1
|
Naga N, Jinno M, Wang Y, Nakano T. The first space-filling polyhedrons of polymer cubic cells originated from Weaire-Phelan structure created by polymerization induced phase separation. Sci Rep 2022; 12:19141. [DOI: 10.1038/s41598-022-22058-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 10/10/2022] [Indexed: 11/11/2022] Open
Abstract
AbstractThe Weaire–Phelan structure is a three-dimensional structure composed of two different polyhedra having the same volume, i.e., pyritohedron and truncated hexagonal trapezohedron. It was proposed by Weaire and Phelan in 1993 as a solution of the Kelvin problem of filling space with no gaps with cells of minimum surface area and equal volume. It was found in physical systems including liquid foam and a metal alloy while it has never been constructed as organic materials. We report herewith the first polymeric Weaire–Phelan structure constructed through phase-separation of a single polymer species that is synthesized by simple polyaddition between tetrakis(3-mercaptopropionate) and 1,6-diisocyanatohexane. The structure has the order of micrometers and is amorphous unlike reported crystal structures similar to the Weaire–Phelan structure.
Collapse
|
2
|
Khaskov MA, Davydova EA, Valueva MI, Sinyakov SD. Influence of the Reactivity of the Thermosetting Component in the Resol Resin/Ethylene Glycol System on the Properties of Pyrolyzates. RUSS J APPL CHEM+ 2020. [DOI: 10.1134/s107042722002007x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
3
|
Mukherjee A, Mukherjee R, Ankit K, Bhattacharya A, Nestler B. Influence of substrate interaction and confinement on electric-field-induced transition in symmetric block-copolymer thin films. Phys Rev E 2016; 93:032504. [PMID: 27078402 DOI: 10.1103/physreve.93.032504] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Indexed: 11/07/2022]
Abstract
In the present work, we study morphologies arising due to competing substrate interaction, electric field, and confinement effects on a symmetric diblock copolymer. We employ a coarse-grained nonlocal Cahn-Hilliard phenomenological model taking into account the appropriate contributions of substrate interaction and electrostatic field. The proposed model couples the Ohta-Kawasaki functional with Maxwell equation of electrostatics, thus alleviating the need for any approximate solution used in previous studies. We calculate the phase diagram in electric-field-substrate strength space for different film thicknesses. In addition to identifying the presence of parallel, perpendicular, and mixed lamellae phases similar to analytical calculations, we also find a region in the phase diagram where hybrid morphologies (combination of two phases) coexist. These hybrid morphologies arise either solely due to substrate affinity and confinement or are induced due to the applied electric field. The dependence of the critical fields for transition between the various phases on substrate strength, film thickness, and dielectric contrast is discussed. Some preliminary 3D results are also presented to corroborate the presence of hybrid morphologies.
Collapse
Affiliation(s)
- Arnab Mukherjee
- Institute of Materials Processes, Karlsruhe University of Applied Sciences, Moltkestrasse 30, 76133, Karlsruhe, Germany.,Institute of Applied Materials-Computational Materials Science, Karlsruhe Institute of Technology, Haid-und-Neu strasse 7, 76131, Karlsruhe, Germany
| | - Rajdip Mukherjee
- Department of Materials Science and Engineering, Indian Institute of Technology Kanpur, 208016, Kanpur, India
| | - Kumar Ankit
- Institute of Applied Materials-Computational Materials Science, Karlsruhe Institute of Technology, Haid-und-Neu strasse 7, 76131, Karlsruhe, Germany
| | - Avisor Bhattacharya
- Institute of Materials Processes, Karlsruhe University of Applied Sciences, Moltkestrasse 30, 76133, Karlsruhe, Germany.,Institute of Applied Materials-Computational Materials Science, Karlsruhe Institute of Technology, Haid-und-Neu strasse 7, 76131, Karlsruhe, Germany
| | - Britta Nestler
- Institute of Materials Processes, Karlsruhe University of Applied Sciences, Moltkestrasse 30, 76133, Karlsruhe, Germany.,Institute of Applied Materials-Computational Materials Science, Karlsruhe Institute of Technology, Haid-und-Neu strasse 7, 76131, Karlsruhe, Germany
| |
Collapse
|
4
|
Galanis J, Tsori Y. Interface initiation and propagation in liquid demixing with electric fields. J Chem Phys 2014; 141:214506. [DOI: 10.1063/1.4902406] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Jennifer Galanis
- Department of Chemical Engineering, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel
| | - Yoav Tsori
- Department of Chemical Engineering, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel
| |
Collapse
|