1
|
Broderick DR, Herbert JM. Delocalization error poisons the density-functional many-body expansion. Chem Sci 2024; 15:19893-19906. [PMID: 39568898 PMCID: PMC11575576 DOI: 10.1039/d4sc05955g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 10/22/2024] [Indexed: 11/22/2024] Open
Abstract
The many-body expansion is a fragment-based approach to large-scale quantum chemistry that partitions a single monolithic calculation into manageable subsystems. This technique is increasingly being used as a basis for fitting classical force fields to electronic structure data, especially for water and aqueous ions, and for machine learning. Here, we show that the many-body expansion based on semilocal density functional theory affords wild oscillations and runaway error accumulation for ion-water interactions, typified by F-(H2O) N with N ≳ 15. We attribute these oscillations to self-interaction error in the density-functional approximation. The effect is minor or negligible in small water clusters, explaining why it has not been noticed previously, but grows to catastrophic proportion in clusters that are only moderately larger. This behavior can be counteracted with hybrid functionals but only if the fraction of exact exchange is ≳50%, whereas modern meta-generalized gradient approximations including ωB97X-V, SCAN, and SCAN0 are insufficient to eliminate divergent behavior. Other mitigation strategies including counterpoise correction, density correction (i.e., exchange-correlation functionals evaluated atop Hartree-Fock densities), and dielectric continuum boundary conditions do little to curtail the problematic oscillations. In contrast, energy-based screening to cull unimportant subsystems can successfully forestall divergent behavior. These results suggest that extreme caution is warranted when the many-body expansion is combined with density functional theory.
Collapse
Affiliation(s)
- Dustin R Broderick
- Department of Chemistry & Biochemistry, The Ohio State University 151 W. Woodruff Ave. Columbus Ohio 43210 USA
| | - John M Herbert
- Department of Chemistry & Biochemistry, The Ohio State University 151 W. Woodruff Ave. Columbus Ohio 43210 USA
| |
Collapse
|
2
|
Ariyarathna IR, Leiding JA, Neukirch AJ, Zammit MC. Ground and Excited Electronic Structure Analysis of FeH with Correlated Wave Function Theory and Density Functional Approximations. J Phys Chem A 2024; 128:9412-9425. [PMID: 39428745 DOI: 10.1021/acs.jpca.4c05313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
Abstract
FeH is one of the most challenging diatomic molecules to study under electronic structure theory. Here, we have successfully studied 22 electronic states of FeH using ab initio multireference configuration interaction (MRCI), Davidson-corrected MRCI (MRCI+Q), and coupled cluster singles, doubles, and perturbative triples [CCSD(T)] levels of theory. We report their potential energy curves (PECs), excitation energies, dissociation energies, equilibrium electronic configurations, and a series of spectroscopic constants with the use of augmented triple-ζ, quadruple-ζ, and quintuple-ζ quality correlation consistent basis sets. The scalar relativistic effects and active space and core electron correlation contribution on the properties of FeH are also explored. The use of a large CASSCF active space that includes 4s, 4p, 3d, and 4d orbitals of Fe and the 1s of H is critical for producing accurate full PECs with proper dissociations and predicting the exact order of the electronic states. Our findings are in harmony with the experimental results available in the literature and will serve as reference values for future studies of FeH. Furthermore, with the use of PECs, the total internal partition function sum (TIPS) of FeH was calculated across a range of temperatures. Finally, we exploited the single-reference nature of the a6Δ of FeH and its ionized product FeH+ (X5Δ) to evaluate the associated density functional theory (DFT) errors on their dissociation energies and spectroscopic parameters.
Collapse
Affiliation(s)
- Isuru R Ariyarathna
- Physics and Chemistry of Materials (T-1), Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Jeffery A Leiding
- Physics and Chemistry of Materials (T-1), Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Amanda J Neukirch
- Physics and Chemistry of Materials (T-1), Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Mark C Zammit
- Physics and Chemistry of Materials (T-1), Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| |
Collapse
|
3
|
Macarios CM, Pittner J, Prasad VK, Fekl U. Heteroatom-vacancy centres in molecular nanodiamonds: a computational study of organic molecules possessing triplet ground states through σ-overlap. Phys Chem Chem Phys 2024; 26:25412-25417. [PMID: 39318192 DOI: 10.1039/d4cp02667e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
Small molecules possessing a triplet ground state are fundamentally intriguing but also in high demand for applications such as quantum sensing and quantum computing. Such molecules are rare, and most examples involve extended π-systems. Topology and shape of the spin density will be very different for molecules where the triplet state arises from σ-overlap. Drawing inspiration from NV- (anionic nitrogen-vacancy) centres in a diamond crystal, which possess triplet ground states that are robust due to the distortion-preventing crystal lattice, we investigate hetero-atom substituted diamondoids (molecular nanodiamonds) as molecular mimics for NV- centres. It is found that even in these small systems, distortions that stabilize singlet states are energetically costly, and the triplet states are more stable than the singlets. The stabilization of the triplet over the singlet is 13, 16, and 18 kcal mol-1, in anionic C3v-C33H36N- and in the charge-neutral molecules C3v-C33H36O and C3v-C33H36S, respectively, using CAM-B3LYP-D3(BJ)/Def2-QZVPP. Comparable numbers are obtained with other density functional theory (DFT) methods, including double-hybrids. Wavefunction-based approaches on the other hand disagree in their predictions: While the MP2 method applied with the DLPNO approximation predicts a preference for the singlet, density matrix renormalization group (DMRG) calculations qualitatively agree with DFT in their prediction of a triplet ground state, although by a small margin, for C3v-C33H36N- and C3v-C33H36O, but not for C3v-C33H36S. Weighing the evidence, we conclude, with reasonable confidence for C3v-C33H36N- and C3v-C33H36O and lesser confidence for C3v-C33H36S, that the ground state for the molecular nanodiamonds studied is a triplet state.
Collapse
Affiliation(s)
- Colette Maya Macarios
- Department of Chemical and Physical Sciences, 3359 Mississauga Road, University of Toronto Mississauga, Mississauga, Ontario, L5L 1C6, Canada.
| | - Jiří Pittner
- J. Heyrovský Institute of Physical Chemistry, Dolejškova 2155/3, 182 23 Prague 8, Czech Republic
| | - Viki Kumar Prasad
- Department of Chemical and Physical Sciences, 3359 Mississauga Road, University of Toronto Mississauga, Mississauga, Ontario, L5L 1C6, Canada.
- The Edward S. Rogers Sr. Department of Electrical and Computer Engineering, University of Toronto, 10 King's College Road, Toronto, Ontario, M5S 3G4, Canada
| | - Ulrich Fekl
- Department of Chemical and Physical Sciences, 3359 Mississauga Road, University of Toronto Mississauga, Mississauga, Ontario, L5L 1C6, Canada.
| |
Collapse
|
4
|
Lee M, Kim B, Sim M, Sogal M, Kim Y, Yu H, Burke K, Sim E. Correcting Dispersion Corrections with Density-Corrected DFT. J Chem Theory Comput 2024. [PMID: 39120872 DOI: 10.1021/acs.jctc.4c00689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
Almost all empirical parametrizations of dispersion corrections in DFT use only energy errors, thereby mixing functional and density-driven errors. We introduce density and dispersion-corrected DFT (D2C-DFT), a dual-calibration approach that accounts for density delocalization errors when parametrizing dispersion interactions. We simply exclude density-sensitive reactions from the training data. We find a significant reduction in both errors and variation among several semilocal functionals and their global hybrids when tailored dispersion corrections are employed with Hartree-Fock densities.
Collapse
Affiliation(s)
- Minhyeok Lee
- Department of Chemistry, Yonsei University, 50 Yonsei-ro Seodaemun-gu, Seoul 03722, Korea
| | - Byeongjae Kim
- Department of Chemistry, Yonsei University, 50 Yonsei-ro Seodaemun-gu, Seoul 03722, Korea
| | - Mingyu Sim
- Department of Chemistry, Yonsei University, 50 Yonsei-ro Seodaemun-gu, Seoul 03722, Korea
| | - Mihira Sogal
- Department of Chemistry, University of California, Irvine, California 92697, United States
| | - Youngsam Kim
- Department of Chemistry, Yonsei University, 50 Yonsei-ro Seodaemun-gu, Seoul 03722, Korea
| | - Hayoung Yu
- Department of Chemistry, Yonsei University, 50 Yonsei-ro Seodaemun-gu, Seoul 03722, Korea
| | - Kieron Burke
- Department of Chemistry, University of California, Irvine, California 92697, United States
| | - Eunji Sim
- Department of Chemistry, Yonsei University, 50 Yonsei-ro Seodaemun-gu, Seoul 03722, Korea
| |
Collapse
|
5
|
Kaplan AD, Shahi C, Sah RK, Bhetwal P, Kanungo B, Gavini V, Perdew JP. How Does HF-DFT Achieve Chemical Accuracy for Water Clusters? J Chem Theory Comput 2024; 20:5517-5527. [PMID: 38937987 DOI: 10.1021/acs.jctc.4c00560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
Bolstered by recent calculations of exact functional-driven errors (FEs) and density-driven errors (DEs) of semilocal density functionals in the water dimer binding energy [Kanungo, B. J. Phys. Chem. Lett. 2024, 15, 323-328], we investigate approximate FEs and DEs in neutral water clusters containing up to 20 monomers, charged water clusters, and alkali- and halide-water clusters. Our proxy for the exact density is r2SCAN 50, a 50% global hybrid of exact exchange with r2SCAN, which may be less correct than r2SCAN for the compact water monomer but importantly more correct for long-range electron transfers in the noncompact water clusters. We show that SCAN makes substantially larger FEs for neutral water clusters than r2SCAN, while both make essentially the same DEs. Unlike the case for barrier heights, these FEs are small in a relative sense and become large in an absolute sense only due to an increase in cluster size. SCAN@HF, short for SCAN evaluated on the Hartree-Fock (HF) density, produces a cancellation of errors that makes it chemically accurate for predicting the absolute binding energies of water clusters. Likewise, adding a long-range dispersion correction to r2SCAN@HF, as in the composite method HF-r2SCAN-DC4, makes its FE more negative than in r2SCAN@HF, permitting a near-perfect cancellation of FE and DE. r2SCAN by itself (and even more so, r2SCAN evaluated on the r2SCAN 50 density), is almost perfect for the energy differences between water hexamers, and thus probably also for liquid water away from the boiling point. Thus, the accuracy of composite methods like SCAN@HF and HF-r2SCAN-DC4 is not due to the HF density being closer to the exact density, but to a compensation of errors from its greater degree of localization. We also give an argument for the approximate reliability of this unconventional error cancellation for diverse molecular properties. Finally, we confirm this unconventional error cancellation for the SCAN description of the water trimer via Kohn-Sham inversion of the CCSD(T) density.
