1
|
Majid MF, Mohd Zaid HF, Abd Shukur MF, Ahmad A, Jumbri K. Physicochemical properties and density functional theory calculation of octahedral UiO-66 with Bis(Trifluoromethanesulfonyl)imide ionic liquids. Heliyon 2023; 9:e20743. [PMID: 37867795 PMCID: PMC10585329 DOI: 10.1016/j.heliyon.2023.e20743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/24/2023] [Accepted: 10/05/2023] [Indexed: 10/24/2023] Open
Abstract
In this study, the physicochemical properties and molecular interactions between zirconium-based metal-organic framework (UiO-66) and three different ionic liquids based on bis(trifluoromethanesulfonyl)imide anion (EMIM+, BMIM+ and OMIM+) was performed via a combined experimental and computational approach. The ionic liquid loaded UiO-66 or IL@UiO-66 was synthesized and characterized to understand the host-guest interaction. Density functional theory calculation was performed to analyse the electronic structure of IL@UiO-66 to provide molecular insight on the dominant interactions occurred in the hybrid material. Results showed that all ILs were successfully incorporated into the micropores of UiO-66. The 3D framework was retained even after loaded with ILs as analyzed from XRD pattern. FTIR spectrum reveals that interactions of ILs with UiO-66 influenced by the alkyl chain length of the cation. The anion has a profound affinity with the UiO-66 due to the presence of electronegative atoms. Phase transition study from DSC suggested that the incorporation of ILs has stabilized the framework of UiO-66 by shifting the endothermic peak to a higher state. These findings were further elaborated with DFT calculation. Geometrical optimizations confirmed the structural parameter changes of UiO-66 when loaded with ILs. These was mainly contributed by the non-covalent interactions which was confirmed by the reduced density gradient scattered plot. Another important findings are the strength of hydrogen bonding at the host-guest interface was influenced by the alkyl chain length. The molecular orbital analysis also shows that the size of alkyl chain influence the reactivity of the hybrid material. The present study provides fundamental insights on the molecular interaction of UiO-66 and ILs as a hybrid material, which can open new possibilities for advanced material for metal-organic framework applications in energy storage system, catalysis, gas storage and medicinal chemistry.
Collapse
Affiliation(s)
- Mohd Faridzuan Majid
- Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, 32610, Seri Iskandar, Perak Darul Ridzuan, Malaysia
- Centre of Innovative Nanostructures & Nanodevices (COINN), Universiti Teknologi PETRONAS, 32610, Seri Iskandar, Perak Darul Ridzuan, Malaysia
| | - Hayyiratul Fatimah Mohd Zaid
- Chemical Engineering Department, Universiti Teknologi PETRONAS, Seri Iskandar, 32610, Perak Darul Ridzuan, Malaysia
- Centre of Innovative Nanostructures & Nanodevices (COINN), Universiti Teknologi PETRONAS, 32610, Seri Iskandar, Perak Darul Ridzuan, Malaysia
| | - Muhammad Fadhlullah Abd Shukur
- Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, 32610, Seri Iskandar, Perak Darul Ridzuan, Malaysia
- Centre of Innovative Nanostructures & Nanodevices (COINN), Universiti Teknologi PETRONAS, 32610, Seri Iskandar, Perak Darul Ridzuan, Malaysia
| | - Azizan Ahmad
- Department of Chemical Sciences, Universiti Kebangsaan Malaysia, Bangi, 43600, Selangor, Malaysia
- Department of Physics, Faculty of Science and Technology, Airlangga University (Campus C), Mulyorejo Road, Surabaya, 60115, Indonesia
| | - Khairulazhar Jumbri
- Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, 32610, Seri Iskandar, Perak Darul Ridzuan, Malaysia
- Centre for Research in Ionic Liquids (CORIL), Universiti Teknologi PETRONAS, 32610, Seri Iskandar, Perak Darul Ridzuan, Malaysia
| |
Collapse
|
2
|
Patil S, Sun R, Cheng S, Cheng S. Molecular Mechanism of the Debye Relaxation in Monohydroxy Alcohols Revealed from Rheo-Dielectric Spectroscopy. PHYSICAL REVIEW LETTERS 2023; 130:098201. [PMID: 36930926 DOI: 10.1103/physrevlett.130.098201] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 01/27/2023] [Indexed: 06/18/2023]
Abstract
Rheo-dielectric spectroscopy is employed to investigate the effect of external shear on Debye-like relaxation of a model monohydroxy alcohol, i.e., the 2-ethyl-1-hexanol (2E1H). Shear deformation leads to strong acceleration in the structural relaxation, the Debye relaxation, and the terminal relaxation of 2E1H. Moreover, the shear-induced reduction in structural relaxation time, τ_{α}, scales quadratically with that of Debye time, τ_{D}, and the terminal flow time, τ_{f}, suggesting a relationship of τ_{D}^{2}∼τ_{α}. Further analyses reveal τ_{D}^{2}/τ_{α} of 2E1H follows Arrhenius temperature dependence that applies remarkably well to many other monohydroxy alcohols with different molecular sizes, architectures, and alcohol types. These results cannot be understood by the prevailing transient chain model, and suggest a H-bonding breakage facilitated sub-supramolecular reorientation as the origin of Debye relaxation of monohydroxy alcohols, akin to the molecular mechanism for the terminal relaxation of unentangled "living" polymers.
Collapse
Affiliation(s)
- Shalin Patil
- Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, Michigan 48824, USA
| | - Ruikun Sun
- Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, Michigan 48824, USA
| | - Shinian Cheng
- Institute of Physics, University of Silesia in Katowice, SMCEBI, 75 Pulku Piechoty 1A, 41-500 Chorzow, Poland
| | - Shiwang Cheng
- Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, Michigan 48824, USA
| |
Collapse
|
3
|
Mikkelsen M, Gabriel JP, Hecksher T. Dielectric and Shear Mechanical Spectra of Propanols: The Influence of Hydrogen-Bonded Structures. J Phys Chem B 2023; 127:371-377. [PMID: 36563319 DOI: 10.1021/acs.jpcb.2c07120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
We present a dielectric and shear mechanical study of 1-propanol and three phenylpropanols. Contrary to other monoalcohols, the phenylpropanols do not show a bimodal behavior in their dielectric response, but instead show a single, rather narrow process. Combined dielectric and light scattering spectra (Böhmer, T.; et al. J. Phys. Chem. B 2019, 123, 10959) have shown that this single peak may be separated into a self- and a cross-correlation part, thus indicating that phenylpropanols do display features originating from hydrogen-bonded structures. The shear mechanical spectra support that interpretation, demonstrating a subtle, yet clear, low-frequency polymer-like mode, similar to what is found in other monoalcohols. An analysis of the characteristic time scales found in the spectra shows that shear alpha relaxation is faster than the dielectric alpha and that time scale separation of the dielectric Debye and alpha processes is temperature independent and nearly identical in all the phenylpropanols.
