare. To address this challenge, a surface acoustic wave-enhanced multi-view acoustofluidic rotation cytometry (MARC) technique is developed for pre-cytopathological screening. MARC enhances cellular morphology analysis through comprehensive and multi-angle observations and amplifies subtle cell differences, particularly in the nuclear-to-cytoplasmic ratio, across various cell types and between cancerous and normal tissue cells. By prioritizing MARC-screened positive cases, this approach can potentially streamline traditional cytopathology, reducing the workload and resources spent on negative diagnoses. This significant advancement enhances overall diagnostic efficiency, offering a transformative vision for cytopathological screening.
Collapse
Affiliation(s)
- Xiaoyan Zhang
- Department of Electrical and Electronic Engineering, School of EngineeringCardiff UniversityCardiffCF24 3AAUK
- International Joint Laboratory of Biomedicine and EngineeringCollege of Biomedicine and HealthCollege of Life Science and TechnologyHuazhong Agricultural UniversityWuhan430070P. R. China
| | - Povilas Dumčius
- Department of Electrical and Electronic Engineering, School of EngineeringCardiff UniversityCardiffCF24 3AAUK
| | - Roman Mikhaylov
- Department of Electrical and Electronic Engineering, School of EngineeringCardiff UniversityCardiffCF24 3AAUK
| | - Jiangfa Qi
- International Joint Laboratory of Biomedicine and EngineeringCollege of Biomedicine and HealthCollege of Life Science and TechnologyHuazhong Agricultural UniversityWuhan430070P. R. China
| | - Mercedes Stringer
- Department of Electrical and Electronic Engineering, School of EngineeringCardiff UniversityCardiffCF24 3AAUK
| | - Chao Sun
- School of Life SciencesNorthwestern Polytechnical UniversityXi'an710072P. R. China
| | - Van Dien Nguyen
- Systems Immunity University Research InstituteCardiff UniversityCardiffCF14 4XNUK
- Division of Infection and ImmunityCardiff UniversityCardiffCF14 4XNUK
| | - You Zhou
- Systems Immunity University Research InstituteCardiff UniversityCardiffCF14 4XNUK
- Division of Infection and ImmunityCardiff UniversityCardiffCF14 4XNUK
| | - Xianfang Sun
- School of Computer Science and InformaticsCardiff UniversityCardiffCF24 4AGUK
| | - Dongfang Liang
- Department of EngineeringUniversity of CambridgeCambridgeCB2 1PZUK
| | - Dongge Liu
- Department of PathologyBeijing HospitalBeijing100730P. R. China
| | - Bing Yan
- Department of Information ManagementBeijing HospitalBeijing100730P. R. China
| | - Xi Feng
- Department of PathologyHubei Cancer HospitalWuhan430079P. R. China
| | - Changjun Mei
- Department of PathologyXiangzhou District People's Hospital of XiangyangXiangyang441000P. R. China
| | - Cong Xu
- Department of PathologyXiangzhou District People's Hospital of XiangyangXiangyang441000P. R. China
| | - Mingqian Feng
- International Joint Laboratory of Biomedicine and EngineeringCollege of Biomedicine and HealthCollege of Life Science and TechnologyHuazhong Agricultural UniversityWuhan430070P. R. China
| | - Yongqing Fu
- Faculty of Engineering and EnvironmentNorthumbria UniversityNewcastle Upon TyneNE1 8STUK
| | - Aled Clayton
- School of MedicineCardiff UniversityCardiffCF14 4XNUK
| | - Ruicong Zhi
- School of Computer and Communication EngineeringUniversity of Science and Technology BeijingBeijing100083P. R. China
- Beijing Key Laboratory of Knowledge Engineering for Materials ScienceBeijing100083P.R. China
| | - Liangfei Tian
- Department of Biomedical EngineeringMOE Key Laboratory of Biomedical EngineeringZhejiang UniversityHangzhou310027P. R. China
| | - Zhiqiang Dong
- International Joint Laboratory of Biomedicine and EngineeringCollege of Biomedicine and HealthCollege of Life Science and TechnologyHuazhong Agricultural UniversityWuhan430070P. R. China
| | - Xin Yang
- Department of Electrical and Electronic Engineering, School of EngineeringCardiff UniversityCardiffCF24 3AAUK
| |
Collapse
|
2
|
Saghaei T, Weber A, Reimhult E, van Oostrum PDJ. Distinguishing cells using electro-acoustic spinning. Sci Rep 2023; 13:20466. [PMID: 37993513 PMCID: PMC10665424 DOI: 10.1038/s41598-023-46550-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 11/02/2023] [Indexed: 11/24/2023] Open
Abstract
Many diseases, including cancer and covid, result in altered mechanical and electric properties of the affected cells. These changes were proposed as disease markers. Current methods to characterize such changes either provide very limited information on many cells or have extremely low throughput. We introduce electro-acoustic spinning (EAS). Cells were found to spin in combined non-rotating AC electric and acoustic fields. The rotation velocity in EAS depends critically on a cell's electrical and mechanical properties. In contrast to existing methods, the rotation is uniform in the field of view and hundreds of cells can be characterized simultaneously. We demonstrate that EAS can distinguish cells with only minor differences in electric and mechanical properties, including differences in age or the number of passages.