Collapse
Affiliation(s)
- Aaron D Kaplan
- Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Chandra Shahi
- Department of Physics and Engineering Physics, Tulane University, New Orleans, Louisiana 70118, United States
| | - Raj K Sah
- Department of Physics, Temple University, Philadelphia, Pennsylvania 19122, United States
| | - Pradeep Bhetwal
- Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, United States
| | - Bikash Kanungo
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Vikram Gavini
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Materials Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - John P Perdew
- Department of Physics and Engineering Physics, Tulane University, New Orleans, Louisiana 70118, United States
- Department of Physics, Temple University, Philadelphia, Pennsylvania 19122, United States
| |
Collapse
|
6
|
Scott JM, Dale SG, McBroom J, Gould T, Li Q. Size Isn't Everything: Geometric Tuning in Polycyclic Aromatic Hydrocarbons and Its Implications for Carbon Nanodots. J Phys Chem A 2024; 128:2003-2014. [PMID: 38470339 DOI: 10.1021/acs.jpca.3c07416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
Recent developments in light-emitting carbon nanodots and molecular organic semiconductors have seen renewed interest in the properties of polycyclic aromatic hydrocarbons (PAHs) as a family. The networks of delocalized π electrons in sp2-hybridized carbon grant PAHs light-emissive properties right across the visible spectrum. However, the mechanistic understanding of their emission energy has been limited due to the ground state-focused methods of determination. This computational chemistry work, therefore, seeks to validate existing rules and elucidate new features and characteristics of PAHs that influence their emissions. Predictions based on (time-dependent) density functional theory account for the full 3-dimensional electronic structure of ground and excited states and reveal that twisting and near-degeneracies strongly influence emission spectra and may therefore be used to tune the color of PAHs and, hence, carbon nanodots. We particularly note that the influence of twisting goes beyond torsional destabilization of the ground-state and geometric relaxation of the excited state, with a third contribution associated with the electric transition dipole. Symmetries and peri-condensation may also have an effect, but this could not be statistically confirmed. In pursuing this goal, we demonstrate that with minimal changes to molecular size, the entire visible spectrum may be spanned by geometric modification alone; we have also provided a first estimate of emission energy for 35 molecules currently lacking published emission spectra as well as clear guidelines for when more sophisticated computational techniques are required to predict the properties of PAHs accurately.
Collapse
Affiliation(s)
- James M Scott
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, Queensland 4111, Australia
- School of Engineering and Built Environment, Griffith University, Nathan, Queensland 4111, Australia
| | - Stephen G Dale
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, Queensland 4111, Australia
- The Institute for Functional Intelligent Materials (I-FIM), National University of Singapore, 4 Science Drive 2, Singapore 117544, Singapore
| | - James McBroom
- School of Environment and Science, Griffith University, Nathan, Queensland 4111, Australia
| | - Tim Gould
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, Queensland 4111, Australia
- School of Environment and Science, Griffith University, Nathan, Queensland 4111, Australia
| | - Qin Li
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, Queensland 4111, Australia
- School of Engineering and Built Environment, Griffith University, Nathan, Queensland 4111, Australia
| |
Collapse
|
7
|
Zope RR, Yamamoto Y, Baruah T. How well do one-electron self-interaction-correction methods perform for systems with fractional electrons? J Chem Phys 2024; 160:084102. [PMID: 38385511 DOI: 10.1063/5.0182773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 01/28/2024] [Indexed: 02/23/2024] Open
Abstract
Recently developed locally scaled self-interaction correction (LSIC) is a one-electron SIC method that, when used with a ratio of kinetic energy densities (zσ) as iso-orbital indicator, performs remarkably well for both thermochemical properties as well as for barrier heights overcoming the paradoxical behavior of the well-known Perdew-Zunger self-interaction correction (PZSIC) method. In this work, we examine how well the LSIC method performs for the delocalization error. Our results show that both LSIC and PZSIC methods correctly describe the dissociation of H2+ and He2+ but LSIC is overall more accurate than the PZSIC method. Likewise, in the case of the vertical ionization energy of an ensemble of isolated He atoms, the LSIC and PZSIC methods do not exhibit delocalization errors. For the fractional charges, both LSIC and PZSIC significantly reduce the deviation from linearity in the energy vs number of electrons curve, with PZSIC performing superior for C, Ne, and Ar atoms while for Kr they perform similarly. The LSIC performs well at the endpoints (integer occupations) while substantially reducing the deviation. The dissociation of LiF shows both LSIC and PZSIC dissociate into neutral Li and F but only LSIC exhibits charge transfer from Li+ to F- at the expected distance from the experimental data and accurate ab initio data. Overall, both the PZSIC and LSIC methods reduce the delocalization errors substantially.
Collapse
Affiliation(s)
- Rajendra R Zope
- Department of Physics, The University of Texas at El Paso, El Paso, Texas 79968, USA
| | - Yoh Yamamoto
- Department of Physics, The University of Texas at El Paso, El Paso, Texas 79968, USA
| | - Tunna Baruah
- Department of Physics, The University of Texas at El Paso, El Paso, Texas 79968, USA
| |
Collapse
|
8
|
Alikhani ME, Janesko BG. A two-electron reducing reaction of CO 2 to an oxalate anion: a theoretical study of delocalized (presolvated) electrons in Al(CH 3) n(NH 3) m, n = 0-2 and m = 1-6, clusters. Phys Chem Chem Phys 2024; 26:7149-7156. [PMID: 38349025 DOI: 10.1039/d3cp06096a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Presolvated electron possibility in three oxidation states of aluminum - Al(0), Al(I), and Al(II) - has been theoretically investigated for the Al + 6NH3, Al(CH3) + 5NH3, and Al(CH3)2 + 4NH3 reactions. It has been shown that the metal center adopts a tetrahedral shape for its most stable geometric structure, irrespective of the degree of Al oxidation states. Using different analysis techniques (highest occupied molecular orbital shapes, spin density distributions, and electron delocalization ranges), we showed that presolvated (delocalized) electrons are only formed in the Al(CH3)2(NH3)p coordination complexes when 2 ≤ p ≤ 4. It has also been evidenced that these delocalized electrons being powerful reducing agents allowed two CO2 molecules to be captured and form an oxalate ion in close contact with the [Al2(CH3)2(CH2)2(NH3)4]2+ dication core.
Collapse
Affiliation(s)
| | - Benjamin G Janesko
- Department of Chemistry & Biochemistry, Texas Christian University, 2800 S University Dr, Fort Worth, TX, USA.
| |
Collapse
|
9
|
Tyagi R, Voora VK. Single-Pole Polarization Models: Rapid Evaluation of Electron Affinities of Solvated-Electron and Superatomic Molecular Anionic States. J Phys Chem Lett 2024; 15:1218-1226. [PMID: 38276789 DOI: 10.1021/acs.jpclett.3c03392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
We propose a single-parameter effective one-particle potential, termed the single-pole exchange-correlation (1p-XC), to rapidly evaluate electron affinities (EAs) of nonvalence electronic states of molecular clusters and nanoassemblies. The model combines exact-exchange and the random phase approximation (RPA) correlation potential with a single-pole approximation to model the frequency-dependent polarization function. It captures long-range static and dynamic-frequency effects in the correlation potential, with mean absolute errors of 0.06 eV for EAs of hydrated- and ammoniated-electron clusters with EA values in the range 0.24-1.77 eV. The 1p-XC approximation enables EA estimation with a computational wall-time similar to that of hybrid functionals. The model also provides a compressed-basis, which significantly reduces the rank of higher-level parameter-free one-particle Hamiltonians and further simplifies the computation of EAs. The compressed-basis approach is used to model the hybridization of superatomic molecular states of (C60)2- and (C60)3-, thereby verifying previous model Hamiltonian studies.
Collapse
Affiliation(s)
- Ritaj Tyagi
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai 400005, India
| | - Vamsee K Voora
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai 400005, India
| |
Collapse
|
10
|
Graf D, Thom AJW. Corrected density functional theory and the random phase approximation: Improved accuracy at little extra cost. J Chem Phys 2023; 159:174106. [PMID: 37921249 DOI: 10.1063/5.0168569] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 10/16/2023] [Indexed: 11/04/2023] Open
Abstract
We recently introduced an efficient methodology to perform density-corrected Hartree-Fock density functional theory [DC(HF)-DFT] calculations and an extension to it we called "corrected" HF DFT [C(HF)-DFT] [Graf and Thom, J. Chem. Theory Comput. 19 5427-5438 (2023)]. In this work, we take a further step and combine C(HF)-DFT, augmented with a straightforward orbital energy correction, with the random phase approximation (RPA). We refer to the resulting methodology as corrected HF RPA [C(HF)-RPA]. We evaluate the proposed methodology across various RPA methods: direct RPA (dRPA), RPA with an approximate exchange kernel, and RPA with second-order screened exchange. C(HF)-dRPA demonstrates very promising performance; for RPA with exchange methods, on the other hand, we often find over-corrections.