Collapse
Affiliation(s)
- Mathias Mikkelsen
- Glass and Time, IMFUFA, Department of Science and Environment, Roskilde University, Roskilde 4000, Denmark
| | - Jan Philipp Gabriel
- Glass and Time, IMFUFA, Department of Science and Environment, Roskilde University, Roskilde 4000, Denmark
| | - Tina Hecksher
- Glass and Time, IMFUFA, Department of Science and Environment, Roskilde University, Roskilde 4000, Denmark
| |
Collapse
|
4
|
Singh LP. Primary and secondary relaxation processes in poly(propylene glycol) monobutyl ether: a broadband dielectric spectroscopy investigation. Polym J 2022. [DOI: 10.1038/s41428-022-00728-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
5
|
Ananiadou A, Papamokos G, Steinhart M, Floudas G. Effect of confinement on the dynamics of 1-propanol and other monohydroxy alcohols. J Chem Phys 2021; 155:184504. [PMID: 34773957 DOI: 10.1063/5.0063967] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We report the effect of confinement on the dynamics of three monohydroxy alcohols (1-propanol, 2-ethyl-1-hexanol, and 4-methyl-3-heptanol) differing in their chemical structure and, consequently, in the dielectric strength of the "Debye" process. Density functional theory calculations in bulk 1-propanol identified both linear and ring-like associations composed of up to five repeat units. The simulation results revealed that the ring structures, with a low dipole moment (∼2 D), are energetically preferred over the linear assemblies with a dipole moment of 2.18 D per repeat unit. Under confinement in nanoporous alumina (in templates with pore diameters ranging from 400 to 20 nm), all dynamic processes were found to speed up irrespective of the molecular architecture. The characteristic freezing temperatures of the α and the Debye-like processes followed the pore size dependence: Ta,D=Ta,D bulk-A/d1/2, where d is the pore diameter. The characteristic "freezing" temperatures for the Debye-like (the slow process for confined 1-propanol is non-Debye) and the α-processes decrease, respectively, by 6.5 and 13 K in confined 1-propanol, by 9.5 and 19 K in confined 2-ethyl-1-hexanol, and by 9 and 23 K in confined 4-methyl-3-heptanol within the same 25 nm pores. In 2-ethyl-1-hexanol, confinement reduced the number of linearly associated repeats from approximately heptamers in the bulk to dimers within 25 pores. In addition, the slower process in bulk 2-ethyl-1-hexanol and 4-methyl-3-heptanol, where the signal is dominated by ring-like supramolecular assemblies, is clearly non-Debye. The results suggest that the effect of confinement is dominant in the latter assemblies.
Collapse
Affiliation(s)
- Antonela Ananiadou
- Department of Physics, University of Ioannina, P.O. Box 1186, 45110 Ioannina, Greece
| | - George Papamokos
- Department of Physics, University of Ioannina, P.O. Box 1186, 45110 Ioannina, Greece
| | - Martin Steinhart
- Institut für Chemie neuer Materialien, Universität Osnabrück, D-49069 Osnabrück, Germany
| | - George Floudas
- Department of Physics, University of Ioannina, P.O. Box 1186, 45110 Ioannina, Greece
| |
Collapse
|
6
|
Bolle J, Bierwirth SP, Požar M, Perera A, Paulus M, Münzner P, Albers C, Dogan S, Elbers M, Sakrowski R, Surmeier G, Böhmer R, Tolan M, Sternemann C. Isomeric effects in structure formation and dielectric dynamics of different octanols. Phys Chem Chem Phys 2021; 23:24211-24221. [PMID: 34693949 DOI: 10.1039/d1cp02468j] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The understanding of the microstructure of associated liquids promoted by hydrogen-bonding and constrained by steric hindrance is highly relevant in chemistry, physics, biology and for many aspects of daily life. In this study we use a combination of X-ray diffraction, dielectric spectroscopy and molecular dynamics simulations to reveal temperature induced changes in the microstructure of different octanol isomers, i.e., linear 1-octanol and branched 2-, 3- and 4-octanol. In all octanols, the hydroxyl groups form the basis of chain-, cyclic- or loop-like bonded structures that are separated by outwardly directed alkyl chains. This clustering is analyzed through the scattering pre-peaks observed from X-ray scattering and simulations. The charge ordering which pilots OH aggregation can be linked to the strength of the Debye process observed in dielectric spectroscopy. Interestingly, all methods used here converge to the same interpretation: as one moves from 1-octanol to the branched octanols, the cluster structure evolves from loose large aggregates to a larger number of smaller, tighter aggregates. All alcohols exhibit a peculiar temperature dependence of both the pre-peak and Debye process, which can be understood as a change in microstructure promoted by chain association with increased chain length possibly assisted by ring-opening effects. All these results tend to support the intuitive picture of the entropic constraint provided by branching through the alkyl tails and highlight its capital entropic role in supramolecular assembly.
Collapse
Affiliation(s)
- Jennifer Bolle
- Fakultät Physik/DELTA, Technische Universität Dortmund, 44227 Dortmund, Germany.
| | - S Peter Bierwirth
- Fakultät Physik, Technische Universität Dortmund, 44227 Dortmund, Germany
| | - Martina Požar
- University of Split, Faculty of Science, Ruera Boškovića 33, 21000, Split, Croatia
| | - Aurélien Perera
- Sorbonne Université, Laboratoire de Physique Théorique de la Matiére Condensée (UMR CNRS 7600), 4 Place Jussieu, F75252, Paris cedex 05, France
| | - Michael Paulus
- Fakultät Physik/DELTA, Technische Universität Dortmund, 44227 Dortmund, Germany.
| | - Philipp Münzner
- Fakultät Physik, Technische Universität Dortmund, 44227 Dortmund, Germany
| | - Christian Albers
- Fakultät Physik/DELTA, Technische Universität Dortmund, 44227 Dortmund, Germany.
| | - Susanne Dogan
- Fakultät Physik/DELTA, Technische Universität Dortmund, 44227 Dortmund, Germany.