Collapse
Affiliation(s)
- Tayebeh Saghaei
- Department of Bionanosciences, Institute of Biologically Inspired Materials, University of Natural Resources and Life Sciences, Muthgasse 11-II, 1190, Vienna, Austria.
| | - Andreas Weber
- Department of Bionanosciences, Institute of Biophysics, University of Natural Resources and Life Sciences, Muthgasse 11-II, 1190, Vienna, Austria
- London Centre for Nanotechnology, Faculty of Maths & Physical Sciences, University College London, Gower Street, London, UK
| | - Erik Reimhult
- Department of Bionanosciences, Institute of Biologically Inspired Materials, University of Natural Resources and Life Sciences, Muthgasse 11-II, 1190, Vienna, Austria
| | - Peter D J van Oostrum
- Department of Bionanosciences, Institute of Biologically Inspired Materials, University of Natural Resources and Life Sciences, Muthgasse 11-II, 1190, Vienna, Austria
| |
Collapse
|
3
|
Wu H, Dang D, Yang X, Wang J, Qi R, Yang W, Liang W. Accurate and Automatic Extraction of Cell Self-Rotation Speed in an ODEP Field Using an Area Change Algorithm. MICROMACHINES 2022; 13:mi13060818. [PMID: 35744432 PMCID: PMC9229272 DOI: 10.3390/mi13060818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/20/2022] [Accepted: 05/22/2022] [Indexed: 11/16/2022]
Abstract
Cells are complex biological units that can sense physicochemical stimuli from their surroundings and respond positively to them through characterization of the cell behavior. Thus, understanding the motions of cells is important for investigating their intrinsic properties and reflecting their various states. Computer-vision-based methods for elucidating cell behavior offer a novel approach to accurately extract cell motions. Here, we propose an algorithm based on area change to automatically extract the self-rotation of cells in an optically induced dielectrophoresis field. To obtain a clear and complete outline of the cell structure, dark corner removal and contrast stretching techniques are used in the pre-processing stage. The self-rotation speed is calculated by determining the frequency of the cell area changes in all of the captured images. The algorithm is suitable for calculating in-plane and out-of-plane rotations, while addressing the problem of identical images at different rotation angles when dealing with rotations of spherical and flat cells. In addition, the algorithm can be used to determine the motion trajectory of cells. The experimental results show that the algorithm can efficiently and accurately calculate cell rotation speeds of up to ~155 rpm. Potential applications of the proposed algorithm include cell morphology extraction, cell classification, and characterization of the cell mechanical properties. The algorithm can be very helpful for those who are interested in using computer vision and artificial-intelligence-based ideology in single-cell studies, drug treatment, and other bio-related fields.
Collapse
Affiliation(s)
- Haiyang Wu
- School of Mechanical Engineering, Shenyang Jianzhu University, Shenyang 110168, China; (H.W.); (X.Y.); (J.W.)
| | - Dan Dang
- School of Science, Shenyang Jianzhu University, Shenyang 110168, China
- Correspondence: (D.D.); (R.Q.); (W.L.)
| | - Xieliu Yang
- School of Mechanical Engineering, Shenyang Jianzhu University, Shenyang 110168, China; (H.W.); (X.Y.); (J.W.)
| | - Junhai Wang
- School of Mechanical Engineering, Shenyang Jianzhu University, Shenyang 110168, China; (H.W.); (X.Y.); (J.W.)
| | - Ruolong Qi
- School of Mechanical Engineering, Shenyang Jianzhu University, Shenyang 110168, China; (H.W.); (X.Y.); (J.W.)