Collapse
Affiliation(s)
- Daniel Graf
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, England
| | - Alex J W Thom
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, England
| |
Collapse
|
11
|
Rumson AF, Johnson ER. Low thermal expansion of layered electrides predicted by density-functional theory. J Chem Phys 2023; 159:174701. [PMID: 37909456 DOI: 10.1063/5.0171959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 10/13/2023] [Indexed: 11/03/2023] Open
Abstract
Layered electrides are a unique class of materials with anionic electrons bound in interstitial regions between thin, positively charged atomic layers. While density-functional theory is the tool of choice for computational study of electrides, there has to date been no systematic comparison of density functionals or dispersion corrections for their accurate simulation. There has also been no research into the thermomechanical properties of layered electrides, with computational predictions considering only static lattices. In this work, we investigate the thermomechanical properties of five layered electrides using density-functional theory to evaluate the magnitude of thermal effects on their lattice constants and cell volumes. We also assess the accuracy of five popular dispersion corrections with both planewave and numerical atomic orbital calculations.
Collapse
Affiliation(s)
- Adrian F Rumson
- Department of Chemistry, Dalhousie University, 6274 Coburg Rd., Halifax, Nova Scotia B3H 4R2, Canada
| | - Erin R Johnson
- Department of Chemistry, Dalhousie University, 6274 Coburg Rd., Halifax, Nova Scotia B3H 4R2, Canada
| |
Collapse
|
12
|
Rohman S, Kar R. Understanding Photophysical Properties of Molecules Relevant in Organic Semiconductor Laser Diodes from Electron Localization Function-Tuned and Solvent-Tuned Range-Separated Functionals. J Phys Chem A 2023; 127:9069-9081. [PMID: 37862688 DOI: 10.1021/acs.jpca.3c05486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2023]
Abstract
Organic semiconductor laser diodes (OSLDs) are prevalent in optoelectronics because of their sustainable energy applications. Organic molecules used in such diodes are usually large; hence, their studies are computationally challenging with high-end benchmark methods. Computational methods with reliable accuracy and efficiency are always indispensable. In the present work, we have applied our computationally inexpensive, nonempirically tuned [electron localization function (ELF*) and solvent (Sol*)] range-separated (RS) functionals to study five molecules used in OSLDs. The emission energies in three different environments [toluene, CBP (4,4'-bis(n-carbazolyl)-1,1'-biphenyl) film, and gas] have been computed with the tuned functionals and compared with the experimental emission energies. ELF* and Sol* functionals can accurately reproduce emission energies in toluene and CBP film environments. On the other hand, both ELF* and IP-tuned functionals with excited-state geometry (IP*) perform better in the gas phase. In addition, a comparative study is performed between time-dependent density functional theory and the Tamm-Dancoff approximation. Along with the emission energy, oscillator strength values have also been reported. Different IP-tuned RS parameters were obtained with the ground- and excited-state geometries. Interestingly, it has been observed that the optimally tuned RS parameter with excited-state geometry (IP*) performs better compared to that with ground-state geometries (IP). Fractional occupation calculations show that the tuned functionals exhibit less localization and delocalization error. The study envisages that ELF* and Sol* functionals can be used to design future candidates for OSLDs.
Collapse
Affiliation(s)
- Satter Rohman
- Department of Chemistry, Dibrugarh University, Dibrugarh, Assam 786004, India
| | - Rahul Kar
- Department of Chemistry, Dibrugarh University, Dibrugarh, Assam 786004, India
| |
Collapse
|
13
|
Lei X, Canestraight A, Vlcek V. Exceptional Spatial Variation of Charge Injection Energies on Plasmonic Surfaces. J Phys Chem Lett 2023; 14:8470-8476. [PMID: 37721434 DOI: 10.1021/acs.jpclett.3c02223] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
Charge injection into a molecule on a metallic interface is a key step in many photoactivated reactions. We employ the many-body perturbation theory and compute the hole and electron injection energies for CO2 molecule on an Au nanoparticle with ∼3,000 electrons and compare it to results for idealized infinite surfaces. We demonstrate a surprisingly large variation of the injection energy barrier depending on the precise molecular position on the surface. Multiple "hot spots," characterized by low energy barriers, arise due to the competition between the plasmonic coupling and the degree of hybridization between the molecule and the substrate. The charge injection barrier to the adsorbate on the nanoparticle surface decreases from the facet edge to the facet center. This finding contrasts with the typical picture in which the electric field enhancement on the nanoparticle edges is considered the most critical factor.
Collapse
Affiliation(s)
- Xiaohe Lei
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, California 93106, United States
| | - Annabelle Canestraight
- Department of Chemical Engineering, University of California Santa Barbara, Santa Barbara, California 93106, United States
| | - Vojtech Vlcek
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, California 93106, United States
- Department of Materials, University of California Santa Barbara, Santa Barbara, California 93106, United States
| |
Collapse
|
14
|
Kaka KS, Beaujean P, Castet F, Champagne B. A quantum chemical investigation of the second hyperpolarizability of p-nitroaniline. J Chem Phys 2023; 159:114104. [PMID: 37712783 DOI: 10.1063/5.0164602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 08/10/2023] [Indexed: 09/16/2023] Open
Abstract
Recent measurements of the third harmonic scattering responses of molecules have given a new impetus for computing molecular second hyperpolarizabilities (γ) and for deducing structure-property relationships. This paper has employed a variety of wavefunction and density functional theory methods to evaluate the second hyperpolarizability of the p-nitroaniline prototypical push-pull π-conjugated molecule, addressing also numerical aspects, such as the selection of an integration grid and the impact of the order of differentiation vs the achievable accuracy by using the Romberg quadrature. The reliability of the different methods has been assessed by comparison to reference Coupled-Cluster Singles and Doubles with perturbative treatment of the Triples results. On the one hand, among wavefunction methods, the MP2 scheme offers the best accuracy/cost ratio for computing the static γ. On the other hand, using density functional theory, γ remains a challenging property to compute because all conventional, global hybrid or range-separated hybrid, exchange-correlation functionals underestimate static γ values by at least 15%. Even tuning the range-separating parameter to minimize the delocalization errors does not enable to improve the γ values. Nevertheless, the original double-hybrid B2-PLYP functional, which benefits from 27% of PT2 correlation and 53% Hartree-Fock exchange, provides accurate estimates of static γ values. Unfortunately, the best performing exchange-correlation functionals for γ are not necessarily reliable for the first hyperpolarizability, β, and vice versa. In fact, the β of p-nitroaniline (pNA) could be predicted, with a good accuracy, with several hybrid exchange-correlation functionals (including by tuning the range-separating parameter), but these systematically underestimate γ. As for γ, the MP2 wavefunction method remains the best compromise to evaluate the first hyperpolarizability of pNA at low computational cost.
Collapse
Affiliation(s)
- Komlanvi Sèvi Kaka
- Theoretical Chemistry Laboratory, Unit of Theoretical and Structural Physical Chemistry, NISM (Namur Institute of Structured Matter), University of Namur (UNamur), B-5000 Namur, Belgium
| | - Pierre Beaujean
- Theoretical Chemistry Laboratory, Unit of Theoretical and Structural Physical Chemistry, NISM (Namur Institute of Structured Matter), University of Namur (UNamur), B-5000 Namur, Belgium
| | - Frédéric Castet
- Univ. Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255, F-33405 Cedex Talence, France
| | - Benoît Champagne
- Theoretical Chemistry Laboratory, Unit of Theoretical and Structural Physical Chemistry, NISM (Namur Institute of Structured Matter), University of Namur (UNamur), B-5000 Namur, Belgium
| |
Collapse
|
15
|
Graf D, Thom AJW. Simple and Efficient Route toward Improved Energetics within the Framework of Density-Corrected Density Functional Theory. J Chem Theory Comput 2023; 19:5427-5438. [PMID: 37525457 PMCID: PMC10448722 DOI: 10.1021/acs.jctc.3c00441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Indexed: 08/02/2023]
Abstract
The crucial step in density-corrected Hartree-Fock density functional theory (DC(HF)-DFT) is to decide whether the density produced by the density functional for a specific calculation is erroneous and, hence, should be replaced by, in this case, the HF density. We introduce an indicator, based on the difference in noninteracting kinetic energies between DFT and HF calculations, to determine when the HF density is the better option. Our kinetic energy indicator directly compares the self-consistent density of the analyzed functional with the HF density, is size-intensive, reliable, and most importantly highly efficient. Moreover, we present a procedure that makes best use of the computed quantities necessary for DC(HF)-DFT by additionally evaluating a related hybrid functional and, in that way, not only "corrects" the density but also the functional itself; we call that procedure corrected Hartree-Fock density functional theory (C(HF)-DFT).
Collapse
Affiliation(s)
- Daniel Graf
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, United Kingdom
| | - Alex J. W. Thom
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, United Kingdom
| |
Collapse
|
16
|
Jodts RJ, Wittkop M, Ho MB, Broderick WE, Broderick JB, Hoffman BM, Mosquera MA. Computational Description of Alkylated Iron-Sulfur Organometallic Clusters. J Am Chem Soc 2023; 145:13879-13887. [PMID: 37307050 PMCID: PMC10573082 DOI: 10.1021/jacs.3c03062] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The radical S-adenosyl methionine (SAM) enzyme superfamily has widespread roles in hydrogen atom abstraction reactions of crucial biological importance. In these enzymes, reductive cleavage of SAM bound to a [4Fe-4S]1+ cluster generates the 5'-deoxyadenosyl radical (5'-dAdo•) which ultimately abstracts an H atom from the substrate. However, overwhelming experimental evidence has surprisingly revealed an obligatory organometallic intermediate Ω exhibiting an Fe-C5'-adenosyl bond, whose properties are the target of this theoretical investigation. We report a readily applied, two-configuration version of broken symmetry DFT, denoted 2C-DFT, designed to allow the accurate description of the hyperfine coupling constants and g-tensors of an alkyl group bound to a multimetallic iron-sulfur cluster. This approach has been validated by the excellent agreement of its results both with those of multiconfigurational complete active space self-consistent field computations for a series of model complexes and with the results from electron nuclear double-resonance/electron paramagnetic resonance spectroscopic studies for the crystallographically characterized complex, M-CH3, a [4Fe-4S] cluster with a Fe-CH3 bond. The likewise excellent agreement between spectroscopic results and 2C-DFT computations for Ω confirm its identity as an organometallic complex with a bond between an Fe of the [4Fe-4S] cluster and C5' of the deoxyadenosyl moiety, as first proposed.