| | - Mirko Elbers
- Fakultät Physik/DELTA, Technische Universität Dortmund, 44227 Dortmund, Germany.
| | - Robin Sakrowski
- Fakultät Physik/DELTA, Technische Universität Dortmund, 44227 Dortmund, Germany.
| | - Göran Surmeier
- Fakultät Physik/DELTA, Technische Universität Dortmund, 44227 Dortmund, Germany.
| | - Roland Böhmer
- Fakultät Physik, Technische Universität Dortmund, 44227 Dortmund, Germany
| | - Metin Tolan
- Fakultät Physik/DELTA, Technische Universität Dortmund, 44227 Dortmund, Germany.
| | - Christian Sternemann
- Fakultät Physik/DELTA, Technische Universität Dortmund, 44227 Dortmund, Germany.
| |
Collapse
|
7
|
The dielectric response of phenothiazine-based glass-formers with different molecular complexity. Sci Rep 2021; 11:15816. [PMID: 34349137 PMCID: PMC8338989 DOI: 10.1038/s41598-021-95127-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 07/21/2021] [Indexed: 02/07/2023] Open
Abstract
We examined a series of structurally related glass-forming liquids in which a phenothiazine-based tricyclic core (PTZ) was modified by attaching n-alkyl chains of different lengths (n = 4, 8, 10). We systematically disentangled the impact of chemical structure modification on the intermolecular organization and molecular dynamics probed by broadband dielectric spectroscopy (BDS). X-ray diffraction (XRD) patterns evidenced that all PTZ-derivatives are not 'ordinary' liquids and form nanoscale clusters. The chain length has a decisive impact on properties, exerting a plasticizing effect on the dynamics. Its elongation decreases glass transition temperature with slight impact on fragility. The increase in the medium-range order was manifested as a broadening of the dielectric loss peak reflected in the lower value of stretching parameter βKWW. A disagreement with the behavior observed for non-associating liquids was found as a deviation from the anti-correlation between the value of βKWW and the relaxation strength of the α-process. Besides, to explain the broadening of loss peak in PTZ with the longest (decyl) chain a slow Debye process was postulated. In contrast, the sample with the shortest alkyl chain and a less complex structure with predominant supramolecular assembly through π-π stacking exhibits no clear Debye-mode fingerprints. The possible reasons are also discussed.
Collapse
|
8
|
|
9
|
Carignani E, Juszyńska-Gałązka E, Gałązka M, Forte C, Geppi M, Calucci L. Translational and rotational diffusion of three glass forming alcohols by 1H field cycling NMR relaxometry. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.115597] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
10
|
Zhai Y, Luo P, Nagao M, Nakajima K, Kikuchi T, Kawakita Y, Kienzle PA, Z Y, Faraone A. Relevance of hydrogen bonded associates to the transport properties and nanoscale dynamics of liquid and supercooled 2-propanol. Phys Chem Chem Phys 2021; 23:7220-7232. [PMID: 33876082 DOI: 10.1039/d0cp05481j] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
2-Propanol was investigated, in both the liquid and supercooled states, as a model system to study how hydrogen bonds affect the structural relaxation and the dynamics of mesoscale structures, of approximately several Ångstroms, employing static and quasi-elastic neutron scattering and molecular dynamics simulation. Dynamic neutron scattering measurements were performed over an exchanged wave-vector range encompassing the pre-peak, indicative of the presence of H-bonding associates, and the main peak. The dynamics observed at the pre-peak is associated with the formation and disaggregation of the H-bonded associates and is measured to be at least one order of magnitude slower than the dynamics at the main peak, which is identified as the structural relaxation. The measurements indicate that the macroscopic shear viscosity has a similar temperature dependence as the dynamics of the H-bonded associates, which highlights the important role played by these structures, together with the structural relaxation, in defining the macroscopic rheological properties of the system. Importantly, the characteristic relaxation time at the pre-peak follows an Arrhenius temperature dependence whereas at the main peak it exhibits a non-Arrhenius behavior on approaching the supercooled state. The origin of this differing behavior is attributed to an increased structuring of the hydrophobic domains of 2-propanol accommodating a more and more encompassing H-bond network, and a consequent set in of dynamic cooperativity.
Collapse
Affiliation(s)
- Yanqin Zhai
- Department of Nuclear, Plasma, and Radiological Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Guo Y, Jin X, Wang LM. Unusual Debye relaxation in 4-methyl-2-pentanol evidenced by high-pressure dielectric studies. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2021; 33:025401. [PMID: 33052889 DOI: 10.1088/1361-648x/abb742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The Debye relaxation is the main signal in the dielectric measurements of monoalcohols arising from the hydrogen-bonded superstructures, but its physics remains to be cleared. In this work, a monoalcohol of 4-methyl-2-pentanol is studied using dielectric spectroscopies recorded at high pressures. The dynamic parameters of the Debye and structural relaxations are extracted. The calculation of the Kirkwood factor of the Debye relaxation indicates chain-like H-bond molecular configurations. Remarkably, we found that both ratios of the relaxation strength and relaxation time between the Debye and structural dynamics, Δε D/Δε α and τ D/τ α , decreases upon compression, indicating a positive correlation. This is different from the results reported in primary 2-ethyl-1-hexanol and secondary 4-methyl-3-heptanol, where the two ratios are inversely correlated. The discussion and interpretation of these different results are provided.
