1
|
Lima TA, Paschoal VH, Freitas RS, Faria LFO, Li Z, Tyagi M, Z Y, Ribeiro MCC. An inelastic neutron scattering, Raman, far-infrared, and molecular dynamics study of the intermolecular dynamics of two ionic liquids. Phys Chem Chem Phys 2020; 22:9074-9085. [PMID: 32297886 DOI: 10.1039/d0cp00374c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The intermolecular dynamics in the THz frequency range of the ionic liquids n-butyl-trimethylammonium bis(trifluoromethanesulfonyl)imide, [N1114][NTf2], and methyl-tributylammonium bis(trifluoromethanesulfonyl)imide, [N1444][NTf2], were investigated by a combined usage of inelastic neutron scattering (INS), Raman, and far-infrared (FIR) spectroscopies and the power spectrum calculated by molecular dynamics (MD) simulations. The collective dynamics of the simulated systems is also discussed by the calculation of time correlation functions of charge and mass currents that are projected onto acoustic- and optic-like motions. The INS and Raman measurements have been performed as a function of temperature in the glassy, crystalline, and liquid phases. The excess in the vibrational density of states over the expectation of the Debye theory, the so-called boson peak, is found in the INS and Raman spectra as a peak at ∼2 meV (∼16 cm-1) and also in the direct measurement of heat capacity at very low temperatures (4-20 K). This low-frequency vibration is incorporated into the curve fits of Raman, FIR, and MD data at room temperature. Fits of spectra from these different sources in the range below 100 cm-1 are consistently achieved with three components at ca. 25, 50, and 80 cm-1, but with distinct relative intensities among the different techniques. It is proposed as the collective nature of the lowest-frequency component and the anion-cation intermolecular vibration nature of the highest-frequency component. The MD results indicate that there is no clear distinction between acoustic and optic vibrations in the spectral range investigated in this work for the ionic liquids [N1114][NTf2] and [N1444][NTf2]. The analysis carried out here agrees in part, but not entirely, with other propositions in the literature, mainly from optical Kerr effect (OKE) and FIR spectroscopies, concerning the intermolecular dynamics of ionic liquids.
Collapse
Affiliation(s)
- Thamires A Lima
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA and Laboratório de Espectroscopia Molecular, Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, 05513-970 São Paulo, SP, Brazil.
| | - Vitor H Paschoal
- Laboratório de Espectroscopia Molecular, Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, 05513-970 São Paulo, SP, Brazil.
| | - Rafael S Freitas
- Instituto de Física, Universidade de São Paulo, 05314-970 São Paulo, São Paulo, Brazil
| | - Luiz F O Faria
- Laboratório de Espectroscopia Molecular, Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, 05513-970 São Paulo, SP, Brazil.
| | - Zhixia Li
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA and Department of Nuclear, Plasma, and Radiological Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Madhusudan Tyagi
- NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland 20899-6102, USA and Department of Materials Science and Engineering, University of Maryland, College Park, Maryland 20742, USA
| | - Y Z
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA and Department of Nuclear, Plasma, and Radiological Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA and Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Mauro C C Ribeiro
- Laboratório de Espectroscopia Molecular, Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, 05513-970 São Paulo, SP, Brazil.
| |
Collapse
|
2
|
Ghorai PK, Matyushov DV. Equilibrium Solvation, Electron-Transfer Reactions, and Stokes-Shift Dynamics in Ionic Liquids. J Phys Chem B 2020; 124:3754-3769. [DOI: 10.1021/acs.jpcb.0c01773] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Pradip Kr. Ghorai
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, India
| | - Dmitry V. Matyushov
- Department of Physics and School of Molecular Sciences, Arizona State University, PO Box 871504, Tempe, Arizona 85287, United States
| |
Collapse
|
3
|
Abstract
Molecular dynamics (MD) simulations of five ionic liquids based on 1-alkyl-3-methylimidazolium cations, [C n C1im]+, have been performed in order to calculate high-frequency elastic moduli and to evaluate heterogeneity of local elastic moduli. The MD simulations of [C n C1im][NO3], n = 2, 4, 6, and 8, assessed the effect of domain segregation when the alkyl chain length increases, and [C8C1im][PF6] assessed the effect of strength of anion-cation interaction. Dispersion curves of excitation energies of longitudinal and transverse acoustic, LA and TA, modes were obtained from time correlation functions of mass currents at different wavevectors. High-frequency sound velocity of LA modes depends on the alkyl chain length, but sound velocity for TA modes does not. High-frequency bulk and shear moduli, K ∞ and G ∞ , depend on the alkyl chain length because of a density effect. Both K ∞ and G ∞ are strongly dependent on the anion. The calculation of local bulk and shear moduli was accomplished by performing bulk and shear deformations of the systems cooled to 0 K. The simulations showed a clear connection between structural and elastic modulus heterogeneities. The development of nano-heterogeneous structure with increasing length of the alkyl chain in [C n C1im][NO3] implies lower values for local bulk and shear moduli in the non-polar domains. The mean value and the standard deviations of distributions of local elastic moduli decrease when [NO3]- is replaced by the less coordinating [PF6]- anion.