Collapse
Affiliation(s)
- Richard J. Jodts
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208
| | - M Wittkop
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana 59717
| | - Madeline B. Ho
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208
| | - William E. Broderick
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana 59717
| | - Joan B. Broderick
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana 59717
| | - Brian M. Hoffman
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208
| | - Martín A. Mosquera
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana 59717
| |
Collapse
|
17
|
Romero S, Baruah T, Zope RR. Spin-state gaps and self-interaction-corrected density functional approximations: Octahedral Fe(II) complexes as case study. J Chem Phys 2023; 158:054305. [PMID: 36754787 DOI: 10.1063/5.0133999] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Accurate prediction of a spin-state energy difference is crucial for understanding the spin crossover phenomena and is very challenging for density functional approximations, especially for local and semi-local approximations due to delocalization errors. Here, we investigate the effect of the self-interaction error removal from the local spin density approximation (LSDA) and Perdew-Burke-Ernzerhof generalized gradient approximation on the spin-state gaps of Fe(II) complexes with various ligands using recently developed locally scaled self-interaction correction (LSIC) by Zope et al. [J. Chem. Phys. 151, 214108 (2019)]. The LSIC method is exact for one-electron density, recovers the uniform electron gas limit of the underlying functional, and approaches the well-known Perdew-Zunger self-interaction correction (PZSIC) as a particular case when the scaling factor is set to unity. Our results, when compared with reference diffusion Monte Carlo results, show that the PZSIC method significantly overestimates spin-state gaps favoring low spin states for all ligands and does not improve upon density functional approximations. The perturbative LSIC-LSDA using PZSIC densities significantly improves the gaps with a mean absolute error of 0.51 eV but slightly overcorrects for the stronger CO ligands. The quasi-self-consistent LSIC-LSDA, such as coupled-cluster single double and perturbative triple [CCSD(T)], gives a correct sign of spin-state gaps for all ligands with a mean absolute error of 0.56 eV, comparable to that of CCSD(T) (0.49 eV).
Collapse
Affiliation(s)
- Selim Romero
- Computational Science Program, The University of Texas at El Paso, El Paso, Texas 79968, USA
| | - Tunna Baruah
- Department of Physics, University of Texas at El Paso, El Paso, Texas 79968, USA
| | - Rajendra R Zope
- Department of Physics, University of Texas at El Paso, El Paso, Texas 79968, USA
| |
Collapse
|
18
|
Liu Y, Sulaiman HF, Johnson BR, Ma R, Gao Y, Fernando H, Amarasekara A, Ashley-Oyewole A, Fan H, Ingram HN, Briggs JM. QM/MM study of N501 involved intermolecular interaction between SARS-CoV-2 receptor binding domain and antibody of human origin. Comput Biol Chem 2023; 102:107810. [PMID: 36610304 PMCID: PMC9811887 DOI: 10.1016/j.compbiolchem.2023.107810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/02/2023] [Accepted: 01/03/2023] [Indexed: 01/06/2023]
Abstract
Intermolecular interaction between key residue N501 of the epitope on SARS-CoV-2 RBD and screening antibody B38 was studied using the QM/MM and QM approach. The QM/MM optimized geometry shows that angle X-H---Y is 165° for O-H---O between mAb light chain S30 and RBD N501. High level MP2 calculations indicated the interaction between RBD N501 and S30 of B38 Fab light chain provide a relatively strong attractive force of - 3.32 kcal/mol, whereas the hydrogen bond between RBD Q498 and S30 was quantified as 0.10 kcal/mol. The decrease in ESP partial charge on hydrogen atom of hydroxyl group on S30 drops from 0.38 a.u. to 0.31 a.u., exhibiting the sharing of 0.07 a.u. from the lone pair electron oxygen of N501 due to hydrogen bond formation. The NBO occupancy of hydrogen atom also decreases from 25.79 % to 22.93 % in the hydroxyl H-O NBO bond of S30. However, the minor change of NBO hybridization of hydroxyl oxygen of S30 from sp3.00 to sp3.05 implies the rigidity of hydrogen bond tetrahedral geometry in the relative dynamic protein complex. The O-H---O angle is 165° which is close but not exactly linear. The structural requirement for sp3 hybridization of oxygen for hydroxyl group on S30 and dimension of protein likely prevent O-H---O from adopting linear geometry. The hydrogen bond strengths were also calculated using a variety of DFT methods, and the result of - 3.33 kcal/mol from the M06L method is the closest to that of the MP2 calculation. Results of this work may aid in the COVID-19 vaccine and drug screening.
Collapse
Affiliation(s)
- Yuemin Liu
- Department of Chemistry, Prairie View A&M University, Prairie View, TX 77446, the United States of America,Department of Chemistry, Rice University, Houston, TX 77005, the United States of America,Corresponding author at: Department of Chemistry, Prairie View A&M University, Prairie View, TX 77446, the United States of America
| | - Hana F. Sulaiman
- Department of Chemistry, Prairie View A&M University, Prairie View, TX 77446, the United States of America
| | - Bruce R. Johnson
- Department of Chemistry, Rice University, Houston, TX 77005, the United States of America
| | - Rulong Ma
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77004, the United States of America
| | - Yunxiang Gao
- Department of Chemistry, Prairie View A&M University, Prairie View, TX 77446, the United States of America
| | - Harshica Fernando
- Department of Chemistry, Prairie View A&M University, Prairie View, TX 77446, the United States of America
| | - Ananda Amarasekara
- Department of Chemistry, Prairie View A&M University, Prairie View, TX 77446, the United States of America
| | - Andrea Ashley-Oyewole
- Department of Chemistry, Prairie View A&M University, Prairie View, TX 77446, the United States of America
| | - Huajun Fan
- College of Chemical Engineering, Sichuan University Science and Engineering, Zigong, Sichuan 643000, PR China
| | - Heaven N. Ingram
- Department of Chemistry, Prairie View A&M University, Prairie View, TX 77446, the United States of America
| | - James M. Briggs
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77004, the United States of America
| |
Collapse
|
19
|
Lonsdale DR, Goerigk L. One-electron self-interaction error and its relationship to geometry and higher orbital occupation. J Chem Phys 2023; 158:044102. [PMID: 36725505 DOI: 10.1063/5.0129820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Density Functional Theory (DFT) sees prominent use in computational chemistry and physics; however, problems due to the self-interaction error (SIE) pose additional challenges to obtaining qualitatively correct results. As an unphysical energy an electron exerts on itself, the SIE impacts most practical DFT calculations. We conduct an in-depth analysis of the one-electron SIE in which we replicate delocalization effects for simple geometries. We present a simple visualization of such effects, which may help in future qualitative analysis of the one-electron SIE. By increasing the number of nuclei in a linear arrangement, the SIE increases dramatically. We also show how molecular shape impacts the SIE. Two- and three-dimensional shapes show an even greater SIE stemming mainly from the exchange functional with some error compensation from the one-electron error, which we previously defined [D. R. Lonsdale and L. Goerigk, Phys. Chem. Chem. Phys. 22, 15805 (2020)]. Most tested geometries are affected by the functional error, while some suffer from the density error. For the latter, we establish a potential connection with electrons being unequally delocalized by the DFT methods. We also show how the SIE increases if electrons occupy higher-lying atomic orbitals; seemingly one-electron SIE free methods in a ground are no longer SIE free in excited states, which is an important insight for some popular, non-empirical density functional approximations (DFAs). We conclude that the erratic behavior of the SIE in even the simplest geometries shows that robust DFAs are needed. Our test systems can be used as a future benchmark or contribute toward DFT development.
Collapse
Affiliation(s)
- Dale R Lonsdale
- School of Chemistry, The University of Melbourne, Victoria 3010, Australia
| | - Lars Goerigk
- School of Chemistry, The University of Melbourne, Victoria 3010, Australia
| |
Collapse
|
20
|
Gebauer D, Gale JD, Cölfen H. Crystal Nucleation and Growth of Inorganic Ionic Materials from Aqueous Solution: Selected Recent Developments, and Implications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2107735. [PMID: 35678091 DOI: 10.1002/smll.202107735] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 05/07/2022] [Indexed: 05/27/2023]
Abstract
In this review article, selected, latest theoretical, and experimental developments in the field of nucleation and crystal growth of inorganic materials from aqueous solution are highlighted, with a focus on literature after 2015 and on non-classical pathways. A key point is to emphasize the so far underappreciated role of water and solvent entropy in crystallization at all stages from solution speciation through to the final crystal. While drawing on examples from current inorganic materials where non-classical behavior has been proposed, the potential of these approaches to be adapted to a wide-range of systems is also discussed, while considering the broader implications of the current re-assessment of pathways for crystallization. Various techniques that are suitable for the exploration of crystallization pathways in aqueous solution, from nucleation to crystal growth are summarized, and a flow chart for the assignment of specific theories based on experimental observations is proposed.