Collapse
Affiliation(s)
- Yuxing Guo
- State Key Lab of Metastable Materials Science and Technology, and College of Materials Science and Engineering, Yanshan University, Qinhuangdao, Hebei, 066004 People's Republic of China
| | - Xiao Jin
- State Key Lab of Metastable Materials Science and Technology, and College of Materials Science and Engineering, Yanshan University, Qinhuangdao, Hebei, 066004 People's Republic of China
| | - Li-Min Wang
- State Key Lab of Metastable Materials Science and Technology, and College of Materials Science and Engineering, Yanshan University, Qinhuangdao, Hebei, 066004 People's Republic of China
| |
Collapse
|
12
|
Knapik-Kowalczuk J, Rams-Baron M, Paluch M. Current research trends in dielectric relaxation studies of amorphous pharmaceuticals: Physical stability, tautomerism, and the role of hydrogen bonding. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2020.116097] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
13
|
Heczko D, Jurkiewicz K, Tarnacka M, Grelska J, Wrzalik R, Kamiński K, Paluch M, Kamińska E. The impact of chemical structure on the formation of the medium-range order and dynamical properties of selected antifungal APIs. Phys Chem Chem Phys 2020; 22:28202-28212. [PMID: 33295350 DOI: 10.1039/d0cp02332a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this paper, we have analyzed structural, thermal, and dynamical properties of four azole antifungals: itraconazole (ITZ), posaconazole (POS), terconazole (TER) and ketoconazole (KET), differing mainly in the length of the rod-like backbone and slightly in side groups. Our investigations clearly demonstrated that the changes in the chemical structure result in a different ability to form the medium-range order (MRO) and variation in thermal and dynamical properties of these pharmaceuticals. Direct comparison of the diffractograms collected for glassy and crystalline materials indicated that the MRO observed in the former phases is related to maintaining the local molecular arrangement of the crystal structure. Moreover, it was shown that once the MRO-related diffraction peaks appear, additional mobility (δ- or α' relaxation), slower than the structural (α)-process, is also detected in dielectric spectra. This new mode is connected to the motions within supramolecular nanoaggregates. Detailed analysis of dielectric and calorimetric data also revealed that the variation in the internal structure and MRO of the examined pharmaceuticals have an impact on the glass transition temperature (Tg) shape of the α-process, isobaric fragility, molecular dynamics in the glassy state and number of dynamically correlated molecules. These findings could be helpful in an understanding the influence of different types of intermolecular MRO on the properties of substances having a similar chemical backbone.
Collapse
Affiliation(s)
- Dawid Heczko
- Department of Pharmacognosy and Phytochemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, ul. Jagiellońska 4, 41-200 Sosnowiec, Poland.
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Hansen BB, Spittle S, Chen B, Poe D, Zhang Y, Klein JM, Horton A, Adhikari L, Zelovich T, Doherty BW, Gurkan B, Maginn EJ, Ragauskas A, Dadmun M, Zawodzinski TA, Baker GA, Tuckerman ME, Savinell RF, Sangoro JR. Deep Eutectic Solvents: A Review of Fundamentals and Applications. Chem Rev 2020; 121:1232-1285. [PMID: 33315380 DOI: 10.1021/acs.chemrev.0c00385] [Citation(s) in RCA: 789] [Impact Index Per Article: 197.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Deep eutectic solvents (DESs) are an emerging class of mixtures characterized by significant depressions in melting points compared to those of the neat constituent components. These materials are promising for applications as inexpensive "designer" solvents exhibiting a host of tunable physicochemical properties. A detailed review of the current literature reveals the lack of predictive understanding of the microscopic mechanisms that govern the structure-property relationships in this class of solvents. Complex hydrogen bonding is postulated as the root cause of their melting point depressions and physicochemical properties; to understand these hydrogen bonded networks, it is imperative to study these systems as dynamic entities using both simulations and experiments. This review emphasizes recent research efforts in order to elucidate the next steps needed to develop a fundamental framework needed for a deeper understanding of DESs. It covers recent developments in DES research, frames outstanding scientific questions, and identifies promising research thrusts aligned with the advancement of the field toward predictive models and fundamental understanding of these solvents.
Collapse
Affiliation(s)
- Benworth B Hansen
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, Tennessee37996-2200, United States
| | - Stephanie Spittle
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, Tennessee37996-2200, United States
| | - Brian Chen
- Department of Chemical and Biomolecular Engineering, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Derrick Poe
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Yong Zhang
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Jeffrey M Klein
- Department of Chemical and Biomolecular Engineering, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Alexandre Horton
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, Tennessee37996-2200, United States
| | - Laxmi Adhikari
- Department of Chemistry, University of Missouri-Columbia, Columbia, Missouri 65211, United States
| | - Tamar Zelovich
- Department of Chemistry, New York University, New York, New York 10003, United States
| | - Brian W Doherty
- Department of Chemistry, New York University, New York, New York 10003, United States
| | - Burcu Gurkan
- Department of Chemical and Biomolecular Engineering, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Edward J Maginn
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Arthur Ragauskas
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, Tennessee37996-2200, United States
| | - Mark Dadmun
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37916, United States
| | - Thomas A Zawodzinski
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, Tennessee37996-2200, United States
| | - Gary A Baker
- Department of Chemistry, University of Missouri-Columbia, Columbia, Missouri 65211, United States
| | - Mark E Tuckerman
- Department of Chemistry, New York University, New York, New York 10003, United States
| | - Robert F Savinell
- Department of Chemical and Biomolecular Engineering, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Joshua R Sangoro
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, Tennessee37996-2200, United States
| |
Collapse
|
15
|
Xu D, Feng S, Wang JQ, Wang LM, Richert R. Entropic Nature of the Debye Relaxation in Glass-Forming Monoalcohols. J Phys Chem Lett 2020; 11:5792-5797. [PMID: 32608239 DOI: 10.1021/acs.jpclett.0c01499] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The dynamics and thermodynamics of the Debye and structural (α) relaxations in isomeric monoalcohols near the glass transition temperature Tg are explored using dielectric and calorimetric techniques. The α relaxation strength at Tg is found to correlate with the heat capacity increment, but no thermal signals can be detected to link to the Debye relaxation. We also observed that the activation energy of the Debye relaxation in monoalcohols is quantitatively correlated with that of the α relaxation at the kinetic Tg, sharing the dynamic behavior of the Rouse modes found in polymers. The experimental results together with the analogy to the Rouse modes in polymers suggest that the Debye process in monoalcohols is an entropic process manifested by the total dipole fluctuation of the supramolecular structures, which is triggered and driven by the α relaxation.