- Correspondence: (D.D.); (R.Q.); (W.L.)
| | - Wenguang Yang
- School of Electromechanical and Automotive Engineering, Yantai University, Yantai 264005, China;
| | - Wenfeng Liang
- School of Mechanical Engineering, Shenyang Jianzhu University, Shenyang 110168, China; (H.W.); (X.Y.); (J.W.)
- Correspondence: (D.D.); (R.Q.); (W.L.)
| |
Collapse
|
4
|
Zhang S, Xu B, Elsayed M, Nan F, Liang W, Valley JK, Liu L, Huang Q, Wu MC, Wheeler AR. Optoelectronic tweezers: a versatile toolbox for nano-/micro-manipulation. Chem Soc Rev 2022; 51:9203-9242. [DOI: 10.1039/d2cs00359g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This review covers the fundamentals, recent progress and state-of-the-art applications of optoelectronic tweezers technology, and demonstrates that optoelectronic tweezers technology is a versatile and powerful toolbox for nano-/micro-manipulation.
Collapse
Affiliation(s)
- Shuailong Zhang
- School of Mechatronical Engineering, Beijing Institute of Technology, Room 711, Building No 6, Science and Technology Park, 5 Zhongguancun South St, Haidian District, Beijing, 100081, China
- Beijing Advanced Innovation Center for Intelligent Robots and Systems, Beijing Institute of Technology, Beijing, 100081, China
- Key Laboratory of Biomimetic Robots and Systems (Beijing Institute of Technology), Ministry of Education, Beijing 100081, China
| | - Bingrui Xu
- School of Mechatronical Engineering, Beijing Institute of Technology, Room 711, Building No 6, Science and Technology Park, 5 Zhongguancun South St, Haidian District, Beijing, 100081, China
- Beijing Advanced Innovation Center for Intelligent Robots and Systems, Beijing Institute of Technology, Beijing, 100081, China
| | - Mohamed Elsayed
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, M5S 3G9, Canada
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, M5S 3E1, Canada
| | - Fan Nan
- Institute of Nanophotonics, Jinan University, Guangzhou 511443, China
| | - Wenfeng Liang
- School of Mechanical Engineering, Shenyang Jianzhu University, Shenyang, 110168, China
| | - Justin K. Valley
- Berkeley Lights, Inc, 5858 Horton Street #320, Emeryville, CA 94608, USA
| | - Lianqing Liu
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China
- Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang 110016, China
| | - Qiang Huang
- School of Mechatronical Engineering, Beijing Institute of Technology, Room 711, Building No 6, Science and Technology Park, 5 Zhongguancun South St, Haidian District, Beijing, 100081, China
- Beijing Advanced Innovation Center for Intelligent Robots and Systems, Beijing Institute of Technology, Beijing, 100081, China
- Key Laboratory of Biomimetic Robots and Systems (Beijing Institute of Technology), Ministry of Education, Beijing 100081, China
| | - Ming C. Wu
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, California 94720, USA
| | - Aaron R. Wheeler
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, M5S 3G9, Canada
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, M5S 3E1, Canada
- Department of Chemistry, University of Toronto, Toronto, ON, M5S 3H6, Canada
| |
Collapse
|
5
|
Liang W, Yang X, Wang J, Wang Y, Yang W, Liu L. Determination of Dielectric Properties of Cells using AC Electrokinetic-based Microfluidic Platform: A Review of Recent Advances. MICROMACHINES 2020; 11:E513. [PMID: 32438680 PMCID: PMC7281274 DOI: 10.3390/mi11050513] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/16/2020] [Accepted: 05/18/2020] [Indexed: 12/18/2022]
Abstract
Cell dielectric properties, a type of intrinsic property of cells, can be used as electrophysiological biomarkers that offer a label-free way to characterize cell phenotypes and states, purify clinical samples, and identify target cancer cells. Here, we present a review of the determination of cell dielectric properties using alternating current (AC) electrokinetic-based microfluidic mechanisms, including electro-rotation (ROT) and dielectrophoresis (DEP). The review covers theoretically how ROT and DEP work to extract cell dielectric properties. We also dive into the details of differently structured ROT chips, followed by a discussion on the determination of cell dielectric properties and the use of these properties in bio-related applications. Additionally, the review offers a look at the future challenges facing the AC electrokinetic-based microfluidic platform in terms of acquiring cell dielectric parameters. Our conclusion is that this platform will bring biomedical and bioengineering sciences to the next level and ultimately achieve the shift from lab-oriented research to real-world applications.