Collapse
Affiliation(s)
- Denis Gebauer
- Leibniz University Hannover, Institute of Inorganic Chemistry, Callinstr. 9, 30167, Hannover, Germany
| | - Julian D Gale
- Curtin Institute for Computation/The Institute for Geoscience Research (TiGER), School of Molecular and Life Sciences, Curtin University, PO Box U1987, Perth, Western Australia, 6845, Australia
| | - Helmut Cölfen
- University of Konstanz, Physical Chemistry, Universitätsstr. 10, 78465, Konstanz, Germany
| |
Collapse
|
21
|
Bryenton KR, Adeleke AA, Dale SG, Johnson ER. Delocalization error: The greatest outstanding challenge in density‐functional theory. WIRES COMPUTATIONAL MOLECULAR SCIENCE 2022. [DOI: 10.1002/wcms.1631] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Kyle R. Bryenton
- Department of Physics and Atmospheric Science Dalhousie University Halifax Nova Scotia Canada
| | | | - Stephen G. Dale
- Queensland Micro‐ and Nanotechnology Centre Griffith University Nathan Queensland Australia
| | - Erin R. Johnson
- Department of Physics and Atmospheric Science Dalhousie University Halifax Nova Scotia Canada
- Department of Chemistry Dalhousie University Halifax Nova Scotia Canada
| |
Collapse
|
22
|
Ariyarathna IR, Duan C, Kulik HJ. Understanding the chemical bonding of ground and excited states of HfO and HfB with correlated wavefunction theory and density functional approximations. J Chem Phys 2022; 156:184113. [PMID: 35568536 DOI: 10.1063/5.0090128] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Knowledge of the chemical bonding of HfO and HfB ground and low-lying electronic states provides essential insights into a range of catalysts and materials that contain Hf-O or Hf-B moieties. Here, we carry out high-level multi-reference configuration interaction theory and coupled cluster quantum chemical calculations on these systems. We compute full potential energy curves, excitation energies, ionization energies, electronic configurations, and spectroscopic parameters with large quadruple-ζ and quintuple-ζ quality correlation consistent basis sets. We also investigate equilibrium chemical bonding patterns and effects of correlating core electrons on property predictions. Differences in the ground state electron configuration of HfB(X4Σ-) and HfO(X1Σ+) lead to a significantly stronger bond in HfO than HfB, as judged by both dissociation energies and equilibrium bond distances. We extend our analysis to the chemical bonding patterns of the isovalent HfX (X = O, S, Se, Te, and Po) series and observe similar trends. We also note a linear trend between the decreasing value of the dissociation energy (De) from HfO to HfPo and the singlet-triplet energy gap (ΔES-T) of the molecule. Finally, we compare these benchmark results to those obtained using density functional theory (DFT) with 23 exchange-correlation functionals spanning multiple rungs of "Jacob's ladder." When comparing DFT errors to coupled cluster reference values on dissociation energies, excitation energies, and ionization energies of HfB and HfO, we observe semi-local generalized gradient approximations to significantly outperform more complex and high-cost functionals.
Collapse
Affiliation(s)
- Isuru R Ariyarathna
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Chenru Duan
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Heather J Kulik
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
23
|
Bajaj A, Duan C, Nandy A, Taylor MG, Kulik HJ. Molecular orbital projectors in non-empirical jmDFT recover exact conditions in transition-metal chemistry. J Chem Phys 2022; 156:184112. [DOI: 10.1063/5.0089460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Low-cost, non-empirical corrections to semi-local density functional theory are essential for accurately modeling transition-metal chemistry. Here, we demonstrate the judiciously modified density functional theory (jmDFT) approach with non-empirical U and J parameters obtained directly from frontier orbital energetics on a series of transition-metal complexes. We curate a set of nine representative Ti(III) and V(IV) d1 transition-metal complexes and evaluate their flat-plane errors along the fractional spin and charge lines. We demonstrate that while jmDFT improves upon both DFT+U and semi-local DFT with the standard atomic orbital projectors (AOPs), it does so inefficiently. We rationalize these inefficiencies by quantifying hybridization in the relevant frontier orbitals. To overcome these limitations, we introduce a procedure for computing a molecular orbital projector (MOP) basis for use with jmDFT. We demonstrate this single set of d1 MOPs to be suitable for nearly eliminating all energetic delocalization error and static correlation error. In all cases, MOP jmDFT outperforms AOP jmDFT, and it eliminates most flat-plane errors at non-empirical values. Unlike DFT+U or hybrid functionals, jmDFT nearly eliminates energetic delocalization error and static correlation error within a non-empirical framework.
Collapse
Affiliation(s)
- Akash Bajaj
- Massachusetts Institute of Technology, United States of America
| | - Chenru Duan
- Massachusetts Institute of Technology, United States of America
| | - Aditya Nandy
- Massachusetts Institute of Technology, United States of America
| | | | - Heather J. Kulik
- Dept of Chemical Engineering, Massachusetts Institute of Technology, United States of America
| |
Collapse
|
24
|
Gould T, Dale SG. Poisoning density functional theory with benchmark sets of difficult systems. Phys Chem Chem Phys 2022; 24:6398-6403. [PMID: 35244641 DOI: 10.1039/d2cp00268j] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Large benchmark sets like GMTKN55 [Goerigk et al., Phys. Chem. Chem. Phys., 2017, 19, 32184] let us analyse the performance of density functional theory over a diverse range of systems and bonding types. However, assessing over a large and diverse set can miss cases where approaches fail badly, and can give a misleading sense of security. To this end we introduce a series of 'poison' benchmark sets, P30-5, P30-10 and P30-20, comprising systems with up to 5, 10 and 20 atoms, respectively. These sets represent the most difficult-to-model systems in GMTKN55. We expect them to be useful in developing new approximations, identifying weak points in existing ones, and to aid in selecting appropriate DFAs for computational studies involving difficult physics, e.g. catalysis.
Collapse
Affiliation(s)
- Tim Gould
- Qld Micro- and Nanotechnology Centre, Griffith University, Nathan, Qld 4111, Australia.
| | - Stephen G Dale
- Qld Micro- and Nanotechnology Centre, Griffith University, Nathan, Qld 4111, Australia.
| |
Collapse
|
25
|
Sen A, Rajaraman G. Can you break the oxo-wall? A multiconfigurational perspective. Faraday Discuss 2022; 234:175-194. [PMID: 35147623 DOI: 10.1039/d1fd00072a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The concept of the "oxo-wall" was conceived about 60 years ago by Harry B. Gray, and has been found to be related to the non-existence of high-valent M-oxo species in the +IV oxidation state in a tetragonal geometry beyond group 8 in the periodic table. Several efforts have been made in the past decades to test and find examples that violate this theory. Several claims of violation in the past were attributed to the difference in the geometries/coordination number and, therefore, these are not examples of true violation. In recent years, substantial efforts have been undertaken to synthesise a true CoIVO species with various ligand architectures. CoIVO and CoIII-O˙ are electromers and, while they are interchangeably used in the literature; the former violates the oxo-wall while the latter does not. The possibility that these two species could exist in various proportions similar to resonating structures has not been considered in detail in this area. Furthermore, there have been no attempts to quantify such mixing. In this direction, we have employed density functional theory (DFT) and ab initio CASSCF/NEVPT2 methods to quantify the co-existence of CoIVO and CoIII-O˙ isomeric species. By thoroughly studying six different metal-oxo species, we affirm that the nature of such electromeric mixing is minimal/negligible for FeIVO and MnIVO species - both are pre-oxo-wall examples. By studying four different ligand architectures with Co-oxo species, our results unveil that the mixing of CoIVO ↔ CoIII-O˙ is substantial in all geometries, with dominant CoIVO species favourable for the S = 3/2 intermediate spin state. The percentage of the CoIII-O˙ species is enhanced substantially for the S = 1/2 low-spin state. We have attempted to develop a tool to estimate the percentage of the CoIII-O˙ species using various structural parameters. Among those tested, a linear relationship between % of CoIII-O˙ and a bond length based ratio is found (, where d(Co-O) and d(Co-Nax) are the axial Co-O and Co-Nax bond lengths in Å, respectively). It is found that the higher the Rd, the greater the CoIII-O˙ character will be and the geometrically portable correlation developed offers a way to qualitatively compute the % of CoIII-O˙ character for unknown geometries.
Collapse
Affiliation(s)
- Asmita Sen
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, 400076, India.
| | - Gopalan Rajaraman
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, 400076, India.
| |
Collapse
|
26
|
Hemmingsen LO, Hervir OAJ, Dale SG. Linear fractional charge behavior in density functional theory through dielectric tuning of conductor-like polarizable continuum model. J Chem Phys 2022; 156:014106. [PMID: 34998325 DOI: 10.1063/5.0067685] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
A property of exact density functional theory is linear fractional charge behavior as electrons are added or removed from a molecule. Typical density functional approximations (DFAs) exhibit delocalization error, which overstabilizes this fractional charge. Conversely, solvent corrections have been shown to erroneously destabilize this fractional charge. This work will show that an implicit solvent correction with a tuned dielectric can be used as an ad hoc correction to offset the delocalizing character of DFAs and achieve linear fractional charge behavior. While desirable, in principle, we find that this linear charge behavior degrades the vertical ionization energies reported by DFAs. Our results reveal that the localizing character of the solvent correction and the Hartree-Fock (HF) exchange offset each other. This helps explain the decreased ratios of HF exchange to DFA exchange in long-range hybrid tuning studies that use a solvent correction.
Collapse
Affiliation(s)
- Luke O Hemmingsen
- Research School of Chemistry, Australian National University, Acton 2601, Australia
| | - Oliver A J Hervir
- Research School of Chemistry, Australian National University, Acton 2601, Australia
| | - Stephen G Dale
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan 4111, Australia
| |
Collapse
|
27
|
Abstract
Li, Na, and Mg+-coordinated hexaaza-18-crown-6 ([18]aneN6) and 1,4,7-triazacyclononane ([9]aneN3), Li[1.1.1]cryptand, and Na[2.2.2]cryptand species possess a diffuse electron in a quasispherical s-type orbital. They populate expanded p-, d-, f-, and g-shape orbitals in low-lying excited states and hence are identified as "superatoms". By means of quantum calculations, their superatomic shell models are revealed. The observed orbital series of M([9]aneN3)2 and M[18]aneN6 (M = Li, Na, Mg+) are identical to the 1s, 1p, 1d, 1f, 2s, and 2p. The electronic spectra of Li[1.1.1]cryptand and Na[2.2.2]cryptand were analyzed up to the 1f1 configuration, and their transitions were found to occur at lower energies compared to their aza-crown ethers. The introduced superatomic shell models in this work closely resemble the Aufbau principle of "solvated electrons precursors". All reported alkali metal complexes bear lower ionization potentials than any atom in the periodic table; thus, they can also be recognized as "superalkalis".