Collapse
Affiliation(s)
- Di Xu
- State Key Lab of Metastable Materials Science and Technology, and College of Materials Science and Engineering, Yanshan University, Qinhuangdao, Hebei 066004, China
| | - Shidong Feng
- State Key Lab of Metastable Materials Science and Technology, and College of Materials Science and Engineering, Yanshan University, Qinhuangdao, Hebei 066004, China
| | - Jun-Qiang Wang
- CAS Key Laboratory of Magnetic Materials and Devices, and Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Li-Min Wang
- State Key Lab of Metastable Materials Science and Technology, and College of Materials Science and Engineering, Yanshan University, Qinhuangdao, Hebei 066004, China
| | - R Richert
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
| |
Collapse
|
16
|
Guo Y, Jin X, Kang Z, Wang LM. Distinct changes of Debye relaxation in primary and secondary monoalcohols by carbon nano-dots. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2019.111738] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
17
|
Minecka A, Kamińska E, Jurkiewicz K, Heczko D, Hachuła B, Pisarski W, Kamiński K, Paluch M. Studies on the internal medium-range ordering and high pressure dynamics in modified ibuprofens. Phys Chem Chem Phys 2019; 22:295-305. [PMID: 31813945 DOI: 10.1039/c9cp04886c] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Broadband dielectric spectroscopy (BDS), combined with the X-ray diffraction (XRD) and Fourier transform infrared (FTIR) techniques, was used to study the dynamics of the primary (α) relaxation process and slow mode (SM), as well as structural properties and intermolecular interactions, in the methyl-, isopropyl-, hexyl-, and benzyl derivative of a well-known pharmaceutical, ibuprofen (IBU). Unexpectedly, the XRD and FTIR methods revealed the formation of medium-range ordering together with some molecular organization, which probably leads to the creation of small aggregates at the scale of several microns at lower temperatures. Moreover, high pressure dielectric experiments revealed that the SM (observed in the ambient pressure data) is not detected in the loss spectra of compressed IBU esters, which is consistent with the results reported previously for propylene carbonate and dioxolane derivatives. This finding can be interpreted as connected to either the comparable time scale of the structural dynamics and slow mode or suppression of the motions responsible for the latter process at elevated pressure. Additionally, it was found that the pressure coefficient of the glass transition temperature (dTg/dp) and activation volume (ΔV) change with molecular weight (Mw) in a non-monotonic way. It might be related to various chemical structures, conformations, and intermolecular interactions, as well as different architecture of supramolecular aggregates in the investigated compounds.
Collapse
Affiliation(s)
- Aldona Minecka
- Department of Pharmacognosy and Phytochemistry, Medical University of Silesia in Katowice, Faculty of Pharmaceutical Sciences in Sosnowiec, ul. Jagiellonska 4, 41-200 Sosnowiec, Poland.
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Honorio G, Bierwirth SP, Gainaru C, Böhmer R. Nonlinear electrical and rheological spectroscopies identify structural and supramolecular relaxations in a model peptide. SOFT MATTER 2019; 15:4334-4345. [PMID: 31073564 DOI: 10.1039/c9sm00434c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Supercooled liquid secondary amides display an electrical absorption peak characterized by an almost Debye-like shape, indicative of a close-to-exponential polarization response. This response, believed to be supramolecular in nature, is so enormously intense that the amide's structural process, contributing only a few percent to the total relaxation strength, is hard to resolve reliably using standard dielectric spectroscopy. To overcome this issue, nonlinear dielectric spectroscopy involving field-induced structural recovery and temperature-induced physical aging, was applied near the calorimetric glass transition of a mixture of N-methylformamide and N-ethylacetamide. Without the need to rely on cumbersome deconvolution procedures, it is thus demonstrated that the supramolecular response is by a factor of 6 slower than the structural relaxation. Conversely, in linear rheological experiments only the structural relaxation could be resolved, but not the supramolecular one. However, medium-amplitude oscillatory shear experiments carried out at 160 K do reveal the supramolecular process. Hence, the combination of linear and nonlinear mechanical measurements corroborates the dielectrically uncovered spectral separation of the two processes.
Collapse
Affiliation(s)
- Gabriel Honorio
- Fakultät Physik, Technische Universität Dortmund, 44221 Dortmund, Germany
| | | | | | | |
Collapse
|
19
|
Bierwirth SP, Honorio G, Gainaru C, Böhmer R. Linear and nonlinear shear studies reveal supramolecular responses in supercooled monohydroxy alcohols with faint dielectric signatures. J Chem Phys 2019; 150:104501. [DOI: 10.1063/1.5086529] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Affiliation(s)
- S. Peter Bierwirth
- Fakultät Physik, Technische Universität Dortmund, D-44221 Dortmund, Germany
| | - Gabriel Honorio
- Fakultät Physik, Technische Universität Dortmund, D-44221 Dortmund, Germany
| | - Catalin Gainaru
- Fakultät Physik, Technische Universität Dortmund, D-44221 Dortmund, Germany
| | - Roland Böhmer
- Fakultät Physik, Technische Universität Dortmund, D-44221 Dortmund, Germany
| |
Collapse
|
20
|
|
21
|
Bierwirth SP, Gainaru C, Böhmer R. Coexistence of two structural relaxation processes in monohydroxy alcohol-alkyl halogen mixtures: Dielectric and rheological studies. J Chem Phys 2018; 149:044509. [PMID: 30068194 DOI: 10.1063/1.5037037] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Evidence for the existence of two glass transitions is found in binary mixtures of monohydroxy alcohols with an aprotic alkyl halide by means of dielectric spectroscopy and, markedly, also shear rheology. In the mechanical data, an enormous separation of two components becomes obvious for suitable compositions. The observation of bimodal motional heterogeneity is possible despite the fact that the glass transition temperatures of these substances differ by only 40 K. Obviously, the hydrogen-bond driven formation of supramolecular structures in one of the mixture components facilitates the emergence of dynamic contrast which for other binary liquids was so far only observed in the presence of much larger glass transition temperature differences.
Collapse
Affiliation(s)
- S Peter Bierwirth
- Fakultät Physik, Technische Universität Dortmund, D-44221 Dortmund, Germany
| | - Catalin Gainaru
- Fakultät Physik, Technische Universität Dortmund, D-44221 Dortmund, Germany
| | - Roland Böhmer
- Fakultät Physik, Technische Universität Dortmund, D-44221 Dortmund, Germany
| |
Collapse
|
22
|
Büning T, Lueg J, Bolle J, Sternemann C, Gainaru C, Tolan M, Böhmer R. Connecting structurally and dynamically detected signatures of supramolecular Debye liquids. J Chem Phys 2018; 147:234501. [PMID: 29272922 DOI: 10.1063/1.4986866] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The monohydroxy alcohol 2-ethyl-1-hexanol mixed with the halogen-substituted alkyl halides 2-ethyl-1-hexyl chloride and 2-ethyl-1-hexyl bromide was studied using synchrotron-based x-ray scattering. In the diffraction patterns, an oxygen-related prepeak appears. The concentration dependence of its intensity, shape, and position indicates that the formation of the hydrogen-bonded associates of monohydroxy alcohols is largely hindered by the halogen alkane admixture. Using dielectric spectroscopy and high-resolution rheology on the same liquid mixtures, it is shown that these structural features are correlated with the relaxation mechanisms giving rise to supramolecular low-frequency dynamics.