Collapse
Affiliation(s)
- Arno A Veldhorst
- Laboratório de Espectroscopia Molecular, Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes 748, São Paulo 05508-000, Brazil
| | - Mauro C C Ribeiro
- Laboratório de Espectroscopia Molecular, Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes 748, São Paulo 05508-000, Brazil
| |
Collapse
|
4
|
Dzida M, Zorębski E, Zorębski M, Żarska M, Geppert-Rybczyńska M, Chorążewski M, Jacquemin J, Cibulka I. Speed of Sound and Ultrasound Absorption in Ionic Liquids. Chem Rev 2017; 117:3883-3929. [DOI: 10.1021/acs.chemrev.5b00733] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Marzena Dzida
- University of Silesia, Institute of Chemistry, Szkolna 9, 40-006 Katowice, Poland
| | - Edward Zorębski
- University of Silesia, Institute of Chemistry, Szkolna 9, 40-006 Katowice, Poland
| | - Michał Zorębski
- University of Silesia, Institute of Chemistry, Szkolna 9, 40-006 Katowice, Poland
| | - Monika Żarska
- University of Silesia, Institute of Chemistry, Szkolna 9, 40-006 Katowice, Poland
| | | | - Mirosław Chorążewski
- University of Silesia, Institute of Chemistry, Szkolna 9, 40-006 Katowice, Poland
| | - Johan Jacquemin
- School
of Chemistry and Chemical Engineering/QUILL, Queen’s University Belfast, Belfast BT9 5AG, United Kingdom
- Université François Rabelais, Laboratoire PCM2E, Parc de Grandmont, 37200 Tours, France
| | - Ivan Cibulka
- University of Chemistry and Technology, Department
of Physical Chemistry, Technická 5, 166 28 Prague, Czech Republic
| |
Collapse
|
6
|
Demmel F, Szubrin D, Pilgrim WC, De Francesco A, Formisano F. Transition from hydrodynamic to viscoelastic propagation of sound in molten RbBr. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 92:012307. [PMID: 26274162 DOI: 10.1103/physreve.92.012307] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Indexed: 06/04/2023]
Abstract
Inelastic neutron scattering was applied to measure the acoustic-type excitations in the molten alkali halide rubidium bromide. For molten RbBr neutron scattering is mainly sensitive to the number density fluctuation spectrum and is not influenced by charge fluctuations. Utilizing a dedicated Brillouin scattering spectrometer, we focused on the small-wave-vector range. From inelastic excitations in the spectra a dispersion relation was obtained, which shows a large positive dispersion effect. This frequency enhancement is related to a viscoelastic response of the liquid at high frequencies. Towards small wave vectors we identify the transition to hydrodynamic behavior. This observation is supported by a transition of the sound velocity from a viscoelastic enhanced value to the adiabatic speed of sound for the acoustic-type excitations. Furthermore, the spectrum transforms into a line shape compatible with a prediction from hydrodynamics.
Collapse
Affiliation(s)
- F Demmel
- ISIS Facility, Rutherford Appleton Laboratory, Didcot OX11 0QX, United Kingdom
| | - D Szubrin
- Fachbereich Chemie, Philipps-Universität Marburg, 35032 Marburg, Germany
| | - W C Pilgrim
- Fachbereich Chemie, Philipps-Universität Marburg, 35032 Marburg, Germany
| | - A De Francesco
- CNR-IOM c/o OGG Institut Laue-Langevin, 38042 Grenoble, France
| | - F Formisano
- CNR-IOM c/o OGG Institut Laue-Langevin, 38042 Grenoble, France
| |
Collapse
|
7
|
Affiliation(s)
- Robert Hayes
- Discipline
of Chemistry, The University of Newcastle, NSW 2308, Callaghan, Australia
| | - Gregory G. Warr
- School
of Chemistry, The University of Sydney, NSW 2006, Sydney, Australia
| | - Rob Atkin
- Discipline
of Chemistry, The University of Newcastle, NSW 2308, Callaghan, Australia
| |
Collapse
|