Collapse
Affiliation(s)
- Isuru R Ariyarathna
- Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama 36849, United States
| |
Collapse
|
28
|
Shen Z, Peng S, Glover WJ. Flexible boundary layer using exchange for embedding theories. II. QM/MM dynamics of the hydrated electron. J Chem Phys 2021; 155:224113. [PMID: 34911320 DOI: 10.1063/5.0067861] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The FlexiBLE embedding method introduced in Paper I [Z. Shen and W. J. Glover, J. Chem. Phys. 155, 224112 (2021)] is applied to explore the structure and dynamics of the aqueous solvated electron at an all-electron density functional theory Quantum Mechanics/Molecular Mechanics level. Compared to a one-electron mixed quantum/classical description, we find the dynamics of the many-electron model of the hydrated electron exhibits enhanced coupling to water OH stretch modes. Natural bond orbital analysis reveals this coupling is due to significant population of water OH σ* orbitals, reaching 20%. Based on this, we develop a minimal frontier orbital picture of the hydrated electron involving a cavity orbital and important coupling to 4-5 coordinating OH σ* orbitals. Implications for the interpretation of the spectroscopy of this interesting species are discussed.
Collapse
Affiliation(s)
- Zhuofan Shen
- NYU Shanghai, 1555 Century Ave., Shanghai 200122, China
| | - Shaoting Peng
- NYU Shanghai, 1555 Century Ave., Shanghai 200122, China
| | | |
Collapse
|
29
|
Park SJ, Narvaez WA, Schwartz BJ. How Water-Ion Interactions Control the Formation of Hydrated Electron:Sodium Cation Contact Pairs. J Phys Chem B 2021; 125:13027-13040. [PMID: 34806385 DOI: 10.1021/acs.jpcb.1c08256] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Although solvated electrons are a perennial subject of interest, relatively little attention has been paid to the way they behave in aqueous electrolytes. Experimentally, it is known that the hydrated electron's (eaq-) absorption spectrum shifts to the blue in the presence of salts, and the magnitude of the shift depends on the ion concentration and the identities of both the cation and anion. Does the blue-shift result from some type of dielectric effect from the bulk electrolyte, or are there specific interactions between the hydrated electron and ions in solution? Previous work has suggested that eaq- forms contact pairs with aqueous ions such as Na+, leading to the question of what controls the stability of such contact pairs and their possible connection to the observed spectroscopy. In this work, we use mixed quantum/classical simulations to examine the nature of Na+:e- contact pairs in water, using a novel method for quantum umbrella sampling to construct eaq--ion potentials of mean force (PMF). We find that the nature of the contact pair PMF depends sensitively on the choice of the classical interactions used to describe the Na+-water interactions. When the ion-water interactions are slightly stronger, the corresponding cation:e- contact pairs form at longer distances and become free energetically less stable. We show that this is because there is a delicate balance between solvation of the cation, solvation of eaq- and the direct electronic interaction between the cation and the electron, so that small changes in this balance lead to large changes in the formation and stability of e--ion contact pairs. In particular, strengthening the ion-water interactions helps to maintain a favorable local solvation environment around Na+, which in turn forces water molecules in the first solvation shell of the cation to be unfavorably oriented toward the electron in a contact pair; stronger solvation of the cation also reduces the electronic overlap of eaq- with Na+. We also find that the calculated spectra of different models of Na+:e- contact pairs do not shift monotonically with cation-electron distance, and that the calculated spectral shifts are about an order of magnitude larger than experiment, suggesting that isolated contact pairs are not the sole explanation for the blue-shift of the hydrated electron's spectrum in the presence of electrolytes.
Collapse
Affiliation(s)
- Sanghyun J Park
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095-1569, United States
| | - Wilberth A Narvaez
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095-1569, United States
| | - Benjamin J Schwartz
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095-1569, United States
| |
Collapse
|
30
|
Prasad VK, Khalilian MH, Otero-de-la-Roza A, DiLabio GA. BSE49, a diverse, high-quality benchmark dataset of separation energies of chemical bonds. Sci Data 2021; 8:300. [PMID: 34815431 PMCID: PMC8611007 DOI: 10.1038/s41597-021-01088-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 11/01/2021] [Indexed: 01/23/2023] Open
Abstract
We present an extensive and diverse dataset of bond separation energies associated with the homolytic cleavage of covalently bonded molecules (A-B) into their corresponding radical fragments (A. and B.). Our dataset contains two different classifications of model structures referred to as "Existing" (molecules with associated experimental data) and "Hypothetical" (molecules with no associated experimental data). In total, the dataset consists of 4502 datapoints (1969 datapoints from the Existing and 2533 datapoints from the Hypothetical classes). The dataset covers 49 unique X-Y type single bonds (except H-H, H-F, and H-Cl), where X and Y are H, B, C, N, O, F, Si, P, S, and Cl atoms. All the reference data was calculated at the (RO)CBS-QB3 level of theory. The reference bond separation energies are non-relativistic ground-state energy differences and contain no zero-point energy corrections. This new dataset of bond separation energies (BSE49) is presented as a high-quality reference dataset for assessing and developing computational chemistry methods.
Collapse
Affiliation(s)
- Viki Kumar Prasad
- Department of Chemistry, University of British Columbia, Kelowna, British Columbia, V1V 1V7, Canada
| | - M Hossein Khalilian
- Department of Chemistry, University of British Columbia, Kelowna, British Columbia, V1V 1V7, Canada
| | - Alberto Otero-de-la-Roza
- Departamento de Química Física y Analítica, Facultad de Química, Universidad de Oviedo, MALTA Consolider Team, E-33006, Oviedo, Spain
| | - Gino A DiLabio
- Department of Chemistry, University of British Columbia, Kelowna, British Columbia, V1V 1V7, Canada.
| |
Collapse
|
31
|
Ariyarathna IR, Miliordos E. Ground and excited states analysis of alkali metal ethylenediamine and crown ether complexes. Phys Chem Chem Phys 2021; 23:20298-20306. [PMID: 34486608 DOI: 10.1039/d1cp02552j] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
High-level electronic structure calculations are carried out to obtain optimized geometries and excitation energies of neutral lithium, sodium, and potassium complexes with two ethylenediamine and one or two crown ether molecules. Three different sizes of crowns are employed (12-crown-4, 15-crown-5, 18-crown-6). The ground state of all complexes contains an electron in an s-type orbital. For the mono-crown ether complexes, this orbital is the polarized valence s-orbital of the metal, but for the other systems this orbital is a peripheral diffuse orbital. The nature of the low-lying electronic states is found to be different for each of these species. Specifically, the metal ethylenediamine complexes follow the previously discovered shell model of metal ammonia complexes (1s, 1p, 1d, 2s, 1f), but both mono- and sandwich di-crown ether complexes bear a different shell model partially due to their lower (cylindrical) symmetry and the stabilization of the 2s-type orbital. Li(15-crown-5) is the only complex with the metal in the middle of the crown ether and adopts closely the shell model of metal ammonia complexes. Our findings suggest that the electronic band structure of electrides (metal crown ether sandwich aggregates) and expanded metals (metal ammonia aggregates) should be different despite the similar nature of these systems (bearing diffuse electrons around a metal complex).
Collapse
Affiliation(s)
- Isuru R Ariyarathna
- Department of Chemistry and Biochemistry, Auburn University, Auburn, AL 36849-5312, USA.
| | - Evangelos Miliordos
- Department of Chemistry and Biochemistry, Auburn University, Auburn, AL 36849-5312, USA.
| |
Collapse
|
32
|
Price AJA, Bryenton KR, Johnson ER. Requirements for an accurate dispersion-corrected density functional. J Chem Phys 2021; 154:230902. [PMID: 34241263 DOI: 10.1063/5.0050993] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Post-self-consistent dispersion corrections are now the norm when applying density-functional theory to systems where non-covalent interactions play an important role. However, there is a wide range of base functionals and dispersion corrections available from which to choose. In this work, we opine on the most desirable requirements to ensure that both the base functional and dispersion correction, individually, are as accurate as possible for non-bonded repulsion and dispersion attraction. The base functional should be dispersionless, numerically stable, and involve minimal delocalization error. Simultaneously, the dispersion correction should include finite damping, higher-order pairwise dispersion terms, and electronic many-body effects. These criteria are essential for avoiding reliance on error cancellation and obtaining correct results from correct physics.
Collapse
Affiliation(s)
- Alastair J A Price
- Department of Chemistry, Dalhousie University, 6274 Coburg Rd., Halifax, Nova Scotia B3H 4R2, Canada
| | - Kyle R Bryenton
- Department of Physics and Atmospheric Science, Dalhousie University, 6310 Coburg Rd., Halifax, Nova Scotia B3H 4R2, Canada
| | - Erin R Johnson
- Department of Chemistry, Dalhousie University, 6274 Coburg Rd., Halifax, Nova Scotia B3H 4R2, Canada
| |
Collapse
|
33
|
Janesko BG. Replacing hybrid density functional theory: motivation and recent advances. Chem Soc Rev 2021; 50:8470-8495. [PMID: 34060549 DOI: 10.1039/d0cs01074j] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Density functional theory (DFT) is the most widely-used electronic structure approximation across chemistry, physics, and materials science. Every year, thousands of papers report hybrid DFT simulations of chemical structures, mechanisms, and spectra. Unfortunately, hybrid DFT's accuracy is ultimately limited by tradeoffs between over-delocalization and under-binding. This review summarizes these tradeoffs, and introduces six modern attempts to go beyond them while maintaining hybrid DFT's relatively low computational cost: DFT+U, self-interaction corrections, localized orbital scaling corrections, local hybrid functionals, real-space nondynamical correlation, and our rung-3.5 approach. The review concludes with practical suggestions for DFT users to identify and mitigate these tradeoffs' impact on their simulations.