Collapse
Affiliation(s)
- T Büning
- Fakultät Physik/DELTA, Technische Universität Dortmund, D-44221 Dortmund, Germany
| | - J Lueg
- Fakultät Physik, Technische Universität Dortmund, D-44221 Dortmund, Germany
| | - J Bolle
- Fakultät Physik/DELTA, Technische Universität Dortmund, D-44221 Dortmund, Germany
| | - C Sternemann
- Fakultät Physik/DELTA, Technische Universität Dortmund, D-44221 Dortmund, Germany
| | - C Gainaru
- Fakultät Physik, Technische Universität Dortmund, D-44221 Dortmund, Germany
| | - M Tolan
- Fakultät Physik/DELTA, Technische Universität Dortmund, D-44221 Dortmund, Germany
| | - R Böhmer
- Fakultät Physik, Technische Universität Dortmund, D-44221 Dortmund, Germany
| |
Collapse
|
23
|
Cosby T, Vicars Z, Heres M, Sangoro J. Associating Imidazoles: Elucidating the Correlation between the Static Dielectric Permittivity and Proton Conductivity. PHYSICAL REVIEW LETTERS 2018; 120:136001. [PMID: 29694165 DOI: 10.1103/physrevlett.120.136001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 01/30/2018] [Indexed: 06/08/2023]
Abstract
Broadband dielectric spectroscopy is employed to investigate the impact of supramolecular structure on charge transport and dynamics in hydrogen-bonded 2-ethyl-4-methylimidazole and 4-methylimidazole. Detailed analyses reveal (i) an inverse relationship between the average supramolecular chain length and proton conductivity and (ii) no direct correlation between the static dielectric permittivity and proton conductivity in imidazoles. These findings raise fundamental questions regarding the widespread notion that extended supramolecular hydrogen-bonded networks facilitate proton conduction in hydrogen bonding materials.
Collapse
Affiliation(s)
- Tyler Cosby
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, Tennessee 37996, USA
| | - Zachariah Vicars
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, Tennessee 37996, USA
| | - Maximilian Heres
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, Tennessee 37996, USA
| | - Joshua Sangoro
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, Tennessee 37996, USA
| |
Collapse
|
24
|
Jensen MH, Gainaru C, Alba-Simionesco C, Hecksher T, Niss K. Slow rheological mode in glycerol and glycerol–water mixtures. Phys Chem Chem Phys 2018; 20:1716-1723. [DOI: 10.1039/c7cp06482a] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Glycerol–water mixtures were studied at molar concentrations ranging from xgly = 1 (neat glycerol) to xgly = 0.3 using shear mechanical spectroscopy.
Collapse
Affiliation(s)
- M. H. Jensen
- Glass & Time, IMFUFA, Department of Science and Environment, Roskilde University
- DK-4000 Roskilde
- Denmark
- Laboratoire Léon Brillouin, CNRS CEA-UMR 12, CEA Saclay
- 91191 Gif-sur-Yvette Cedex
| | - C. Gainaru
- Fakultät Physik, Technische Universität Dortmund
- 44221 Dortmund
- Germany
| | - C. Alba-Simionesco
- Laboratoire Léon Brillouin, CNRS CEA-UMR 12, CEA Saclay
- 91191 Gif-sur-Yvette Cedex
- France
| | - T. Hecksher
- Glass & Time, IMFUFA, Department of Science and Environment, Roskilde University
- DK-4000 Roskilde
- Denmark
| | - K. Niss
- Glass & Time, IMFUFA, Department of Science and Environment, Roskilde University
- DK-4000 Roskilde
- Denmark
| |
Collapse
|
25
|
Rams-Baron M, Jędrzejowska A, Dulski M, Wolnica K, Geirhos K, Lunkenheimer P, Paluch M. Unusual dielectric response of 4-methyl-1,3-dioxolane derivatives. Phys Chem Chem Phys 2018; 20:28211-28222. [DOI: 10.1039/c8cp05913f] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
In this paper, we applied broadband dielectric spectroscopy (BDS) to investigate the molecular dynamics of three 4-methyl-1,3-dioxolane derivatives (MD) whose chemical structures differ in the length of non-polar alkyl side chains.
Collapse
Affiliation(s)
- Marzena Rams-Baron
- Institute of Physics
- University of Silesia
- 41-500 Chorzow
- Poland
- Silesian Center for Education and Interdisciplinary Research
| | - Agnieszka Jędrzejowska
- Institute of Physics
- University of Silesia
- 41-500 Chorzow
- Poland
- Silesian Center for Education and Interdisciplinary Research
| | - Mateusz Dulski
- Silesian Center for Education and Interdisciplinary Research
- 41-500 Chorzow
- Poland
- Institute of Material Science
- 41-500 Chorzow
| | - Kamila Wolnica
- Institute of Physics
- University of Silesia
- 41-500 Chorzow
- Poland
- Silesian Center for Education and Interdisciplinary Research
| | - Korbinian Geirhos
- Experimental Physics V
- Center for Electronic Correlations and Magnetism
- University of Augsburg
- 86159 Augsburg
- Germany
| | - Peter Lunkenheimer
- Experimental Physics V
- Center for Electronic Correlations and Magnetism
- University of Augsburg
- 86159 Augsburg
- Germany
| | - Marian Paluch
- Institute of Physics
- University of Silesia
- 41-500 Chorzow
- Poland
- Silesian Center for Education and Interdisciplinary Research
| |
Collapse
|
26
|
Young-Gonzales AR, Guiseppi-Elie A, Ediger MD, Richert R. Modifying hydrogen-bonded structures by physical vapor deposition: 4-methyl-3-heptanol. J Chem Phys 2017; 147:194504. [PMID: 29166100 DOI: 10.1063/1.4999300] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
We prepared films of 4-methyl-3-heptanol by vapor depositing onto substrates held at temperatures between Tdep = 0.6Tg and Tg, where Tg is the glass transition temperature. Using deposition rates between 0.9 and 6.0 nm/s, we prepared films about 5 μm thick and measured the dielectric properties via an interdigitated electrode cell onto which films were deposited. Samples prepared at Tdep = Tg display the dielectric behavior of the ordinary supercooled liquid. Films deposited at lower deposition temperatures show a high dielectric loss upon heating toward Tg, which decreases by a factor of about 12 by annealing at Tg = 162 K. This change is consistent with either a drop of the Kirkwood correlation factor, gk, by a factor of about 10, or an increase in the dielectric relaxation times, both being indicative of changes toward ring-like hydrogen-bonded structure characteristic of the ordinary liquid. We rationalize the high dielectric relaxation amplitude in the vapor deposited glass by suggesting that depositions at low temperature provide insufficient time for molecules to form ring-like supramolecular structures for which dipole moments cancel. Surprisingly, above Tg of the ordinary liquid, these vapor deposited films fail to completely recover the dielectric properties of the liquid obtained by supercooling. Instead, the dielectric relaxation remains slower and its amplitude much higher than that of the equilibrium liquid state, indicative of a structure that differs from the equilibrium liquid up to at least Tg + 40 K.
