1
|
Ravasio A, Bethkenhagen M, Hernandez JA, Benuzzi-Mounaix A, Datchi F, French M, Guarguaglini M, Lefevre F, Ninet S, Redmer R, Vinci T. Metallization of Shock-Compressed Liquid Ammonia. PHYSICAL REVIEW LETTERS 2021; 126:025003. [PMID: 33512205 DOI: 10.1103/physrevlett.126.025003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 11/05/2020] [Accepted: 12/10/2020] [Indexed: 06/12/2023]
Abstract
Ammonia is predicted to be one of the major components in the depths of the ice giant planets Uranus and Neptune. Their dynamics, evolution, and interior structure are insufficiently understood and models rely imperatively on data for equation of state and transport properties. Despite its great significance, the experimentally accessed region of the ammonia phase diagram today is still very limited in pressure and temperature. Here we push the probed regime to unprecedented conditions, up to ∼350 GPa and ∼40 000 K. Along the Hugoniot, the temperature measured as a function of pressure shows a subtle change in slope at ∼7000 K and ∼90 GPa, in agreement with ab initio simulations we have performed. This feature coincides with the gradual transition from a molecular liquid to a plasma state. Additionally, we performed reflectivity measurements, providing the first experimental evidence of electronic conduction in high-pressure ammonia. Shock reflectance continuously rises with pressure above 50 GPa and reaches saturation values above 120 GPa. Corresponding electrical conductivity values are up to 1 order of magnitude higher than in water in the 100 GPa regime, with possible significant contributions of the predicted ammonia-rich layers to the generation of magnetic dynamos in ice giant interiors.
Collapse
Affiliation(s)
- A Ravasio
- LULI, CNRS, CEA, École Polytechnique-Institut Polytechnique de Paris, route de Saclay, 91128 Palaiseau cedex, France
| | - M Bethkenhagen
- École Normale Supérieure de Lyon, Université Lyon 1, Laboratoire de Géologie de Lyon, CNRS UMR 5276, 69364 Lyon Cedex 07, France
- Institut für Physik, Universität Rostock, 18051 Rostock, Germany
| | - J-A Hernandez
- LULI, CNRS, CEA, École Polytechnique-Institut Polytechnique de Paris, route de Saclay, 91128 Palaiseau cedex, France
- Centre for Earth Evolution and Dynamics, University of Oslo, N-0315 Oslo, Norway
| | - A Benuzzi-Mounaix
- LULI, CNRS, CEA, École Polytechnique-Institut Polytechnique de Paris, route de Saclay, 91128 Palaiseau cedex, France
| | - F Datchi
- Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie (IMPMC), Sorbonne Université, CNRS UMR 7590, MNHN, 4 place Jussieu, F-75005 Paris, France
| | - M French
- Institut für Physik, Universität Rostock, 18051 Rostock, Germany
| | - M Guarguaglini
- LULI, CNRS, CEA, École Polytechnique-Institut Polytechnique de Paris, route de Saclay, 91128 Palaiseau cedex, France
| | - F Lefevre
- LULI, CNRS, CEA, École Polytechnique-Institut Polytechnique de Paris, route de Saclay, 91128 Palaiseau cedex, France
| | - S Ninet
- Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie (IMPMC), Sorbonne Université, CNRS UMR 7590, MNHN, 4 place Jussieu, F-75005 Paris, France
| | - R Redmer
- Institut für Physik, Universität Rostock, 18051 Rostock, Germany
| | - T Vinci
- LULI, CNRS, CEA, École Polytechnique-Institut Polytechnique de Paris, route de Saclay, 91128 Palaiseau cedex, France
| |
Collapse
|
2
|
Li D, Wang C, Yan J, Fu ZG, Zhang P. Structural and transport properties of ammonia along the principal Hugoniot. Sci Rep 2017; 7:12338. [PMID: 28951594 PMCID: PMC5615040 DOI: 10.1038/s41598-017-12429-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 09/08/2017] [Indexed: 11/09/2022] Open
Abstract
We investigate, via quantum molecular dynamics simulations, the structural and transport properties of ammonia along the principal Hugoniot for temperatures up to 10 eV and densities up to 2.6 g/cm3. With the analysis of the molecular dynamics trajectories by use of the bond auto-correlation function, we identify three distinct pressure-temperature regions for local chemical structures of ammonia. We derive the diffusivity and viscosity of strong correlated ammonia with high accuracy through fitting the velocity and stress-tensor autocorrelation functions with complex functional form which includes structures and multiple time scales. The statistical error of the transport properties is estimated. It is shown that the diffusivity and viscosity behave in a distinctly different manner at these three regimes and thus present complex features. In the molecular fluid regime, the hydrogen atoms have almost the similar diffusivity as nitrogen and the viscosity is dominated by the kinetic contribution. When entering into the mixture regime, the transport behavior of the system remarkably changes due to the stronger ionic coupling, and the viscosity is determined to decrease gradually and achieve minimum at about 2.0 g/cm3 on the Hugoniot. In the plasma regime, the hydrogen atoms diffuse at least twice as fast as the nitrogen atoms.
Collapse
Affiliation(s)
- Dafang Li
- Institute of Applied Physics and Computational Mathematics, Beijing, 100088, People's Republic of China
| | - Cong Wang
- Institute of Applied Physics and Computational Mathematics, Beijing, 100088, People's Republic of China.,Center for Applied Physics and Technology, Peking University, Beijing, 100871, People's Republic of China
| | - Jun Yan
- Institute of Applied Physics and Computational Mathematics, Beijing, 100088, People's Republic of China.,Center for Applied Physics and Technology, Peking University, Beijing, 100871, People's Republic of China
| | - Zhen-Guo Fu
- Institute of Applied Physics and Computational Mathematics, Beijing, 100088, People's Republic of China
| | - Ping Zhang
- Institute of Applied Physics and Computational Mathematics, Beijing, 100088, People's Republic of China. .,Center for Applied Physics and Technology, Peking University, Beijing, 100871, People's Republic of China.
| |
Collapse
|