Collapse
Affiliation(s)
- Benjamin G Janesko
- Department of Chemistry & Biochemistry, Texas Christian University, 2800 S. University Dr, Fort Worth, TX 76129, USA.
| |
Collapse
|
34
|
Bajaj A, Kulik HJ. Molecular DFT+U: A Transferable, Low-Cost Approach to Eliminate Delocalization Error. J Phys Chem Lett 2021; 12:3633-3640. [PMID: 33826346 DOI: 10.1021/acs.jpclett.1c00796] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
While density functional theory (DFT) is widely applied for its combination of cost and accuracy, corrections (e.g., DFT+U) that improve it are often needed to tackle correlated transition-metal chemistry. In principle, the functional form of DFT+U, consisting of a set of localized atomic orbitals (AOs) and a quadratic energy penalty for deviation from integer occupations of those AOs, enables the recovery of the exact conditions of piecewise linearity and the derivative discontinuity. Nevertheless, for practical transition-metal complexes, where both atomic states and ligand orbitals participate in bonding, standard DFT+U can fail to eliminate delocalization error (DE). Here, we show that by introducing an alternative valence-state (i.e., molecular orbital or MO) basis to the DFT+U approach, we recover exact conditions in cases for which standard DFT+U corrections have no error-reducing effect. This MO-based DFT+U also eliminates DE where standard AO-based DFT+U is already successful. We demonstrate the transferability of our approach on representative transition-metal complexes with a range of ligand field strengths, electron configurations (i.e., from Sc to Zn), and spin states.
Collapse
Affiliation(s)
- Akash Bajaj
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Heather J Kulik
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
35
|
Abstract
Empirical fitting of parameters in approximate density functionals is common. Such fits conflate errors in the self-consistent density with errors in the energy functional, but density-corrected DFT (DC-DFT) separates these two. We illustrate with catastrophic failures of a toy functional applied to H2+ at varying bond lengths, where the standard fitting procedure misses the exact functional; Grimme's D3 fit to noncovalent interactions, which can be contaminated by large density errors such as in the WATER27 and B30 data sets; and double-hybrids trained on self-consistent densities, which can perform poorly on systems with density-driven errors. In these cases, more accurate results are found at no additional cost by using Hartree-Fock (HF) densities instead of self-consistent densities. For binding energies of small water clusters, errors are greatly reduced. Range-separated hybrids with 100% HF at large distances suffer much less from this effect.
Collapse
Affiliation(s)
- Suhwan Song
- Department of Chemistry, Yonsei University, 50 Yonsei-ro Seodaemun-gu, Seoul 03722, Korea
| | - Stefan Vuckovic
- Departments of Chemistry and of Physics, University of California, Irvine, California 92697, United States
| | - Eunji Sim
- Department of Chemistry, Yonsei University, 50 Yonsei-ro Seodaemun-gu, Seoul 03722, Korea
| | - Kieron Burke
- Departments of Chemistry and of Physics, University of California, Irvine, California 92697, United States
| |
Collapse
|
36
|
Romero S, Yamamoto Y, Baruah T, Zope RR. Local self-interaction correction method with a simple scaling factor. Phys Chem Chem Phys 2021; 23:2406-2418. [DOI: 10.1039/d0cp06282k] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The local self-interaction correction method with a simple scaling factor performs better than the Perdew-Zunger self-interaction correction method and also provides a good description of the binding energies of weakly bonded water clusters.
Collapse
Affiliation(s)
- Selim Romero
- Department of Physics
- University of Texas at El Paso
- El Paso
- USA
- Computational Science Program
| | - Yoh Yamamoto
- Department of Physics
- University of Texas at El Paso
- El Paso
- USA
| | - Tunna Baruah
- Department of Physics
- University of Texas at El Paso
- El Paso
- USA
- Computational Science Program
| | - Rajendra R. Zope
- Department of Physics
- University of Texas at El Paso
- El Paso
- USA
- Computational Science Program
| |
Collapse
|
37
|
Pal AK, Bhattacharyya K, Datta A. Polymorphism Dependent 9-Phosphoanthracene Derivative Exhibiting Thermally Activated Delayed Fluorescence: A Computational Investigation. J Phys Chem A 2020; 124:11025-11037. [PMID: 33332131 DOI: 10.1021/acs.jpca.0c10203] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Polymorphs of anthracene derivatives exhibit diverse photophysical properties that can help to develop efficient organic-based photovoltaic devices. 10-Anthryl-9-phosphoanthracene (10-APA) shows different photophysical behaviors for the solid state due to its variety in crystalline arrangement. Herein, we investigate the ground and excited-state properties of the monomer and two different polymorphs of 10-APA from first-principles. Calculations reveal that strong spin-orbit coupling (SOC) between first excited singlet state (S1) and triplet manifolds at their S1-optimized geometries enabling the reverse intersystem crossing (RISC). The electron-vibration coupling (Huang-Rhys factor) in the excited state is the most relevant factor here. For both ISC and RISC, a similarity in Huang-Rhys factors for the molecular vibration along the π···π stacking at low-frequency region makes the rates effective. On the other side, the nonvanishing vibronic relaxation modes provide a relatively slower RISC rate in the red crystal. However, for the red crystal, small reorganization energy (λ) and large Huang-Rhys factor toward S1 → S0 conversion reduce nonradiative decay, leading to a prompt fluorescence. As the feasibility of S1 ↔ T1 conversion increases in the yellow dimer, it allows a delay in fluorescence emission, leading to thermally activated delayed fluorescence (TADF).
Collapse
Affiliation(s)
- Arun K Pal
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, WB, India
| | - Kalishankar Bhattacharyya
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, WB, India
| | - Ayan Datta
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, WB, India
| |
Collapse
|
38
|
Mariano LA, Vlaisavljevich B, Poloni R. Biased Spin-State Energetics of Fe(II) Molecular Complexes within Density-Functional Theory and the Linear-Response Hubbard U Correction. J Chem Theory Comput 2020; 16:6755-6762. [DOI: 10.1021/acs.jctc.0c00628] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Lorenzo A. Mariano
- Grenoble-INP, SIMaP, University of Grenoble-Alpes, CNRS, F-38042 Grenoble, France
| | - Bess Vlaisavljevich
- Department of Chemistry, University of South Dakota, Vermillion, South Dakota 57069, United States
| | - Roberta Poloni
- Grenoble-INP, SIMaP, University of Grenoble-Alpes, CNRS, F-38042 Grenoble, France
| |
Collapse
|
39
|
Nam S, Song S, Sim E, Burke K. Measuring Density-Driven Errors Using Kohn-Sham Inversion. J Chem Theory Comput 2020; 16:5014-5023. [PMID: 32667787 DOI: 10.1021/acs.jctc.0c00391] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Kohn-Sham (KS) inversion, that is, the finding of the exact KS potential for a given density, is difficult in localized basis sets. We study the precision and reliability of several inversion schemes, finding estimates of density-driven errors at a useful level of accuracy. In typical cases of substantial density-driven errors, Hartree-Fock density functional theory (HF-DFT) is almost as accurate as DFT evaluated on CCSD(T) densities. A simple approximation in practical HF-DFT also makes errors much smaller than the density-driven errors being calculated. Two paradigm examples, stretched NaCl and the HO·Cl- radical, illustrate just how accurate HF-DFT is.
Collapse
Affiliation(s)
- Seungsoo Nam
- Department of Chemistry, Yonsei University, 50 Yonsei-ro Seodaemun-gu, Seoul 03722, Korea
| | - Suhwan Song
- Department of Chemistry, Yonsei University, 50 Yonsei-ro Seodaemun-gu, Seoul 03722, Korea
| | - Eunji Sim
- Department of Chemistry, Yonsei University, 50 Yonsei-ro Seodaemun-gu, Seoul 03722, Korea
| | - Kieron Burke
- Departments of Chemistry and of Physics, University of California, Irvine, California 92697, United States
| |
Collapse
|
40
|
Fabrizio A, Meyer B, Corminboeuf C. Machine learning models of the energy curvature vs particle number for optimal tuning of long-range corrected functionals. J Chem Phys 2020; 152:154103. [DOI: 10.1063/5.0005039] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Affiliation(s)
- Alberto Fabrizio
- Laboratory for Computational Molecular Design, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
- National Centre for Computational Design and Discovery of Novel Materials (MARVEL), École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Benjamin Meyer
- Laboratory for Computational Molecular Design, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
- National Centre for Computational Design and Discovery of Novel Materials (MARVEL), École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Clemence Corminboeuf
- Laboratory for Computational Molecular Design, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
- National Centre for Computational Design and Discovery of Novel Materials (MARVEL), École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| |
Collapse
|
41
|
Nandy A, Chu DBK, Harper DR, Duan C, Arunachalam N, Cytter Y, Kulik HJ. Large-scale comparison of 3d and 4d transition metal complexes illuminates the reduced effect of exchange on second-row spin-state energetics. Phys Chem Chem Phys 2020; 22:19326-19341. [DOI: 10.1039/d0cp02977g] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The origin of distinct 3d vs. 4d transition metal complex sensitivity to exchange is explored over a large data set.