Collapse
Affiliation(s)
- A R Young-Gonzales
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287-1604, USA
| | - A Guiseppi-Elie
- Department of Biomedical Engineering, The Dwight Look College of Engineering, Texas A&M University, College Station, Texas 77843, USA
| | - M D Ediger
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53705, USA
| | - R Richert
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287-1604, USA
| |
Collapse
|
27
|
Richert R. Nonlinear dielectric effects in liquids: a guided tour. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2017; 29:363001. [PMID: 28665294 DOI: 10.1088/1361-648x/aa7cc4] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Dielectric relaxation measurements probe how the polarization of a material responds to the application of an external electric field, providing information on structure and dynamics of the sample. In the limit of small fields and thus linear response, such experiments reveal the properties of the material in the same thermodynamic state it would have in the absence of the external field. At sufficiently high fields, reversible changes in enthalpy and entropy of the system occur even at constant temperature, and these will in turn alter the polarization responses. The resulting nonlinear dielectric effects feature field induced suppressions (saturation) and enhancements (chemical effect) of the amplitudes, as well as time constant shifts towards faster (energy absorption) and slower (entropy reduction) dynamics. This review focuses on the effects of high electric fields that are reversible and observed at constant temperature for single component glass-forming liquids. The experimental challenges involved in nonlinear dielectric experiments, the approaches to separating and identifying the different sources of nonlinear behavior, and the current understanding of how high electric fields affect dielectric materials will be discussed. Covering studies from Debye's initial approach to the present state-of-the-art, it will be emphasized what insight can be gained from the nonlinear responses that are not available from dielectric relaxation results obtained in the linear regime.
Collapse
Affiliation(s)
- Ranko Richert
- School of Molecular Sciences, Arizona State University, Tempe, AZ 85287-1604, United States of America
| |
Collapse
|
28
|
Young-Gonzales AR, Richert R. Field induced changes in the ring/chain equilibrium of hydrogen bonded structures: 5-methyl-3-heptanol. J Chem Phys 2016; 145:074503. [DOI: 10.1063/1.4961022] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
29
|
Wikarek M, Pawlus S, Tripathy SN, Szulc A, Paluch M. How Different Molecular Architectures Influence the Dynamics of H-Bonded Structures in Glass-Forming Monohydroxy Alcohols. J Phys Chem B 2016; 120:5744-52. [DOI: 10.1021/acs.jpcb.6b01458] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- M. Wikarek
- Institute
of Physics, University of Silesia, ul. Uniwersytecka 4, 40-007 Katowice, Poland
- Silesian Center for Education and Interdisciplinary Research, ul. 75 Pułku Piechoty 1a, 41-500 Chorzów, Poland
| | - S. Pawlus
- Institute
of Physics, University of Silesia, ul. Uniwersytecka 4, 40-007 Katowice, Poland
- Silesian Center for Education and Interdisciplinary Research, ul. 75 Pułku Piechoty 1a, 41-500 Chorzów, Poland
| | - Satya N. Tripathy
- Institute
of Physics, University of Silesia, ul. Uniwersytecka 4, 40-007 Katowice, Poland
- Silesian Center for Education and Interdisciplinary Research, ul. 75 Pułku Piechoty 1a, 41-500 Chorzów, Poland
| | - A. Szulc
- Institute
of Physics, University of Silesia, ul. Uniwersytecka 4, 40-007 Katowice, Poland
| | - M. Paluch
- Institute
of Physics, University of Silesia, ul. Uniwersytecka 4, 40-007 Katowice, Poland
- Silesian Center for Education and Interdisciplinary Research, ul. 75 Pułku Piechoty 1a, 41-500 Chorzów, Poland
| |
Collapse
|
30
|
Michl M, Bauer T, Lunkenheimer P, Loidl A. Nonlinear dielectric spectroscopy in a fragile plastic crystal. J Chem Phys 2016; 144:114506. [DOI: 10.1063/1.4944394] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Affiliation(s)
- M. Michl
- Experimental Physics V, Center for Electronic Correlations and Magnetism, University of Augsburg, 86135 Augsburg, Germany
| | - Th. Bauer
- Experimental Physics V, Center for Electronic Correlations and Magnetism, University of Augsburg, 86135 Augsburg, Germany
| | - P. Lunkenheimer
- Experimental Physics V, Center for Electronic Correlations and Magnetism, University of Augsburg, 86135 Augsburg, Germany
| | - A. Loidl
- Experimental Physics V, Center for Electronic Correlations and Magnetism, University of Augsburg, 86135 Augsburg, Germany
| |
Collapse
|
31
|
Adrjanowicz K, Jakobsen B, Hecksher T, Kaminski K, Dulski M, Paluch M, Niss K. Communication: Slow supramolecular mode in amine and thiol derivatives of 2-ethyl-1-hexanol revealed by combined dielectric and shear-mechanical studies. J Chem Phys 2015; 143:181102. [DOI: 10.1063/1.4935510] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Affiliation(s)
- K. Adrjanowicz
- Department of Sciences, DNRF Centre “Glass and Time,” IMFUFA, Roskilde University, P.O. Box 260, DK-4000 Roskilde, Denmark
- NanoBioMedical Centre, Adam Mickiewicz University, ul. Umultowska 85, 61-614 Poznan, Poland
| | - B. Jakobsen
- Department of Sciences, DNRF Centre “Glass and Time,” IMFUFA, Roskilde University, P.O. Box 260, DK-4000 Roskilde, Denmark
| | - T. Hecksher
- Department of Sciences, DNRF Centre “Glass and Time,” IMFUFA, Roskilde University, P.O. Box 260, DK-4000 Roskilde, Denmark
| | - K. Kaminski
- Institute of Physics, University of Silesia, ul. Uniwersytecka 4, 40-007 Katowice, Poland
| | - M. Dulski
- Institute of Physics, University of Silesia, ul. Uniwersytecka 4, 40-007 Katowice, Poland
| | - M. Paluch
- Institute of Physics, University of Silesia, ul. Uniwersytecka 4, 40-007 Katowice, Poland
| | - K. Niss