Collapse
Affiliation(s)
- Wenfeng Liang
- School of Mechanical Engineering, Shenyang Jianzhu University, Shenyang 110168, China; (X.Y.); (J.W.)
| | - Xieliu Yang
- School of Mechanical Engineering, Shenyang Jianzhu University, Shenyang 110168, China; (X.Y.); (J.W.)
| | - Junhai Wang
- School of Mechanical Engineering, Shenyang Jianzhu University, Shenyang 110168, China; (X.Y.); (J.W.)
| | - Yuechao Wang
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China;
| | - Wenguang Yang
- School of Electromechanical and Automotive Engineering, Yantai University, Yantai 264005, China;
| | - Lianqing Liu
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China;
| |
Collapse
|
6
|
Liang W, Liu L, Zhang H, Wang Y, Li WJ. Optoelectrokinetics-based microfluidic platform for bioapplications: A review of recent advances. BIOMICROFLUIDICS 2019; 13:051502. [PMID: 31558919 PMCID: PMC6748859 DOI: 10.1063/1.5116737] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 09/05/2019] [Indexed: 05/14/2023]
Abstract
The introduction of optoelectrokinetics (OEK) into lab-on-a-chip systems has facilitated a new cutting-edge technique-the OEK-based micro/nanoscale manipulation, separation, and assembly processes-for the microfluidics community. This technique offers a variety of extraordinary advantages such as programmability, flexibility, high biocompatibility, low-cost mass production, ultralow optical power requirement, reconfigurability, rapidness, and ease of integration with other microfluidic units. This paper reviews the physical mechanisms that govern the manipulation of micro/nano-objects in microfluidic environments as well as applications related to OEK-based micro/nanoscale manipulation-applications that span from single-cell manipulation to single-molecular behavior determination. This paper wraps up with a discussion of the current challenges and future prospects for the OEK-based microfluidics technique. The conclusion is that this technique will allow more opportunities for biomedical and bioengineering researchers to improve lab-on-a-chip technologies and will have far-reaching implications for biorelated researches and applications in the future.
Collapse
Affiliation(s)
- Wenfeng Liang
- School of Mechanical Engineering, Shenyang Jianzhu University, Shenyang 110168, China
| | - Lianqing Liu
- Authors to whom correspondence should be addressed: and
| | - Hemin Zhang
- Department of Neurology, The People’s Hospital of Liaoning Province, Shenyang 110016, China
| | | | - Wen Jung Li
- Authors to whom correspondence should be addressed: and
| |
Collapse
|
7
|
Elucidating the mechanism governing cell rotation under DEP using the volumetric polarization and integration method. Biomed Microdevices 2018; 20:81. [PMID: 30196336 DOI: 10.1007/s10544-018-0327-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Cell rotation can be achieved by utilizing rotating electric fields through which torques are generated due to phase difference between the dipole moment of cells and the external electric field. While reports of cell rotation under non-rotating electrical fields, such as dielectrophoresis (DEP), are abound, the underlying mechanism is not fully understood. Because of this, contradicting arguments remain regarding if a single cell can rotate under conventional DEP. What's more, the current prevailing DEP theory is not adequate for identifying the cause for such disagreements. In this work we applied our recently developed Volumetric Polarization and Integration (VPI) method to investigate the possible causes for cell rotation under conventional DEP. Three-dimensional (3D) computer models dealing with a cell in a DEP environment were developed to quantify the force and torque imparted on the cell by the external DEP field using COMSOL Multiphysics software. Modeling results suggest that eccentric inclusions with low conductivity inside the cell will generate torques (either in clockwise or counter-clockwise directions) sufficient to cause cell rotation under DEP. For validation of modeling predictions, experiments with rat adipose stem cells containing large lipid droplets were conducted. Good agreement between our modeling and experimental results suggests that the VPI method is powerful in elucidating the underlying mechanisms governing the complicated DEP phenomena.
Collapse
|
8
|
Yang X, Niu X, Liu Z, Zhao Y, Zhang G, Liang W, Li WJ. Accurate Extraction of the Self-Rotational Speed for Cells in an Electrokinetics Force Field by an Image Matching Algorithm. MICROMACHINES 2017; 8:E282. [PMID: 30400472 PMCID: PMC6190232 DOI: 10.3390/mi8090282] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Revised: 09/04/2017] [Accepted: 09/13/2017] [Indexed: 12/20/2022]
Abstract
We present an image-matching-based automated algorithm capable of accurately determining the self-rotational speed of cancer cells in an optically-induced electrokinetics-based microfluidic chip. To automatically track a specific cell in a video featuring more than one cell, a background subtraction technique was used. To determine the rotational speeds of cells, a reference frame was automatically selected and curve fitting was performed to improve the stability and accuracy. Results show that the algorithm was able to accurately calculate the self-rotational speeds of cells up to ~150 rpm. In addition, the algorithm could be used to determine the motion trajectories of the cells. Potential applications for the developed algorithm include the differentiation of cell morphology and characterization of cell electrical properties.