Collapse
Affiliation(s)
- Aditya Nandy
- Department of Chemical Engineering
- Massachusetts Institute of Technology
- Cambridge
- USA
- Department of Chemistry
| | - Daniel B. K. Chu
- Department of Chemical Engineering
- Massachusetts Institute of Technology
- Cambridge
- USA
| | - Daniel R. Harper
- Department of Chemical Engineering
- Massachusetts Institute of Technology
- Cambridge
- USA
- Department of Chemistry
| | - Chenru Duan
- Department of Chemical Engineering
- Massachusetts Institute of Technology
- Cambridge
- USA
- Department of Chemistry
| | - Naveen Arunachalam
- Department of Chemical Engineering
- Massachusetts Institute of Technology
- Cambridge
- USA
| | - Yael Cytter
- Department of Chemical Engineering
- Massachusetts Institute of Technology
- Cambridge
- USA
| | - Heather J. Kulik
- Department of Chemical Engineering
- Massachusetts Institute of Technology
- Cambridge
- USA
| |
Collapse
|
42
|
Otero-de-la-Roza A, Johnson ER. Analysis of Density-Functional Errors for Noncovalent Interactions between Charged Molecules. J Phys Chem A 2019; 124:353-361. [DOI: 10.1021/acs.jpca.9b10257] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- A. Otero-de-la-Roza
- Departamento de Química Física y Analítica and MALTA-Consolider Team, Facultad de Química, Universidad de Oviedo, 33006 Oviedo, Spain
| | - Erin R. Johnson
- Department of Chemistry, Dalhousie University, 6274 Coburg Road, Halifax, Nova Scotia B3H 4R2, Canada
| |
Collapse
|
43
|
Liu F, Kulik HJ. Impact of Approximate DFT Density Delocalization Error on Potential Energy Surfaces in Transition Metal Chemistry. J Chem Theory Comput 2019; 16:264-277. [DOI: 10.1021/acs.jctc.9b00842] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Fang Liu
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Heather J. Kulik
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
44
|
Boruah A, Borpuzari MP, Kar R. Performance of Range Separated Density Functional in Solvent Continuum: Tuning Long‐range Hartree–Fock Exchange for Improved Orbital Energies. J Comput Chem 2019; 41:295-304. [DOI: 10.1002/jcc.26101] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 10/10/2019] [Accepted: 10/16/2019] [Indexed: 11/05/2022]
Affiliation(s)
- Abhijit Boruah
- Department of ChemistryDibrugarh University Dibrugarh Assam 786004 India
| | | | - Rahul Kar
- Department of ChemistryDibrugarh University Dibrugarh Assam 786004 India
| |
Collapse
|
45
|
Brandenburg JG, Zen A, Alfè D, Michaelides A. Interaction between water and carbon nanostructures: How good are current density functional approximations? J Chem Phys 2019; 151:164702. [DOI: 10.1063/1.5121370] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Affiliation(s)
- Jan Gerit Brandenburg
- Interdisciplinary Center for Scientific Computing, University of Heidelberg, Im Neuenheimer Feld 205A, 69120 Heidelberg, Germany
| | - Andrea Zen
- Department of Earth Sciences, University College London, Gower Street, London WC1E 6BT, United Kingdom
- Thomas Young Centre and London Centre for Nanotechnology, 17-19 Gordon Street, London WC1H 0AH, United Kingdom
| | - Dario Alfè
- Department of Earth Sciences, University College London, Gower Street, London WC1E 6BT, United Kingdom
- Thomas Young Centre and London Centre for Nanotechnology, 17-19 Gordon Street, London WC1H 0AH, United Kingdom
- Dipartimento di Fisica Ettore Pancini, Università di Napoli Federico II, Monte S. Angelo, I-80126 Napoli, Italy
| | - Angelos Michaelides
- Thomas Young Centre and London Centre for Nanotechnology, 17-19 Gordon Street, London WC1H 0AH, United Kingdom
- Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT, United Kingdom
| |
Collapse
|
46
|
Awoonor-Williams E, Isley WC, Dale SG, Johnson ER, Yu H, Becke AD, Roux B, Rowley CN. Quantum Chemical Methods for Modeling Covalent Modification of Biological Thiols. J Comput Chem 2019; 41:427-438. [PMID: 31512279 DOI: 10.1002/jcc.26064] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 07/24/2019] [Accepted: 08/16/2019] [Indexed: 02/06/2023]
Abstract
Targeted covalent inhibitor drugs require computational methods that go beyond simple molecular-mechanical force fields in order to model the chemical reactions that occur when they bind to their targets. Here, several semiempirical and density-functional theory (DFT) methods are assessed for their ability to describe the potential energy surface and reaction energies of the covalent modification of a thiol by an electrophile. Functionals such as PBE and B3LYP fail to predict a stable enolate intermediate. This is largely due to delocalization error, which spuriously stabilizes the prereaction complex, in which excess electron density is transferred from the thiolate to the electrophile. Functionals with a high-exact exchange component, range-separated DFT functionals, and variationally optimized exact exchange (i.e., the LC-B05minV functional) correct this issue to various degrees. The large gradient behavior of the exchange enhancement factor is also found to significantly affect the results, leading to the improved performance of PBE0. While ωB97X-D and M06-2X were reasonably accurate, no method provided quantitative accuracy for all three electrophiles, making this a very strenuous test of functional performance. Additionally, one drawback of M06-2X was that molecular dynamics (MD) simulations using this functional were only stable if a fine integration grid was used. The low-cost semiempirical methods, PM3, AM1, and PM7, provide a qualitatively correct description of the reaction mechanism, although the energetics is not quantitatively reliable. As a proof of concept, the potential of mean force for the addition of methylthiolate to methylvinyl ketone was calculated using quantum mechanical/molecular mechanical MD in an explicit polarizable aqueous solvent. © 2019 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Ernest Awoonor-Williams
- Department of Chemistry, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
| | - William C Isley
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois
| | - Stephen G Dale
- Research School of Chemistry, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Erin R Johnson
- Department of Chemistry, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Haibo Yu
- School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, New South Wales, Australia
| | - Axel D Becke
- Department of Chemistry, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Benoît Roux
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois
| | - Christopher N Rowley
- Department of Chemistry, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
| |
Collapse
|
47
|
Zhao Q, Kulik HJ. Stable Surfaces That Bind Too Tightly: Can Range-Separated Hybrids or DFT+U Improve Paradoxical Descriptions of Surface Chemistry? J Phys Chem Lett 2019; 10:5090-5098. [PMID: 31411023 PMCID: PMC6748670 DOI: 10.1021/acs.jpclett.9b01650] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 08/14/2019] [Indexed: 05/25/2023]
Abstract
Approximate, semilocal density functional theory (DFT) suffers from delocalization error that can lead to a paradoxical model of catalytic surfaces that both overbind adsorbates yet are also too stable. We investigate the effect of two widely applied approaches for delocalization error correction, (i) affordable DFT+U (i.e., semilocal DFT augmented with a Hubbard U) and (ii) hybrid functionals with an admixture of Hartree-Fock (HF) exchange, on surface and adsorbate energies across a range of rutile transition metal oxides widely studied for their promise as water-splitting catalysts. We observe strongly row- and period-dependent trends with DFT+U, which increases surface formation energies only in early transition metals (e.g., Ti and V) and decreases adsorbate energies only in later transition metals (e.g., Ir and Pt). Both global and local hybrids destabilize surfaces and reduce adsorbate binding across the periodic table, in agreement with higher-level reference calculations. Density analysis reveals why hybrid functionals correct both quantities, whereas DFT+U does not. We recommend local, range-separated hybrids for the accurate modeling of catalysis in transition metal oxides at only a modest increase in computational cost over semilocal DFT.
Collapse
Affiliation(s)
- Qing Zhao
- Department
of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, Massachusetts 02139, United States
- Department
of Mechanical Engineering, Massachusetts
Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Heather J. Kulik
- Department
of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
48
|
Gaggioli CA, Stoneburner SJ, Cramer CJ, Gagliardi L. Beyond Density Functional Theory: The Multiconfigurational Approach To Model Heterogeneous Catalysis. ACS Catal 2019. [DOI: 10.1021/acscatal.9b01775] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Carlo Alberto Gaggioli
- Department of Chemistry, Chemical Theory Center and Supercomputing Institute, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455-0431, United States
| | - Samuel J. Stoneburner
- Department of Chemistry, Chemical Theory Center and Supercomputing Institute, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455-0431, United States
| | - Christopher J. Cramer
- Department of Chemistry, Chemical Theory Center and Supercomputing Institute, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455-0431, United States
| | - Laura Gagliardi
- Department of Chemistry, Chemical Theory Center and Supercomputing Institute, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455-0431, United States
| |
Collapse
|
49
|
Otero-de-la-Roza A, LeBlanc LM, Johnson ER. Dispersion XDM with Hybrid Functionals: Delocalization Error and Halogen Bonding in Molecular Crystals. J Chem Theory Comput 2019; 15:4933-4944. [DOI: 10.1021/acs.jctc.9b00550] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- A. Otero-de-la-Roza
- Departamento de Química Física y Analítica, Facultad de Química, Universidad de Oviedo, 33006 Oviedo, Spain
| | - Luc M. LeBlanc
- Department of Chemistry, Dalhousie University, 6274 Coburg Road, Halifax, Nova Scotia B3H 4R2, Canada
| | - Erin R. Johnson
- Department of Chemistry, Dalhousie University, 6274 Coburg Road, Halifax, Nova Scotia B3H 4R2, Canada
| |
Collapse
|
50
|
Bajaj A, Liu F, Kulik HJ. Non-empirical, low-cost recovery of exact conditions with model-Hamiltonian inspired expressions in jmDFT. J Chem Phys 2019; 150:154115. [PMID: 31005112 DOI: 10.1063/1.5091563] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Density functional theory (DFT) is widely applied to both molecules and materials, but well known energetic delocalization and static correlation errors in practical exchange-correlation approximations limit quantitative accuracy. Common methods that correct energetic delocalization errors, such as the Hubbard U correction in DFT+U or Hartree-Fock exchange in global hybrids, do so at the cost of worsening static correlation errors. We recently introduced an alternate approach [Bajaj et al., J. Chem. Phys. 147, 191101 (2017)] known as judiciously modified DFT (jmDFT), wherein the deviation from exact behavior of semilocal functionals over both fractional spin and charge, i.e., the so-called flat plane, was used to motivate functional forms of second order analytic corrections. In this work, we introduce fully nonempirical expressions for all four coefficients in a DFT+U+J-inspired form of jmDFT, where all coefficients are obtained only from energies and eigenvalues of the integer-electron systems. We show good agreement for U and J coefficients obtained nonempirically as compared with the results of numerical fitting in a jmDFT U+J/J' correction. Incorporating the fully nonempirical jmDFT correction reduces and even eliminates the fractional spin error at the same time as eliminating the energetic delocalization error. We show that this approach extends beyond s-electron systems to higher angular momentum cases including p- and d-electrons. Finally, we diagnose some shortcomings of the current jmDFT approach that limit its ability to improve upon DFT results for cases such as weakly bound anions due to poor underlying semilocal functional behavior.
Collapse
Affiliation(s)
- Akash Bajaj
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Fang Liu
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Heather J Kulik
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| |
Collapse
|