- Department of Sciences, DNRF Centre “Glass and Time,” IMFUFA, Roskilde University, P.O. Box 260, DK-4000 Roskilde, Denmark
| |
Collapse
|
32
|
Mesele OO, Vartia AA, Laage D, Thompson WH. Reorientation of Isomeric Butanols: The Multiple Effects of Steric Bulk Arrangement on Hydrogen-Bond Dynamics. J Phys Chem B 2015; 120:1546-59. [DOI: 10.1021/acs.jpcb.5b07692] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Oluwaseun O. Mesele
- Department
of Chemistry, University of Kansas, Lawrence, Kansas 66045, United States
| | - Anthony A. Vartia
- Department
of Chemistry, University of Kansas, Lawrence, Kansas 66045, United States
| | - Damien Laage
- Department
of Chemistry, Ecole Normale Supérieure, UMR ENS-CNRS-UPMC 8640, 24 rue Lhmond, 75005 Paris, France
| | - Ward H. Thompson
- Department
of Chemistry, University of Kansas, Lawrence, Kansas 66045, United States
| |
Collapse
|
33
|
Young-Gonzales AR, Samanta S, Richert R. Dynamics of glass-forming liquids. XIX. Rise and decay of field induced anisotropy in the non-linear regime. J Chem Phys 2015; 143:104504. [DOI: 10.1063/1.4929988] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|
34
|
The effect of structural modifications on the solution and interfacial properties of straight and branched aliphatic alcohols: The role of hydrophobic effects. J Colloid Interface Sci 2015; 449:364-72. [DOI: 10.1016/j.jcis.2015.01.045] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Revised: 01/19/2015] [Accepted: 01/19/2015] [Indexed: 11/23/2022]
|
35
|
Local molecular organizations of ibuprofen, flurbiprofen and ketoprofen in the liquid phase: Insights from molecular dynamics simulations. J Mol Liq 2015. [DOI: 10.1016/j.molliq.2014.08.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
36
|
Sillrén P, Matic A, Karlsson M, Koza M, Maccarini M, Fouquet P, Götz M, Bauer T, Gulich R, Lunkenheimer P, Loidl A, Mattsson J, Gainaru C, Vynokur E, Schildmann S, Bauer S, Böhmer R. Liquid 1-propanol studied by neutron scattering, near-infrared, and dielectric spectroscopy. J Chem Phys 2014; 140:124501. [PMID: 24697453 DOI: 10.1063/1.4868556] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Liquid monohydroxy alcohols exhibit unusual dynamics related to their hydrogen bonding induced structures. The connection between structure and dynamics is studied for liquid 1-propanol using quasi-elastic neutron scattering, combining time-of-flight and neutron spin-echo techniques, with a focus on the dynamics at length scales corresponding to the main peak and the pre-peak of the structure factor. At the main peak, the structural relaxation times are probed. These correspond well to mechanical relaxation times calculated from literature data. At the pre-peak, corresponding to length scales related to H-bonded structures, the relaxation times are almost an order of magnitude longer. According to previous work [C. Gainaru, R. Meier, S. Schildmann, C. Lederle, W. Hiller, E. Rössler, and R. Böhmer, Phys. Rev. Lett. 105, 258303 (2010)] this time scale difference is connected to the average size of H-bonded clusters. The relation between the relaxation times from neutron scattering and those determined from dielectric spectroscopy is discussed on the basis of broad-band permittivity data of 1-propanol. Moreover, in 1-propanol the dielectric relaxation strength as well as the near-infrared absorbance reveal anomalous behavior below ambient temperature. A corresponding feature could not be found in the polyalcohols propylene glycol and glycerol.
Collapse
Affiliation(s)
- P Sillrén
- Department of Applied Physics, Chalmers University of Technology, SE-412 96 Göteborg, Sweden
| | - A Matic
- Department of Applied Physics, Chalmers University of Technology, SE-412 96 Göteborg, Sweden
| | - M Karlsson
- Department of Applied Physics, Chalmers University of Technology, SE-412 96 Göteborg, Sweden
| | - M Koza
- Institut Laue Langevin, 6, rue Jules Horowitz, BP 156, 38042 Grenoble Cedex 9, France
| | - M Maccarini
- Institut Laue Langevin, 6, rue Jules Horowitz, BP 156, 38042 Grenoble Cedex 9, France
| | - P Fouquet
- Institut Laue Langevin, 6, rue Jules Horowitz, BP 156, 38042 Grenoble Cedex 9, France
| | - M Götz
- Experimental Physics V, University of Augsburg, 86135 Augsburg, Germany
| | - Th Bauer
- Experimental Physics V, University of Augsburg, 86135 Augsburg, Germany
| | - R Gulich
- Experimental Physics V, University of Augsburg, 86135 Augsburg, Germany
| | - P Lunkenheimer
- Experimental Physics V, University of Augsburg, 86135 Augsburg, Germany
| | - A Loidl
- Experimental Physics V, University of Augsburg, 86135 Augsburg, Germany
| | - J Mattsson
- School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - C Gainaru
- Fakultät für Physik, Technische Universität Dortmund, 44221 Dortmund, Germany
| | - E Vynokur
- Fakultät für Physik, Technische Universität Dortmund, 44221 Dortmund, Germany
| | - S Schildmann
- Fakultät für Physik, Technische Universität Dortmund, 44221 Dortmund, Germany
| | - S Bauer
- Fakultät für Physik, Technische Universität Dortmund, 44221 Dortmund, Germany
| | - R Böhmer
- Fakultät für Physik, Technische Universität Dortmund, 44221 Dortmund, Germany
| |
Collapse
|
37
|
Hecksher T, Jakobsen B. Communication: Supramolecular structures in monohydroxy alcohols: Insights from shear-mechanical studies of a systematic series of octanol structural isomers. J Chem Phys 2014; 141:101104. [DOI: 10.1063/1.4895095] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Tina Hecksher
- DNRF Centre “Glass and Time”, IMFUFA, Department of Sciences, Roskilde University, Postbox 260, DK-4000 Roskilde, Denmark
| | - Bo Jakobsen
- DNRF Centre “Glass and Time”, IMFUFA, Department of Sciences, Roskilde University, Postbox 260, DK-4000 Roskilde, Denmark
| |
Collapse
|
38
|
|
39
|
Samanta S, Richert R. Limitations of heterogeneous models of liquid dynamics: Very slow rate exchange in the excess wing. J Chem Phys 2014; 140:054503. [DOI: 10.1063/1.4863347] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|