Collapse
Affiliation(s)
- Xieliu Yang
- School of Mechanical Engineering, Shenyang Jianzhu University, Shenyang 110168, China.
| | - Xihui Niu
- School of Mechanical Engineering, Shenyang Jianzhu University, Shenyang 110168, China.
| | - Zhu Liu
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China.
| | - Yuliang Zhao
- Department of Mechanical and Biomedical Engineering, City University of Hong Kong, Hong Kong 999077, China.
| | - Guanglie Zhang
- Institute of Advanced and Intelligent Sensing Systems, Shenzhen Academy of Robotics, Shenzhen 518057, China.
| | - Wenfeng Liang
- School of Mechanical Engineering, Shenyang Jianzhu University, Shenyang 110168, China.
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China.
| | - Wen Jung Li
- Department of Mechanical and Biomedical Engineering, City University of Hong Kong, Hong Kong 999077, China.
- Institute of Advanced and Intelligent Sensing Systems, Shenzhen Academy of Robotics, Shenzhen 518057, China.
| |
Collapse
|
9
|
Zhao Y, Lai HSS, Zhang G, Lee GB, Li WJ. Measurement of single leukemia cell's density and mass using optically induced electric field in a microfluidics chip. BIOMICROFLUIDICS 2015; 9:022406. [PMID: 25945133 PMCID: PMC4401796 DOI: 10.1063/1.4917290] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 03/30/2015] [Indexed: 05/21/2023]
Abstract
We present a method capable of rapidly (∼20 s) determining the density and mass of a single leukemic cell using an optically induced electrokinetics (OEK) platform. Our team had reported recently on a technique that combines sedimentation theory, computer vision, and micro particle manipulation techniques on an OEK microfluidic platform to determine the mass and density of micron-scale entities in a fluidic medium; the mass and density of yeast cells were accurately determined in that prior work. In the work reported in this paper, we further refined the technique by performing significantly more experiments to determine a universal correction factor to Stokes' equation in expressing the drag force on a microparticle as it falls towards an infinite plane. Specifically, a theoretical model for micron-sized spheres settling towards an infinite plane in a microfluidic environment is presented, and which was validated experimentally using five different sizes of micro polystyrene beads. The same sedimentation process was applied to two kinds of leukemic cancer cells with similar sizes in an OEK platform, and their density and mass were determined accordingly. Our tests on mouse lymphocytic leukemia cells (L1210) and human leukemic cells (HL-60) have verified the practical viability of this method. Potentially, this new method provides a new way of measuring the volume, density, and mass of a single cell in an accurate, selective, and repeatable manner.
Collapse
Affiliation(s)
- Yuliang Zhao
- Department of Mechanical and Biomedical Engineering, City University of Hong Kong , Kowloon, Hong Kong
| | - Hok Sum Sam Lai
- Department of Mechanical and Biomedical Engineering, City University of Hong Kong , Kowloon, Hong Kong
| | - Guanglie Zhang
- Department of Mechanical and Biomedical Engineering, City University of Hong Kong , Kowloon, Hong Kong
| | - Gwo-Bin Lee
- Department of Power Mechanical Engineering, National Tsing Hua University , Hsinchu, Taiwan
| | - Wen Jung Li
- Department of Mechanical and Biomedical Engineering, City University of Hong Kong , Kowloon, Hong Kong
| |
Collapse
|
10
|
Liang W, Zhang K, Yang X, Liu L, Yu H, Zhang W. Distinctive translational and self-rotational motion of lymphoma cells in an optically induced non-rotational alternating current electric field. BIOMICROFLUIDICS 2015; 9:014121. [PMID: 25759754 PMCID: PMC4336248 DOI: 10.1063/1.4913365] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2015] [Accepted: 02/10/2015] [Indexed: 05/16/2023]
Abstract
In this paper, the translational motion and self-rotational behaviors of the Raji cells, a type of B-cell lymphoma cell, in an optically induced, non-rotational, electric field have been characterized by utilizing a digitally programmable and optically activated microfluidics chip with the assistance of an externally applied AC bias potential. The crossover frequency spectrum of the Raji cells was studied by observing the different linear translation responses of these cells to the positive and negative optically induced dielectrophoresis force generated by a projected light pattern. This digitally projected spot served as the virtual electrode to generate an axisymmetric and non-uniform electric field. Then, the membrane capacitance of the Raji cells could be directly measured. Furthermore, Raji cells under this condition also exhibited a self-rotation behavior. The repeatable and controlled self-rotation speeds of the Raji cells to the externally applied frequency and voltage were systematically investigated and characterized via computer-vision algorithms. The self-rotational speed of the Raji cells reached a maximum value at 60 kHz and demonstrated a quadratic relationship with respect to the applied voltage. Furthermore, optically projected patterns of four orthogonal electrodes were also employed as the virtual electrodes to manipulate the Raji cells. These results demonstrated that Raji cells located at the center of the four electrode pattern could not be self-rotated. Instead any Raji cells that deviated from this center area would also self-rotate. Most importantly, the Raji cells did not exhibit the self-rotational behavior after translating and rotating with respect to the center of any two adjacent electrodes. The spatial distributions of the electric field generated by the optically projected spot and the pattern of four electrodes were also modeled using a finite element numerical simulation. These simulations validated that the electric field distributions were non-uniform and non-rotational. Hence, the non-uniform electric field must play a key role in the self-rotation of the Raji cells. As a whole, this study elucidates an optoelectric-coupled microfluidics-based mechanism for cellular translation and self-rotation that can be used to extract the dielectric properties of the cells without using conventional metal-based microelectrodes. This technique may provide a simpler method for label-free identification of cancerous cells with many associated clinical applications.
Collapse
Affiliation(s)
| | - Ke Zhang
- School of Mechanical Engineering, Shenyang Jianzhu University , Shenyang, China
| | - Xieliu Yang
- School of Mechanical Engineering, Shenyang Jianzhu University , Shenyang, China
| | - Lianqing Liu
- State Key Laboratory of Robotics, Shenyang Institute of Automation , Chinese Academy of Sciences, Shenyang, China
| | - Haibo Yu
- State Key Laboratory of Robotics, Shenyang Institute of Automation , Chinese Academy of Sciences, Shenyang, China
| | - Weijing Zhang
- Department of Lymphoma, Affiliated Hospital of Military Medical Academy of Sciences , Beijing, China
| |
Collapse
|
11
|
Vaillier C, Honegger T, Kermarrec F, Gidrol X, Peyrade D. Comprehensive analysis of human cells motion under an irrotational AC electric field in an electro-microfluidic chip. PLoS One 2014; 9:e95231. [PMID: 24736275 PMCID: PMC3988152 DOI: 10.1371/journal.pone.0095231] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Accepted: 03/24/2014] [Indexed: 01/22/2023] Open
Abstract
AC electrokinetics is a versatile tool for contact-less manipulation or characterization of cells and has been widely used for separation based on genotype translation to electrical phenotypes. Cells responses to an AC electric field result in a complex combination of electrokinetic phenomena, mainly dielectrophoresis and electrohydrodynamic forces. Human cells behaviors to AC electrokinetics remain unclear over a large frequency spectrum as illustrated by the self-rotation effect observed recently. We here report and analyze human cells behaviors in different conditions of medium conductivity, electric field frequency and magnitude. We also observe the self-rotation of human cells, in the absence of a rotational electric field. Based on an analytical competitive model of electrokinetic forces, we propose an explanation of the cell self-rotation. These experimental results, coupled with our model, lead to the exploitation of the cell behaviors to measure the intrinsic dielectric properties of JURKAT, HEK and PC3 human cell lines.
Collapse
Affiliation(s)
- Clarisse Vaillier
- Univ. Grenoble Alpes, LTM, Grenoble, France; CNRS, LTM, Grenoble, France
| | - Thibault Honegger
- Univ. Grenoble Alpes, LTM, Grenoble, France; CNRS, LTM, Grenoble, France; Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of Amercia
| | - Frédérique Kermarrec
- CEA, Institut de Recherches en Technologies et Sciences pour le Vivant, Grenoble, France
| | - Xavier Gidrol
- CEA, Institut de Recherches en Technologies et Sciences pour le Vivant, Grenoble, France
| | - David Peyrade
- Univ. Grenoble Alpes, LTM, Grenoble, France; CNRS, LTM, Grenoble, France
| |
Collapse
|